Gene	Coordinates	Sequence	Source
ct	X:74243907424403	TTTGTGAATGAAGT	REDfly TF000140
ct	X:74244227424433	TAACATTTAATT	REDfly TF000139
ct	X:74244737424487	GATAAACAGCAGTGT	REDfly TF000138
ct	X:74244947424520	GCTGTTTTTTTAAATGAATTTTCTCTA	REDfly TF000137
ct	X:74245947424610	AAAATTATTGAAATTAC	REDfly TF000136
ct	X:74246927424701	GGAATGGGAT	REDfly TF000135
ct	X:74248217424843	AATGTAATTCGAAAAATGTCGTC	REDfly TF000134
vg	2R:87829648783003	GCTAGTTGGAATGTGCTATGAAATGTCGCCGGAATGCGAT	REDfly TF001715
vg	2R:87839778783987	GGAAATATCTT	REDfly TF000458
vg	2R:87840148784027	TGGGAATTCCACGG	REDfly TF000459
vg	2R:87841018784114	CACGCGGCATGGCA	REDfly TF000460
vg	2R:87843758784386	GTTTGGAATGTT	REDfly TF000465
bs	2R:2022983220229857	TAAGAAATTCCTGGCATAGTTTAAGT	REDfly TF000512
salm	2L:1145457611454582	TATGCGA	REDfly TF000032
salm	2L:1145465611454679	AATGGACATTCGTGGGATTCCAGA	REDfly TF001599
salm	2L:1145465711454680	ATGGACATTCGTGGGATTCCAGAA	REDfly TF000029
salm	2L:1145465711454680	ATGGACATTCGTGGGATTCCAGAA	REDfly TF000030
kni	3L:2070005120700068	TACATTTGTCGCATAGTT	REDfly TF000811
kni	3L:2070024320700251	ATACATACA	REDfly TF000812
kni	3L:2070030320700311	AAAATGTCG	REDfly TF000813
kni	3L:2070035020700358	GAAATGCGT	REDfly TF000814
kni	3L:2070042020700428	AGAAATAGT	REDfly TF000815
diap1		GCATTCCATT	Wu et al. 2008

Table S1 Known SD binding site sequences used to generate position weight matrix to scan the SAM and ORE genomes for predicted SD binding sites.

	А	С	G	Т
1	0	5	14	4
2	8	1	14	0
3	18	4	0	1
4	22	0	1	0
5	0	0	0	23
6	3	0	14	6
7	3	3	3	14

Table S2Position weight matrix used to scan the SAM and ORE genomes for SD binding sites, derived from a MEME (Baileyet al. 2009) scan of 23 known SD binding sites.

