Supplemental Data

Table of Contents

1.	Sup	pplemental Figures	2
	1.1	Figure S1	2
	1.2	Figure S2	3
	1.3	Figure S3-S6	4
	1.4	Figure S7	6
	1.5	Figure S8	7
	1.6	Figure S9	8
2.	Sup	oplemental Tables	9
	2.1	Table S1	9
	2.2	Table S2	11
3.	Sup	oplemental Data S1: List of Abbreviations and Their Definitions.	13
	3.1	Metabolites	13
	3.2	Enzymes and Numbering	15
	3.3	Metabolite Transport Process	17
4.	Sup	oplemental Data S2: Equations	17
	4.1	Rate Equations	17
	4.2.	Differential Equations	29
	4.3.	Constants	34
5.	Sup	oplemental Data S3: Parameters	37
	5.1	Vmax of photosynthetic enzymes	37
	5.2	Michaelis-constant and other paremeters	39
	5.3	The volume of different compartments	49
	5.4	Initial value of metabolite concentrations	49
	5.5	Molecular weights and catalytic numbers	52
6.	Ad	ditional explanations	54
	6.1	Supplemental Data S4: Rationale underlying the choice of the default CO2 permea	ability
	coeff	ficient	54
	6.2	Supplemental Data S5: Rationale underlying the choice of the rate equation used to cal	culate
	CO_2	uptake rates	54
7.	Ref	ference	56

1. Supplemental Figures

1.1. Figure S1

Supplemental figure S1 Predicted changes in contents of key metabolites with changes in PPFD. As for Figure 3, but the response of metabolites to light. The intercellular CO_2 concentration (C_i) used in the simulation was 15 Pa.

Figure S2 Effects of metabolite permeability between BSC and MC on A and CO₂ leakiness. A), B) C) and D) show the response to increase in permeability to malate (P_{Mal}), pyruvate (P_{Pyr}), C3P (P_{C3P}) and CO₂ (P_{C02}), respectively.

1.3. Figure S3-S6

Figure S3 Phosphate concentration effects on steady-state contents of key metabolites of photosynthetic carbon metabolism. Blue lines represent the metabolite contents if increase phosphate concentration 20% in the model.

Figure S4 PGA and T3P related enzyme kinetic parameters effects on steady-state contents of key metabolites of photosynthetic carbon metabolism. Blue lines represent the metabolite contents if increase K_ms of PGA and T3P of related enzymes by 50%. PGA and T3P related enzyme means enzyme which use them as substrates or products.

Figure S5 Phosphate concentration and enzyme kinetic parameters effects on key metabolites contents. Blue lines represent the metabolite contents if increase phosphate concentration 20% and K_ms of triose phosphates and PGA 50% together.

Figure S6 Cytolsolic FBPase enzyme kinetic parameters effects on key metabolites contents. Blue lines represent the metabolite contents with changed K_m of FBP of cytolsolic FBPase from 0.00108 to 0.05, in addition to modification of phosphate concentration, K_m s of triose phosphates and PGA

Figure S7 Effect of plasmodesmata length on A and metabolite fluxes between MCs and BSCs.

Figure S8 The proportion of J_{max_T} partitioned into BSC (Y_b) influences CO₂ leakiness, A and proportion of PGA transported to MCs. Here v_{TPGA} is the rate of PGA transport from BSC to MC and v_c is the rate of RuBP carboxylation.

Figure S9 The effect of the chloroplast envelope permeability to CO₂ on photosynthesis, photorespiration and leakiness. (A) photosynthesis, (B) photorespiration and (C) leakiness. The dotted line represents the value used in the model.

2. Supplemental Tables

2.1 Table S1

Table S1 Photosynthetic flux control coefficients of enzymes and diffusion related parameters. We simulated the following scenarios: High light: *PPFD*=2000 μ mol m⁻² s⁻¹, *C_i*=15 Pa. Low light: *PPFD*=200 μ mol m⁻² s⁻¹, *C_i*=15 Pa. Low CO₂: *PPFD*=2000 μ mol m⁻² s⁻¹, *C_i*=5 Pa. Blue: the flux control coefficient of V_{max}, which decreased by 20%. During the calculation, V_{max} of other enzymes didn't change.

