File S7
Proof of Result 7

As the transformation T of the population state is T' = T o T7, where T; corresponds
to phase 7, with selection of type i, for i = 1,2, and as x = T1X, X = 17X, following the

analysis for the case without cycles, the linear approximation matrix L., becomes

Lo = L2 -LL, (S7.1)
where, as in (S4.1) and (S4.2), we have
(1-m)A (1-m)B mC mD
| a= m)D (1 —m)C mB mA
Lox = mA mB (1-m)C (1-m)D |’ (57.2)
mD mC (1-m)B (1-m)A
(1-mA (1-m)B  mC mD
L2 - (1-— nz)D (1 —T)C mB - mA e (573)
mA mB (1-m)C (1—m)D
mD mC  (1-m)B (1—-m)A
and
(1+st)A=(1+s)(1— ) +r(1—2)[(s+2)up — (s +1)]
(14 sT)B = (1+s)rz + w[1l — (s + 2)rz]
(S7.4)
(14 52)C = (1 — pp) + m’[(s +2)up — 1}
(1+s2)D = (14 s)pp +r(1 —2)[1 — (s + 2) ],
1+s(1—2 (1= ) + (1 —2)[(24 s)pp — 1]
= (1+8)up +rZ[1 — (s + 2) 1] (575)

A=
1B
10 =1 +8)(1 — ) +rE[(s+2)pup — (s +1)]
|D =

py +1r(1—2)[(s+1) = (s +2) ).

When we multiply L2 by L!_we find that the product Ley has the following structure:

d

Lox = (S7.6)

QL O
SSQ - O
o e =
SIS
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where o - _ ~
a=(1—m)’AA+ (1 —m)’BD 4+ m*CA+ m?DD

b= (1—m)’DA+ (1—m)’CD + m?>BA+m>AD

c=m(l—m) [EZ+§E+5Z+EE}

d=m(1—m) [ZN)Z-I—CN'E-I-EZ-I-Zﬁ}

o e g~ g e s (S7.7)
e=(1-—m)"AB+ (1 —m)"BC +m*CB+ m“DC
f=0—=m)’DB+ (1 —-m)*CC +m?BB +m?AC
g =m(l—m) [Zmémémﬁé}
h=m(1—m) [ﬁ?+5‘6+§§+2€} .

Let D(A) = det(Lex — AI) be the characteristic polynomial of Lex. From (S7.6), D(\)

factors into 2 X 2 determinants:

a+d—X e+h 0 0
| b+e f+g—2A 0 0
D(\) = . p Fog—A b ¢ (57.8)
d h e—h a—d—\
Therefore D()A) can be written
D(X) = D1(A)D2(N), (57.9)
where
Di(A) =N —(a+d+ f+g)r+(a+d)(f+9)— (b+c)(e+h) ( |
S7.10

Dy(N) =X —(a—d+ f—gA+(a—d)(f—g)—(b—c)e—h).

AsO<m<1land A,B,C,D and Z, E, 5, D are all positive, the matrix Ly is a positive
matrix and its largest eigenvalue in magnitude is positive. Observe that the discriminant
of Dy(\) is

(a+d+f+9)° —4[la+d)(f+g)— (b+c)(e+h)], (57.11)

which is positive and equal to
[(a+d) = (f +9)]° +4(b+c)(e + h). (57.12)

In addition, (a+d+ f +g) is positive. Therefore D;(A) has real roots, and its largest root
in magnitude is positive. Thus this positive root is less than 1 if D1(1) > 0 and D} (1) > 0.
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As the largest eigenvalue of L.y is positive, for stability of (X,y) we require that if the
eigenvalues associated with Do(\) are real and at least one is positive, they are both less

than 1. Again the conditions for this are Da(\) > 0 and D5(1) > 0. Observe that

Di(l)=2—(a+d+ f+g)
(57.13)
Di(1)=2—(a—d+ f—g)=Di(1)+2(d+g) > Dy(1).

