

Figure S1 *fpr3* Δ or *fpr4* Δ cells don't show any benomyl sensitivity. Yeast cells were spotted in 5-fold dilutions from 5 x 10⁴ cells per spot on YPD plates containing benomyl. The plates were incubated at 30°C for 3 days and photographed. Isogenic yeast strains were wild-type (YPH499), *fpr3* Δ (Y2243 and Y2244), and *fpr4* Δ (Y2245 and Y2246).

Figure S2 The stabilization level of Cse4 in $fpr3\Delta$ cells is higher than that in $psh1\Delta$ cells. The protein stability assay was performed as described in Figure 2. Isogenic yeast strains were wild-type (Y2255), $fpr3\Delta$ (Y2256), and $psh1\Delta$ (Y2258).

Figure S3 Enhanced *CEN* DNA interaction with Cse4 in *fpr3*Δ mutant. The indicated strains, Cse4-myc (Y2342), Cse4-myc *fpr3*Δ (Y2344), Cse4-myc *fpr4*Δ (Y2345), and Cse4-myc *fpr3*Δ *fpr4*Δ (Y2346), were grown to log phase, lysed, and anti-myc chromatin immunoprecipitation assay was performed as previously described (OHKUNI *et al.* 2008). We used ImageJ to quantify the signals.

File S1

Supplemental methods

Yeast strains and plasmids

Supplemental Table S1 and S2 present the genotype of yeast strains and plasmids used for this study, respectively.

Protein stability assay

Cells were grown in a 2% raffinose synthetic complete medium overnight. Cells were then diluted to an optical density at 600 nm of 0.3 and grown for an additional 3 h at 25°C. A sample was removed as a negative control before the addition of galactose (Raffinose). Galactose was added to the media to a final concentration of 2% to induce expression of Cse4 from the *GAL1* promoter for 2 h at 25°C. Glucose was then added to a final concentration of 5% to stop gene expression, and samples were taken at the indicated time points.

Antibodies

Anti-Cse4 antibody was generated as previously described (Онким *et al.* 2008). Anti-Cdc28 was a gift from Dr. Deshaies's laboratory. Anti-myc (Roche, Indianapolis, IN), anti-HA (Roche, Indianapolis, IN), and anti-tubulin (Serotech, Oxford, UK) antibodies were purchased.

Western blotting and quantitation

Western blotting and quantitation were performed as described previously (EscAMILLA-POWERS and SEARS 2007). In brief, protein from equal cell numbers were separated by SDS-PAGE gel and transferred to Immobilon-FL membrane (Millipore, Billerica, MA). Membrane was blocked with Odyssey Blocking buffer (LI-COR Biosciences, Lincoln, NE) after shaking the membrane in PBS for several minutes. Primary and secondary antibodies were diluted in Odyssey Blocking buffer with 0.1% Tween 20. Anti-Cse4 was used at a dilution of 1:1000, and anti-tubulin and anti-Cdc28 were used at 1:5000. Secondary antibodies were used at a dilution of 1:15000. Blots were scanned with a LI-COR Odyssey CLx Imager (Lincoln, NE). Protein levels at each time point were quantitated using Image Studio software version 2.0.

5 SI

Table S1 S. cerevisiae strains used in this study

Strains	Genotype	Reference
YPH499	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1	(Sikorski and Hieter 1989)
YPH500	MAT α ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1	(Sikorski and Hieter 1989)
Y2243	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr3∆::kanMX6	This study
Y2244	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr3∆::kanMX6	This study
Y2245	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr4∆::kanMX6	This study
Y2246	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr4∆::kanMX6	This study
Y2247	MAT a ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr3∆::kanMX6 fpr4∆::kanMX6	This study
Y2248	MATα ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr3∆::kanMX6 fpr4∆::kanMX6	This study
Y14	MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 CFIII (CEN3.L.YPH983) TRP1 SUP11	P. Hieter
Y2249	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr3Δ::His3MX6	This study
Y2250	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr3Δ::His3MX6	This study
Y2251	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr3Δ::His3MX6	This study
Y2252	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr4Δ::His3MX6	This study
Y2253	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr4Δ::kanMX6	This study
Y2254	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CFIII (CEN3.L.YPH983) TRP1 SUP11 fpr4Δ::kanMX6	This study
Y2255	MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 [pRS415-PGAL1-3HA-CSE4]	This study
Y2256	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr3Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4]	This study
Y2257	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr4Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4]	This study
Y2258	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 psh1Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4]	This study

