File S4

Proof of Result 4

A straightforward computation shows that the 4×4 matrix $\mathbf{L}_{\rm ex}$ can be written as

$$
\mathbf{L}_{\text{ex}} = \begin{pmatrix} (1-m)A & (1-m)B & mC & mD \\ (1-m)D & (1-m)C & mB & mA \\ mA & mB & (1-m)C & (1-m)D \\ mD & mC & (1-m)B & (1-m)A \end{pmatrix}, \qquad (S4.1)
$$

where

$$
(1+sx^*)A = (1+s)(1-\mu_b) + r(1-x^*)[(s+2)\mu_b - (s+1)]
$$

\n
$$
(1+sx^*)B = (1+s)rx^* + \mu_b[1-(s+2)rx^*]
$$

\n
$$
(1+sx^*)C = (1-\mu_b) + rx^*[(s+2)\mu_b - 1]
$$

\n
$$
(1+sx^*)D = (1+s)\mu_b + r(1-x^*)[1-(s+2)\mu_b].
$$

\n(S4.2)

Observe that "formally" A, B, C, D are linear in μ_b . Let A_0 be the value of A when $\mu_b = 0$ and A_1 be its value when $\mu_b = 1$. Similarly we have $B_0, B_1, C_0, C_1, D_0, D_1$. In fact,

$$
(1+sx^*)A_0 = (1+s)[1 - r(1 - x^*)]
$$

\n
$$
(1 + sx^*)A_1 = r(1 - x^*)
$$

\n
$$
(1 + sx^*)B_0 = (1 + s)rx^*
$$

\n
$$
(1 + sx^*)B_1 = 1 - rx^*
$$

\n
$$
(1 + sx^*)C_0 = 1 - rx^*
$$

\n
$$
(1 + sx^*)C_1 = (1 + s)rx^*
$$

\n
$$
(1 + sx^*)D_0 = r(1 - x^*)
$$

\n
$$
(1 + sx^*)D_1 = (1 + s)[1 - r(1 - x^*)].
$$

As $0 < r < 1$, $0 < x^* < 1$ we have A_i, B_i, C_i, D_i positive for $i = 0, 1$. Hence, as A, B, C, D are linear in μ_b , A, B, C, D are all positive for $0 < \mu_b < 1$. Moreover we have

$$
C_0 = B_1,
$$
 $C_1 = B_0,$ $D_0 = A_1,$ $D_1 = A_0.$ (S4.4)

Let $S(\lambda) = \det(\mathbf{L}_{ex} - \lambda \mathbf{I})$ be the characteristic polynomial of \mathbf{L}_{ex} . The structure of \mathbf{L}_{ex} given in (S4.1) entails that $S(\lambda)$ factors into the product of two quadratic polynomials $S_1(\lambda)$ and $S_2(\lambda)$:

$$
S(\lambda) = S_1(\lambda)S_2(\lambda), \qquad (S4.5)
$$

where

$$
S_1(\lambda) = \lambda^2 - \lambda [(1-m)(A+C) + m(B+D)] + (1-2m)(AC - BD)
$$

\n
$$
S_2(\lambda) = \lambda^2 - \lambda [(1-m)(A+C) - m(B+D)] + (1-2m)(AC - BD).
$$
\n(S4.6)

See Balkau and Feldman (1973) for analogous calculations with migration modification. Consider first the roots of $S_1(\lambda) = 0$. These are real since the discriminant of $S_1(\lambda) = 0$ is

$$
[(1-m)(A+C)+m(B+D)]^{2}-4(1-2m)(AC-BD) =
$$

=
$$
[(1-m)(A-C)+m(B-D)]^{2}+4m(1-m)(AD+BC)+4(1-m)^{2}BD+4m^{2}AC,
$$

(S4.7)

which is positive since A, B, C, D are positive and $0 < m < 1$.