In view of (S7.13), for the largest eigenvalue of Ly to be less than one, we require
D1(1) > 0, Di(1) >0, Ds(1) > 0. (S7.14)

We now compute the constant terms of D;(A) and D2(\). We already know, based on the
properties of the matrices Ll and LZ2_that the constant terms of both D1(\) and Dy (\)

are the same and are equal to
(1-2m)?*(AC - BD) (z& - 'éf)) . (S7.15)
With the same technique used to compute (S4.10), we deduce that
(1+s7)> (AC —BD) = (1 —2u) (1 +5)(1 — 1), (57.16)
and similarly
1+s(1—7) (Aé . éf)) = (1—2u)(1+5)(1 — 7). (S7.17)
Therefore the constant terms of both Dj(\) and Dy(\) are the same and are equal to
(1—2m)>(1—2m)> (1 +s2) L+s1—2)] > (1+s)°1—1), (57.18)

which is positive, and so D;(\) has two positive roots. Also, as a, b, ¢, d are all positive,

Dy(1)=1-(a—d+f-g)+(a=d)(f —g) = (b—c)(e—-h)

>1—(a+d+ f+g)+(at+d)(f+g)—(b+c)(e+h)=Di(1).

(57.19)

Hence for the symmetric equilibrium to be externally stable, we require that D;(1) and

Dj(1) are both positive.

14 SI text



Now from (S6.5) we know that
(1+sz)[1+s(1—2)] =(1+s)+smp[(s+2)z—1]. (87.20)

As T > ? we have

1+sz)[1+s1—7)]>(1+s) (87.21)

Thus the equal constant terms of D;(\) and D2(A) given in (S7.18) are positive and less
than 1. As a result it is impossible for the two positive roots of D;(\) to both be larger
than 1, and they are both less than 1 provided D;(1) > 0. Hence the external stability of

the symmetric equilibrium requires that
Di(l)=1—(a+d+f+g)+(a+d)(f+g)—(b+c)e+h) (57.22)

is positive (the last summand in (S7.22) is given in (S7.18)). We now compute a+d+ f+g.

Computation of (a +d+ f+ g)

We have
(a+d+f+g):[<1—m) A+m*Cm—m)(BE+D)|4
+1(1=-m)*C+m2A+m(l—m ( +5>_6
- L (57.23)
+_(1—m) B+m?D+m(l—m ( +C>_ﬁ
L]

=

+ -(1 —m)>D +m?B +m(l —m) (A 6)
As 4,B,C,D and also 4, B,C, D given in (S7.4) and (S7.5), respectively, are all linear
functions of up, where 0 < pp < 1, we can represent them as A= (1- ,ub)zo + m,Zl, etc.

Hence
(1+s2)Ag=1+s)[1—7(1—-2)] = (1+s2)D;

(14 5%)By = (1 + s)rz = (1 + s2)C}

_ _ (57.24)

(1+sz)Co=1—rz=(1+sz)B;

(1 + Sf)ﬁo = 7“(1 — i‘) = (1 + S.f)Zh
l+s(1—@)]Ao=1-r(1—3)=[1+s(1—%)]D;
1+s(1—7)]B,=rz=[1+s(1-%)]C

(57.25)

1+s(1—8)]Co=0+s)1—r3]=1+s(1—-2)]B
[1+s(1—az~)]DO:(1+s)r(1—5:):[1+s(1—gz)]21'1.
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Since
my =m ~+ pp — 2mpy = m(1 — py) + pp(1 —m)
(57.26)