				Read bases				
Chrom.	Pos.	Ref.	# reads (SAM)	(SAM)	Base quality (SAM)	# reads (ORE)	Read bases (ORE)	Base quality (ORE)
Х	7424817	Т	15	,,.,,,	HFIHIDIBI <giiii< td=""><td>15</td><td>.\$,.,,.,.,.</td><td>DIIFIIIIIIHIII</td></giiii<>	15	.\$,.,,.,.,.	DIIFIIIIIIHIII
Х	7424818	G	15	,,.,,,,	HIHGIEIGIGGIIIG	15	,.,,.,^],	GIIIIIHGIHIIHIE
Х	7424819	Т	16	,\$,^].	EHGGICHGIGDIIHGE	15	,\$.,,.,,.,.,	EIIIIIIIIIII
Х	7424820	С	15	,.,,,,	IIII4IBIBGIIIGI	16	.,,.,,^],^],	IGGIIIIIIIBIIEE
Х	7424821	А	15	,G.	IHIICIBIGGIII*I	18	.,,.,^],^],	IIIIIIIBIIIIIDBB
Х	7424822	А	15	,.,.,	FHHIEIGIDGIIGGI	18	- , , - , - , - , - , - , , , , , , , ,	IIIIIHIIIIHIIEE
Х	7424823	Т	15	,.,,,,	HIIIDIGICGIIIGI	18	• 1 1 • 1 • 1 • 1 • 1 • 1 1 1 1 1 1 1	IIIIIIIHHI@IIIGII
х	7424824	G	15	,.,,,,	GIIIDI@IEGIGIGI	18	-,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IIIIIIIDIIIIHIIIG
х	7424825	Т	15	.\$,.	EGGG=HDICGIIIGI	18	-,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IIIIIIIIIGIIEHII
х	7424826	А	14	,.,,,,	IHIBIGIDGGIIGI	18	-,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	G
х	7424827	А	14	,.,,,,	HII:I4IDGIIIGI	19	.,,.,^],	
х	7424828	Т	14	,.,,,,	III=IEIEGIIIII	22	.,,.,,^],^],^],	IHIIIIHIIIIHIIEBBB
х	7424829	Т	14	,.,,,,	III?IBICDIIIII	23	.,,.,^],	IIHIIIFIIHIIIFIFHICEEED
х	7424830	С	14	,.,,,,	IIH?IDIDDIIIII	23	- , , - , - , - , - , - , , , , , , , ,	IIIIIHIIIHIGIIIHBFIHF
х	7424831	G	14	.\$,.,	EDIDIGICGIIIII	24	.,,.,^],	IIIIIIIHIIIIIIGBIHIE
х	7424832	А	14	,.,^].	>>DFGI>EIIIII7	25	.,,.,^].	IIIHIIIIGIIIIIIIHGHIGII>
х	7424833	А	14	.\$.,.,,.	;; <igighiiiii:< td=""><td>25</td><td>• • • • • • • • • • • • • • • • • • • •</td><td>IIIIIIIIIIHIIIIIDII>II?</td></igighiiiii:<>	25	• • • • • • • • • • • • • • • • • • • •	IIIIIIIIIIHIIIIIDII>II?
х	7424834	А	13	.\$,.,,	9?IBIGHIIII5	25	• • • • • • • • • • • • • • • • • • • •	IIIIIIIIIIIIEIH>IIHIIA
х	7424835	А	12	, . , , , . ,	BIGIDHIHIII5	25	• • • • • • • • • • • • • • • • • • • •	IIIIIIIIIIIIIIIIGIHHIIB
х	7424836	А	12	, . , , , . ,	DIGIDHIIII2	25	• • • • • • • • • • • • • • • • • • • •	IIIGIIIIIIHIHIEIIGIHBIIE
х	7424837	Т	12	, . , , , . ,	@IBGBEFBIII-	26	.,,.,^].	IIIIIIIII8IHHHI@ADHDEDIE
Х	7424838	G	12	, . , , , . ,	GIGHDDIIIII:	26	•••••••••••••••••••••••••••••••••••••••	HIIIIIHIIIIIIGHHHIIII
х	7424839	т	12	, . , , , . ,	GH@IGGHIFHI4	26	•••••••••••••••••••••••••••••••••••••••	HIIHIIHIIGIIIIII3IHHIHII
х	7424840	С	12	, . , , , . ,	GIGI <giiiii5< td=""><td>26</td><td>•••••••••••••••••••••••••••••••••••••••</td><td>IIIIIIIIIIIIIHIG8IHDIHII</td></giiiii5<>	26	•••••••••••••••••••••••••••••••••••••••	IIIIIIIIIIIIIHIG8IHDIHII
Х	7424841	G	13	,.,,,.,^].	:IGIGGIIGII7E	26	• • • • • • • • • • • • • • • • • • • •	IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Table S3 Detailed sequence pile-up (Li et al. 2009) for *scalloped* binding site regulating *cut* (Halder & Carrol 2001, Guss et al. 2001).

Chrom.	Pos.	Ref.	# reads (SAM)	Read bases (SAM)	Base quality (SAM)	# reads (ORE)	Read bases (ORE)	Base quality (ORE)
2L	11454659	G	17	,,,	+ G H	17	,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77977<97777787777
2L	11454660	G	18	,,,^],	II3IIIIGIIIIEIIE	17	,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	34644964444454444
2L	11454661	А	18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IH6@HIHIBIIIIIIHH	17	ggGGggGgGggGGgggg))644964444454444
2L	11454662	С	18	,\$,,,,,,,,,,,	EI8IIIIBHIIIIIII	18	,\$,,,^>,))HFF?IIIIIIIIIIC
2L	11454663	А	17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I38IIIIGGHIIIHIII	17	,\$,.,,,,,,,,)HFFDIHIIIIIIIH8
2L	11454664	Т	17	,,,,,,,,,,,,,,,	IBGIIIIGIIIIHHIII	16	.\$.\$,\$,.,.,,.,,,	>>>DIGIIIHIIGIIC
2L	11454665	Т	18	,,.^],	IAEIIIIGIIIIIIHIE	13	,\$.,.,,.,,,	BIIIHIIIIII?
2L	11454666	С	18	,\$,.,,,,,,,,,,	EAEIIIIGIHHIIGIIIH	12	• • • • • • • • • • • • • • • • • • • •	5GIIIIIIIHI@
2L	11454667	G	17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A@IIIIGIIIIGIIII	13	.,.,,,^],	-8888988888?!
2L	11454668	т	17	.\$.\$.,,,,,,,,	?BIIIIDIIIII@IFII	13	CcCccCCccccc	!44445444442!
2L	11454669	G	15	• • • • • • • • • • • • • • • • • • • •	IIIIGIIIIIGIHII	13	•••••	!3333433333< </td
2L	11454670	G	15	• • • • • • • • • • • • • • • • • • • •	IIIIBIIIIHGIIII	13	A\$aAaaAAaaaaaa	!1111211111;!
2L	11454671	G	15	•,••,,,,,•,•,,,	IIIIEIIIIIGIIII	13	,.,,,,^>.	7777877777@0E
2L	11454672	А	15	•,••,,,,,•,•,,,	IIIIGIIIIIDIIIH	14	,.,,,,],	IGIIIIIII46HE
2L	11454673	Т	16	.\$,\$,,,^],	>>IIGHIIIIGIIIFB	15	,.,,,^],	GIIIIIIHIH;>HIB
2L	11454674	Т	14	••••••••••••••	IIGIIIIHGIIHIE	15		HIIIIIEII, <hie< td=""></hie<>
2L	11454675	С	14	.\$.,,,,,,,,,	>E@IIIIIGIIIFG	15	,.,,,,a,.,,	EIIHIIIII,IGII
2L	11454676	С	13	.\$,,,,.,,,,,	BGIIIIIIIII	15	,\$.,,,	BIIIIIGII;IHII

 Table S4
 Detailed sequence pile-up (Li et al. 2009) for scalloped binding site regulating sal (Guss et al. 2001).