Y2340	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr3Δ::kanMX6 psh1Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4]	This study
Y2259	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr3Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4] [pRS416-FPR3]	This study
Y2260	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr3Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4] [pRS416]	This study
Y2261	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 fpr3Δ::kanMX6 [pRS415-PGAL1-3HA-CSE4] [pRS416-fpr3 W363L]	This study
Y2262	МАТа ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 fpr3∆::kanMX6 [pRS415-PGAL1-3HA-CSE4] [pRS416-fpr3 F402Y]	This study
Y2263	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 [pRS415-PGAL1-3HA-cse4 P53V]	This study
Y2264	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 [pRS415-PGAL1-3HA-cse4 P98V]	This study
Y2265	MAT a ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 [pRS415-PGAL1-3HA-cse4 P100V]	This study
Y2266	MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 [pRS415-PGAL1-3HA-cse4 P134V]	This study
Y2267	MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 [pRS415-PGAL1-3HA-cse4 P157V]	This study
Y2280	MATα ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 PSH1-myc:TRP1	This study
Y2281	MAT α ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PSH1-myc:TRP1 fpr3Δ::kanMX6	This study
Y2282	MATα ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PSH1-myc:TRP1 fpr4Δ::kanMX6	This study
Y2283	MAT α ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PSH1-myc:TRP1 fpr3Δ::kanMX6 fpr4Δ::kanMX6	This study
Y2284	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PSH1-myc:TRP1 cse4Δ::TRP1 [pRS415-CSE4]	This study
Y2285	MATa ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 PSH1-myc:TRP1 cse4Δ::TRP1 [pRS415-cse4 P134V]	This study
Y2342	MAT α ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CSE4-myc:His3MX6	This study
Y2344	MAT α ura3-52 lys2-801 ade2-101 trp1Δ63 his3Δ200 leu2Δ1 CSE4-myc:His3MX6 fpr3Δ::kanMX6	This study
Y2345	MAT α. ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 CSE4-myc:His3MX6 fpr4∆::kanMX6	This study

MATα ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 CSE4-myc:His3MX6 fpr3∆::kanMX6 fpr4∆::kanMX6

This study

Y2346

Table S2 Plasmids used in this study

Plasmid	Relevant characteristics	Reference
B2883	pRS415-PGAL1-3HA-CSE4	This study
B2884	pRS416- <i>FPR3</i>	This study
B2885	pRS416- <i>fpr3 W363L</i>	This study
B2886	pRS416- <i>fpr3 F402Y</i>	This study
B2887	pRS415- <i>CSE4</i>	This study
B2891	pRS415-cse4 P134V	This study
B2893	pRS415-PGAL1-3HA-cse4 P53V	This study
B2894	pRS415-PGAL1-3HA-cse4 P98V	This study
B2895	pRS415-PGAL1-3HA-cse4 P100V	This study
B2896	pRS415-PGAL1-3HA-cse4 P134V	This study
B2897	pRS415-PGAL1-3HA-cse4 P157V	This study

Literature Cited

- ESCAMILLA-POWERS, J. R., and R. C. SEARS, 2007 A conserved pathway that controls c-Myc protein stability through opposing phosphorylation events occurs in yeast. J Biol Chem **282:** 5432-5442.
- OHKUNI, K., R. ABDULLE, A. H. TONG, C. BOONE and K. KITAGAWA, 2008 Ybp2 associates with the central kinetochore of Saccharomyces cerevisiae and mediates proper mitotic progression. PLoS One **3**: e1617.
- SIKORSKI, R. S., and P. HIETER, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics **122:** 19-27.