L—mp=1—m—pp+2mpuy = (1 —m)(1 — ),

we can write

(a+d+f+g)=|1—m)1—mp)A+ (1 — m)myDy +m(1 — my)By + m - mbég] A
-+ -(1 —m)(1 = my)Co + (1 — m)myBy + m(1 — my)Dy + m - mbgo- C
+ -(1 — m)(l — mb)é() + (1 - m)mbéo + m(l — mb)AVo +m- mbﬁo- D
+ —(1 —m)(1 —mp)Dy + (1 —m)myAg +m(1 —my)Co +m - mbgo_ B.
) (57.27)
Substitute into (S7.27)
A= (1—pp)Ao + Do, B = (1—p)Bo + 115Co,
o o o o o . (S7.38)
C = (1 — ub)oo ~+ wy Bo, D = (1 — Mb)DO + upAo,
to obtain
(a —|— d + f + g) = (1 — mb)2 [gozo + E()Eo —f‘ 6’060 + 50§0:|
+ my(1 — my) [(EG + f)o> (Ao + Co) + (ZO + 50) (Bo +EO)]
+ mz [12{060 + E()FO + éozo + ﬁoﬁo] .
(57.29)
Equation (S7.29) can also be written as
(CL +d—+ f + g) = (1 — me) [2{0Z0 + Eoﬁg + 5060 —+ 50§01|
+ my [(EO + ﬁo) (Zo + 60) + <go + CN’O) (Eo + 50)] (s )
7.30

+mj [(2{0 + 50> (Ao + Co) + (Eo - 150> (Bo + Do)
~ (A +Co) (Bo+ Do) + (Bo + Do) (A + Co)] ,
or as
(a+d+f+g)=(1-2my) [EOZO + ByDy + CoCo + BOFO]
+my | (Bo+ Do) (A +Co) + (A + Co) (Bo+Do)|  (5731)
+m (Ao +Co — By — Do) (Ao + Co — Bo — Do) .
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From (S7.24) and (S7.25),

(1+ s2)[1 + s(1 — )] | AoAo + BoDo + CoClo + f)oﬁo} =

=(1+s) 201 —r)+r’] +r’s(s + 1)z — r’sz — r’s°z2,

(1+53)[1+ (1 = 2)] [ (Bo + Do) (Ao +Co) + (Ao + Co) (Bo + Do) =

(57.32)

=2r*(1+sz)[l+s(1—2)]+r(1—7r)(s+2)[(s+2) +s(z — 7)],(57.33)

(1+ sz)[1+ s(1 — 3)] (A’o+60—§0—50) (Ao + Co — Bo — Do) =
= (s4+2)7(1—-7r)>.

Remember that by (S7.18)
(1+s2)[1+1 -2 [(at+d)(f+9g)— (b+c)e+h) =
= (1—=2m)* (1 —2m)* (s +1)° (1 —r)*.
But
(1—2m)(1 —2up) = 1 — 2(m + pp — 2mpp) = 1 — 2my,.
Therefore
1 +s2)’1+0 - [(a+d)(f+9g)— (b+c)et+h)] =

=(1—2mp)* (s+1)*(1—r)*.

(S7.34)

(57.35)

(57.36)

(S7.37)

Combining all of this, we get that D1(1) = 1—(a+d+ f+g)+ (a+d)(f+g)— (b+c)(e+h),

which we compute as

(1+s)[2(L —7)+ 7] +r2s(s+ 1) — r?sz — r?s°zd

1— (1 —2my) (1+52)[1 + s(1 — 2)]

2r2(1+sz)[1+s(1 —=2)] +r(1 —7r)(s+2)[(s +2) + s(Z — 7)]
(14 s2)[1+s(1—2)]

e (4270 -r)
"1+ sz)[1+s(1 - 7)]

(1—2m)* (s +1)* (L =)
(1+s2)[1+s(1—3)
Observe that

r2[(148) 4+ s(s + 1)T — s& — s°2F] = r*(1 + sT)[1 + s(1 — )],
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so (S7.38) simplifies to

21+ s)(1—1) r(1—7)(s+2)[(s+2) + s(z — 7)]
1—r2—(1-2 —
L L S g e L (1+s2)[1 + s(1 — )]
o, (st -n)? (1—2mp)* (s +1)° (1 —7)
"A+sp)l+s(1-3)]  (1+s2)?[l+s(1-3)
(57.40)
Clearly D;(1) of (S7.40) has a factor of (1 — ), and in fact
Dy(1) = (1 =7)f(r), (57.41)
where f(r) is a linear function of 7, for 0 < r < 1. Now
2(1+s) (s+2)[(s+2)+s(x—7)]
1)=2—-(1-2 — 42
f() ( m”)(1+s:z)[1+s(1_m)] T sT)[1+ s(1— )] (57.42)
Following (S6.7) we have
(I1+sz)[1+s(1—2)=(1+s)+smp[(s+2)x—1]. (S7.43)
We also have an equivalent expression for (S7.43) in terms of Z, namely
(1+sz)[1+s(1—2)=1+s)+smp[(s+1)—(s+2)7]. (S7.44)
Also, whereas T > ﬁ, we have T < zié Applying all of this to (S7.42) and using the
fact that
1
(I+sz)1+s(1—-2)=00+s)+ §smB[s + (s +2)(z — 7)), (57.45)
we get that