Table S5 Top 200 genes identified as being differentially expressed between wild-type and sd^{E3} mutant flies by DGE analysis.(See SuppTable5.csv in Dryad package, doi:10.5061/dryad.1375s)

Table S6 Genes showing evidence of allelic imbalance in "hybrid" SAM/ORE flies (i.e., in which one of the two alleles istranscribed at significantly higher levels). (See SuppTable6.csv in Dryad package, doi:10.5061/dryad.1375s)

C. H. Chandler et al.

Figure S1 Frequency of the ORE allele along the length of chromosome arms 2R, 3L, and 3R in short- and long-wing *sd*^{E3} backcross lines.

Figure S2 Top hits for GO terms enriched in genes showing evidence of differential expression (q < 0.001) between wild-type and sd^{E3} fly wings in the DGE dataset.

Figure S3 Allelic imbalance in SAM/ORE "hybrid" flies with both wild-type and sd^{E3} genotypes. Only sequence tags represented by at least five reads of each allele in all samples are represented in this plot. (A) Genes showing evidence of allelic imbalance (q < 0.05). (B) Genes showing evidence of genotype-dependent allelic imbalance (q < 0.05). (C) Genes near polymorphic predicted SD binding site (p < 0.05).

Figure S4 Schematic illustrating tests to distinguish between second- and higher-order epistasis. Red indicates the ORE genetic background; blue indicates the SAM genetic background; grey indicates the genetic background of the deletion strain; white indicates a chromosomal deletion; and the light blue bar on the X chromosome indicates the *sd*^{E3} allele and the genetic background in which it was originally generated. The genotypes and phenotypes on the left illustrate that this particular deletion enhances the *sd*^{E3} phenotype in an ORE background, i.e., results in even smaller wings. On the right, however, this deletion suppresses the *sd*^{E3} phenotype in a short-wing introgression background (i.e., results in larger wings). However, because the short-wing and ORE flies both carry the same genetic background (ORE) opposite the deletion, this background dependence must be due to other loci elsewhere in the genome (in this case, illustrated by the SAM alleles elsewhere in the genome), indicating higher-order epistasis.

Figure S5 Integrated plots showing results of independent genomic datasets used to investigate the genetic basis of background dependence of the *sd*^{E3} phenotype. Backcross: Average frequency of the ORE (short-wing) allele across four short-wing introgression lines. Modifier deletions: open bars represent deletions with a significant main effect on the *sd*^{E3} phenotype; light shaded bars represent deletions in which both the main and interaction effects are significant. DGE: open bars represent genes whose transcript counts are influenced by *sd* genotype; light shaded bars represent genes showing evidence of both an overall effect of *sd* genotype and genotype-dependent allelic imbalance; and dark shaded bars represent genes showing evidence of a genotype-by-background interaction effect; and dark shaded bars represent genes showing evidence of a genotype-by-background interaction effect; and dark shaded bars represent genes showing evidence of a genotype-by-background interaction effect; and dark shaded bars represent genes showing evidence of the two genetic backgrounds); light shaded bars represent genes showing evidence of the two genetic backgrounds); light shaded bars represent genes showing evidence of the two genetic backgrounds); light shaded bars represent genes showing evidence of the two genetic backgrounds); light shaded bars represent genes showing evidence of both overall SD binding and differential affinity between backgrounds. Only genes showing evidence of at least four significant effects across all datasets are shown.

Figure S6 Top scoring GO hits for candidate genes identified by integrated analysis using (A) significant *sd* genotype effects for expression datasets and (B) significant genotype-by-background interaction effects for expression datasets.

Figure S7 Weak evidence for putative inversions based on paired-end reads mapping to discordant locations in the genome. Thicker bars indicate stronger evidence. Inversions are relative to the *D. melanogaster* reference genome. We searched for inversions using BreakDancer v1.1 (Chen et al. 2009).

References

- Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Nole WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, **37**:W202-W208.
- Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER: **BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.** *Nat Methods* 2009, **6**:677-681.
- Guss KA, Nelson CE, Hudson A, Kraus ME, Carrol SB: Control of a genetic regulatory network by a selector gene. Science 2001, 292: 1164-1167.
- Halder G, Carrol SB: **Binding of the Vestigial co-factor switches the DNA-target selectivity of the Scalloped selector protein.** Development 2001, **128**: 3295-3305.