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Proof of Result 8

i. In a constant environment, the mean fitness w⇤ at the symmetric equilibrium (x̄⇤
, ȳ

⇤)

is w⇤ = 1+sx

⇤, and it is a decreasing function of µ
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equation (14),
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As x⇤
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s+2

, in order for @x
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to be negative, it is su�cient that
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This follows easily from the fact that Q(x) of (14) satisfies Q(0) < 0, Q(x⇤) = 0, and

Q
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⌘

< 0.

ii. With a fitness cycle of period 2, the mean fitness w̄ at the symmetric equilibrium

(x̄, ȳ) is

w̄ = (1 + s) + sm
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w̄ is an increasing function of µ
B

if @w̄
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> 0 or equivalently if @w̄

@mB
> 0. Now
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Thus @w̄

@mB
> 0 provided @x̄

@mB
> 0. Using the equilibrium equation R(x) = 0 for x̄,

we have
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Since
⇥

x̄(s+ 1)� 1
⇤

> 0, we conclude that @x̄
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> 0 if
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m
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which follows from R(0) < 0, R(x̄) = 0, and R

⇣

mB(s+2)�2
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< 0.
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