(1+sz)[1+s(1—2)]f(1) =2(s+1)+smp[s+ (s +2)(T — 7)]
—2(1—=2mp)(s+ 1) —mp(s+2)[(s +2) + s(z — )]
— ®mp — my [(s 1 2)% —4(s + 1)} + s(s +2)(mp — my) (7 — )

= s%(mp — mp) + s(s + 2)(mp — myp) (T — ).
(S7.46)

Thus
(1+sz)[1+s(1—2)]f(1) =s(mp —myp)[s+ (s+2)(T — T)]. (57.47)
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But as (s +2)z > 1, (s +2)Z < (s + 1),
s+ (s+2)(z—2)=[(s+2)z—1]+[(s+1)— (s+2)z] > 0. (S57.48)

It follows that the sign of f(1) is the same as the sign of (mp — my).
We now compute f(0):

B 2(1 4+ s) > (s +2)°
JO) =1 == 2m) e i@ — 2]~ ™ (1 T s2)[1 1 51— 3)

(57.49)
(1—2myp)° (s +1)?

(14 s2)*[1 +s(1 — )]

5 -
Using the expression (S7.43) for the product of the two mean fitnesses, we get
(1+s2)*[1+51—3)] £(0) = {(1 +5) + smp[(s +2)F — 1]}
—2(1=2mp)(s + 1) {(1 +s) + smp (s +2)T — 1]}
—mi(s+2){(1+5)+smp[(s+2)Z — 1]}

+ (1 —2my)* (s +1)°.
(57.50)

In (S7.50) we replace the 2 term using the equilibrium equation (36) to give
(1+s7)2[1+ s(1 — &) £(0) = (mp — mb)s{mbs(s +1)
—mZ (s +2)% +mp [(s F1)(s 4+ 4) — my (s + 2)2}

+mp(s+2)z [mB (s+2)%+mpy(s+2)* —4(s + 1)} }
(S7.51)

The right-hand side of (S7.51) is (mp — my)s multiplied by
mps(s+1)+mp (s +2)° (mp+mp)[Z(s+2) — 1] +mp(s+1)[(s+4) —4z(s+2)]. (S7.52)

We will show that (S7.52) is always positive. In fact, (S7.52) is equal to

mps(s + 1) +mg - my (s + 2)° [Z(s+2) — 1] + m% (s +2) [Z(s+2) — 1]

(S7.53)
+mp(s+1)[(s +4) — 4z(s + 2)].
From the equilibrium equation (36) we get that
mp[(s+2)z — 1] = sz° +2z — 1. (S7.54)
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Hence (S7.53) is equal to

mps(s + 1) +mg - my (s + 2)° [Z(s+2) — 1]+

+mp (s +2)° [s72 4+ 2% — 1] +mp(s +1)[(s +4) — 43(s + 2)].

The last two terms have a factor mp that multiplies

(s+1)(s+4) — (s +2)°+ (s+2)° (24 sz) —4z(s + 1) (s + 2) =
=s+ (s+2)z[(s+2)(2+ sz) — 4(s + 1)]
=s+(s+2)z [5+23:1:—25]

[(5—1—2)2 —2(s+2):1:+1} —s[(5+2):1:—1}

which is positive. To sum up, f(0) also has the same sign of (mp — my), and so

Di(1) = (1 —r)s(mp — mp)A(r),

(S7.55)

(S7.56)

(S7.57)

where A(r) is a linear function of r that is positive for all 0 < r < 1. As (mp —my) =

(1 —2m)(up — pp), this proves the following result.
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