In addition,

$$
AC - BD = [(1 - \mu_b)A_0 + \mu_b A_1] [(1 - \mu_b)(C_0 + \mu_b C_1)]
$$

$$
- [(1 - \mu_b)B_0 + \mu_b B_1] [(1 - \mu_b)D_0 + \mu_b D_1].
$$
 (S4.8)

Since $C_0 = B_1$, $C_1 = B_0$, $D_0 = A_1$, $D_1 = A_0$, (S4.8) reduces to

$$
AC - BD = (1 - 2\mu_b)(A_0B_1 - A_1B_0). \tag{S4.9}
$$

Substituting A_0, A_1, B_0, B_1 from (S4.3) we have

$$
(1 + sx^*)^2(AC - BD) = (1 - 2\mu_b)(1 + s)(1 - r).
$$
 (S4.10)

Since we assume $0 < m$, $\mu_b < \frac{1}{2}$, the two roots of $S_1(\lambda) = 0$ are positive. Both of these roots are less than 1 if and only if $S_1(1) > 0$ and $S'_1(1) > 0$.

$$
S_1'(1) = 2 - [(1-m)(A+C) + m(B+D)].
$$
 (S4.11)

As $C_0 = B_1, C_1 = B_0, D_0 = A_1, D_1 = A_0$, we have

$$
(A + C) = (1 - \mu_b)(A_0 + C_0) + \mu_b(A_1 + C_1)
$$

= $(1 - \mu_b)(A_0 + C_0) + \mu_b(B_0 + D_0),$ (S4.12)

$$
(B+D) = (1 - \mu_b)(B_0 + D_0) + \mu_b(B_1 + D_1)
$$

= $(1 - \mu_b)(B_0 + D_0) + \mu_b(A_0 + C_0).$ (S4.13)

O. Carja, U. Liberman, and M. W. Feldman 7 SI

Hence,

$$
(1-m)(A+C) + m(B+D) = (1-m_b)(A_0+C_0) + m_b(B_0+D_0), \qquad (S4.14)
$$

where

$$
m_b = m + \mu_b - 2m\mu_b. \tag{S4.15}
$$

Substituting for A_0 , B_0 , C_0 , D_0 , gives

$$
S_1'(1) = (1 + sx^*)^{-1} \left[r + rsx^* + s(1 - r)(2x^* - 1) + m_b(1 - r)(s + 2) \right].
$$
 (S4.16)

Now $s > 0$, $0 < r < 1$, $m_b = m(1 - \mu_b) + \mu_b(1 - m) > 0$, and $x^* > \frac{1}{2}$ if $0 < m$, $\mu_B < \frac{1}{2}$. Therefore $S'(1) > 0$ provided $0 < m$, $\mu_B < \frac{1}{2}$. Using (S4.11) and (S4.16) it is easily seen that $S(1) > 0$ if

$$
(1+sx^*)^{-2}(1-r)\left\{(x^*)^2s^2+sx^*[-s+m_b(s+2)]-sm_b\right\}>0.
$$
 (S4.17)

Using the equation $Q(x^*) = 0$ from (14), we have

$$
s(x^*)^2 + [(s+2)m_B - s]x^* - m_B = 0,
$$
 (S4.18)

where

$$
m_B = m + \mu_B - 2m\mu_B. \tag{S4.19}
$$

Therefore (S4.17) is satisfied if and only if

$$
(m_b - m_B)(1 + sx^*)^{-2}(1 - r)s[x^*(2 + s) - 1] > 0.
$$
 (S4.20)

As $x^* > \frac{1}{2}$, by Result 1, and $0 < m < \frac{1}{2}$, (S4.20) holds if and only if $m_b > m_B$, which is true if and only if $\mu_b > \mu_B$.

It is not obvious that the roots of $S_2(\lambda) = 0$ are real. However, as the matrix \mathbf{L}^*_{ex} is positive, the Perron-Frobenius theory ensures that its largest eigenvalue in magnitude is positive. Therefore we just have to ensure that when both eigenvalues are real and positive they are less than 1; when they are real, both are positive or both are negative since $(1 - 2m)(1 - 2\mu_b)(AC - BD)$ is positive for $0 < m$, $\mu_b < \frac{1}{2}$. The conditions for this are that both $S_2(1)$ and $S'_2(1)$ are positive. But

$$
S_2(1) = 1 - [(1 - m)(A + C) - m(B + D)] + (1 - 2m)(AC - BD)
$$

> 1 - [(1 - m)(A + C) + m(B + D)] + (1 - 2m)(AC - BD) = S₁(1), (S4.21)

and $S_1(1) > 0$ when $0 < m$, $\mu_b < \frac{1}{2}$ and $\mu_b > \mu_B$, so also $S_2(1) > 0$. Similarly

$$
S'_{2}(1) = 2 - [(1 - m)(A + C) - m(B + D)]
$$

> 2 - [(1 - m)(A + C) + m(B + D)] = S'_{1}(1). (S4.22)

Thus, when $S'_1(1) > 0$ also $S'_2(1) > 0$.