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Proof of Result 4

A straightforward computation shows that the 4⇥ 4 matrix L

ex

can be written as

L

ex

=

0

B

B

B

@

(1�m)A (1�m)B mC mD

(1�m)D (1�m)C mB mA

mA mB (1�m)C (1�m)D

mD mC (1�m)B (1�m)A

1

C

C

C

A

, (S4.1)

where
(1 + sx

⇤)A = (1 + s)(1� µ

b

) + r(1� x

⇤)
⇥

(s+ 2)µ
b

� (s+ 1)
⇤

(1 + sx

⇤)B = (1 + s)rx⇤ + µ

b

⇥

1� (s+ 2)rx⇤⇤

(1 + sx

⇤)C = (1� µ

b

) + rx

⇤⇥(s+ 2)µ
b

� 1
⇤

(1 + sx

⇤)D = (1 + s)µ
b

+ r(1� x

⇤)
⇥

1� (s+ 2)µ
b

⇤

.

(S4.2)

Observe that “formally” A,B,C,D are linear in µ

b

. Let A
0

be the value of A when

µ

b

= 0 and A

1

be its value when µ

b

= 1. Similarly we have B

0

, B

1

, C

0

, C

1

, D

0

, D

1

. In

fact,
(1 + sx

⇤)A
0

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

(1 + sx

⇤)A
1

= r(1� x

⇤)

(1 + sx

⇤)B
0

= (1 + s)rx⇤

(1 + sx

⇤)B
1

= 1� rx

⇤

(1 + sx

⇤)C
0

= 1� rx

⇤

(1 + sx

⇤)C
1

= (1 + s)rx⇤

(1 + sx

⇤)D
0

= r(1� x

⇤)

(1 + sx

⇤)D
1

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

.

(S4.3)

As 0 < r < 1, 0 < x

⇤
< 1 we have A

i

, B

i

, C

i

, D

i

positive for i = 0, 1. Hence, as A,B,C,D

are linear in µ

b

, A,B,C,D are all positive for 0 < µ

b

< 1. Moreover we have

C

0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

. (S4.4)

Let S(�) = det(L
ex

� �I) be the characteristic polynomial of L
ex

. The structure of L
ex

given in (S4.1) entails that S(�) factors into the product of two quadratic polynomials

S

1

(�) and S

2

(�):

S(�) = S

1

(�)S
2

(�), (S4.5)
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where

S

1

(�) = �

2 � �

⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD)

S

2

(�) = �

2 � �

⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD).
(S4.6)

See Balkau and Feldman (1973) for analogous calculations with migration modification.

Consider first the roots of S
1

(�) = 0. These are real since the discriminant of S
1

(�) = 0

is

⇥

(1�m)(A+ C) +m(B +D)
⇤

2 � 4(1� 2m)(AC �BD) =

=
⇥

(1�m)(A� C) +m(B �D)
⇤

2

+ 4m(1�m)(AD +BC) + 4(1�m)2BD + 4m2

AC,

(S4.7)

which is positive since A,B,C,D are positive and 0 < m < 1.

In addition,

AC �BD =
⇥

(1� µ

b

)A
0

+ µ

b

A

1

⇤⇥

(1� µ

b

)(C
0

+ µ

b

C

1

⇤

�
⇥

(1� µ

b

)B
0

+ µ

b

B

1

⇤⇥

(1� µ

b

)D
0

+ µ

b

D

1

⇤

.

(S4.8)

Since C

0

= B

1

, C
1

= B

0

, D
0

= A

1

, D
1

= A

0

, (S4.8) reduces to

AC �BD = (1� 2µ
b

)(A
0

B

1

�A

1

B

0

). (S4.9)

Substituting A

0

, A

1

, B

0

, B

1

from (S4.3) we have

(1 + sx

⇤)2(AC �BD) = (1� 2µ
b

)(1 + s)(1� r). (S4.10)

Since we assume 0 < m, µ
b

<

1

2

, the two roots of S
1

(�) = 0 are positive. Both of these

roots are less than 1 if and only if S
1

(1) > 0 and S

0
1

(1) > 0.

S

0
1

(1) = 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

. (S4.11)

As C
0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

, we have

(A+ C) = (1� µ

b

)(A
0

+ C

0

) + µ

b

(A
1

+ C

1

)

= (1� µ

b

)(A
0

+ C

0

) + µ

b

(B
0

+D

0

),
(S4.12)

(B +D) = (1� µ

b

)(B
0

+D

0

) + µ

b

(B
1

+D

1

)

= (1� µ

b

)(B
0

+D

0

) + µ

b

(A
0

+ C

0

).
(S4.13)

O. Carja, U. Liberman, and M. W. Feldman 7 SI



Hence,

(1�m)(A+ C) +m(B +D) = (1�m

b

)(A
0

+ C

0

) +m

b

(B
0

+D

0

), (S4.14)

where

m

b

= m+ µ

b

� 2mµ

b

. (S4.15)

Substituting for A
0

, B

0

, C

0

, D

0

, gives

S

0
1

(1) = (1 + sx

⇤)�1

⇥

r + rsx

⇤ + s(1� r)(2x⇤ � 1) +m

b

(1� r)(s+ 2)
⇤

. (S4.16)

Now s > 0, 0 < r < 1, m
b

= m(1 � µ

b

) + µ

b

(1 �m) > 0, and x

⇤
>

1

2

if 0 < m, µ
B

<

1

2

.

Therefore S

0(1) > 0 provided 0 < m, µ
B

<

1

2

. Using (S4.11) and (S4.16) it is easily seen

that S(1) > 0 if

(1 + sx

⇤)�2(1� r)
n

(x⇤)2s2 + sx

⇤⇥�s+m

b

(s+ 2)
⇤

� sm

b

o

> 0. (S4.17)

Using the equation Q(x⇤) = 0 from (14), we have

s(x⇤)2 +
⇥

(s+ 2)m
B

� s

⇤

x

⇤ �m

B

= 0, (S4.18)

where

m

B

= m+ µ

B

� 2mµ

B

. (S4.19)

Therefore (S4.17) is satisfied if and only if

(m
b

�m

B

)(1 + sx

⇤)�2(1� r)s
⇥

x

⇤(2 + s)� 1
⇤

> 0. (S4.20)

As x⇤
>

1

2

, by Result 1, and 0 < m <

1

2

, (S4.20) holds if and only if m
b

> m

B

, which is

true if and only if µ
b

> µ

B

.

It is not obvious that the roots of S
2

(�) = 0 are real. However, as the matrix L

⇤
ex

is positive, the Perron-Frobenius theory ensures that its largest eigenvalue in magnitude

is positive. Therefore we just have to ensure that when both eigenvalues are real and

positive they are less than 1; when they are real, both are positive or both are negative
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since (1� 2m)(1� 2µ
b

)(AC �BD) is positive for 0 < m, µ
b

<

1

2

. The conditions for this

are that both S

2

(1) and S

0
2

(1) are positive. But

S

2

(1) = 1�
⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD)

> 1�
⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD) = S

1

(1),
(S4.21)

and S

1

(1) > 0 when 0 < m, µ
b

<

1

2

and µ

b

> µ

B

, so also S

2

(1) > 0. Similarly

S

0
2

(1) = 2�
⇥

(1�m)(A+ C)�m(B +D)
⇤

> 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

= S

0
1

(1).
(S4.22)

Thus, when S

0
1

(1) > 0 also S

0
2

(1) > 0.
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