	EC Number	V _{max} Flux Control Coefficient			
Abbreviation	or Legend	$(\mu mol m^{-2} s^{-1})$	High Light	Low CO ₂	Low Light
СА	4.2.1.1	200000 (160000)	0.001(0.001)	0.185(0.221)	0.000(0.000)
PEPC	4.1.1.31	170(136)	0.004(0.128)	0.364(0.457)	0.000(0.000)
NADP-MDH	1.1.1.82	90(72)	0.000(0.000)	0.000(0.000)	0.000(0.000)
NADP-ME	1.1.1.40	90(72)	0.002(0.014)	0.010(0.015)	0.000(0.000)
PPDK	2.7.9.1	90(72)	0.000(0.000)	0.000(0.000)	0.000(0.000)
Rubisco_CO ₂	4.1.1.39	65(52)	0.254(0.956)	0.099(0.157)	0.073(0.095)
PGAK &GAPDH	2.7.2.3&1.2.1.13	225(180)	0.020(0.399)	0.001(0.003)	-0.005(0.000)
Aldolase	4.1.2.13FBP	58.5(46.8)	-0.020(-0.021)	-0.008(-0.011)	-0.005(-0.005)
FBPase	3.1.3.11	43.6(34.9)	0.004(0.017)	-0.009(-0.009)	-0.007(-0.006)
Aldolase	4.1.2.13SBP	109.7(87.8)	0.012(0.018)	0.000(0.000)	0.007(0.006)
SBPase	3.1.3.37	29.2(23.4)	0.030(0.076)	0.000(0.001)	0.010(0.014)
Transketolase	2.2.1.1X	281(224.8)	0.003(0.004)	0.000(0.000)	0.001(0.001)
Transketolase	2.2.1.1R	281(224.8)	0.000(0.001)	0.000(0.000)	0.000(0.001)
PRK	2.7.1.19	1170(936)	0.026(0.040)	0.000(0.000)	0.028(0.033)
PGAK_M	2.7.2.3M	200(240)	0.002(0.026)	0 102(0 100)	0.000(0.011)
&GAPDH_M	&1.2.1.13M	300(240)	0.002(0.056)	-0.123(-0.102)	0.009(0.011)
Rubisco_O ₂	4.1.1.39	7.2(5.8)	-0.017(-0.014)	0.029(0.028)	-0.063(-0.052)
PGCAP	3.1.3.18	2621(2097)	0.000(0.000)	0.000(0.000)	0.000(0.000)
GO	1.1.3.15;	72.8(58.2)	0.000(0.000)	0.000(0.000)	0.000(0.000)
GGAT	2.6.1.4	137.3(109.8)	0.000(0.000)	0.000(0.000)	0.000(0.000)
Gly_ser	1.4.4.2&2.1.2.1	124.7(99.8)	0.000(0.000)	0.000(0.000)	0.000(0.000)
SGAT	2.6.1.45	165.3(132.2)	0.000(0.000)	0.000(0.000)	0.000(0.000)
HPR	1.1.1.29	500.5(400.4)	0.000(0.000)	0.000(0.000)	0.000(0.000)
GLYK	2.7.1.31	285.8(228.6)	0.000(0.000)	0.000(0.000)	0.000(0.000)
TGCA		300(240)	0.000(0.000)	0.000(0.000)	0.000(0.000)
TGCEA		250(200)	0.000(0.000)	0.000(0.000)	0.000(0.000)
Mutase&	5 1 2 1 8 1 2 1 1 1	1(0.8)	0.000(0.000)	0.000(0.000)	0.000(0.000)
Enolase	J.4.2.1 & 4.2.1.11	1(0.0)	0.000(0.000)	0.000(0.000)	0.000(0.000)
Aldolase_M	4.1.2.13FBPM	8.0(6.4)	0.004(0.004)	0.017(0.019)	-0.001(-0.001)
FBPase_M	3.1.3.11M	6.4(5.1)	0.004(0.005)	0.017(0.018)	-0.001(-0.001)

UGPU	2.7.7.9	5.8(4.6)	0.001(0.001)	-0.006(-0.007)	0.000(0.000)
SPS	2.4.1.14	27.8(22.2)	0.001(0.001)	-0.020(-0.028)	0.000(0.000)
SPP	3.1.3.24	27.8(22.2)	0.000(0.000)	0.000(0.000)	0.000(0.000)
PFK	2.7.1.105	1.01(0.81)	-0.002(-0.002)	-0.013(-0.013)	0.000(0.000)
F26BPP	3.1.3.46	0.84(0.67)	0.002(0.002)	0.013(0.014)	0.000(0.000)
GPA	2.7.7.27	30(24)	0.002(0.051)	-0.003(-0.002)	-0.033(-0.025)
Diphosp	0 < 1 1	1000(000)			
hatase	3.6.1.1	1000(800)	0.000(0.000)	0.000(0.000)	-0.001(-0.001)
Starch					
synthase	2.4.1.21	25(20)	0.000(0.001)	0.000(0.000)	0.000(0.000)
PGAsink	PGA Sink	2(1.6)	0.005(0.004)	-0.008(-0.006)	0.037(0.033)
ATPase	3.6.1.14M	300(240)	0.000(0.000)	0.000(0.000)	0.000(0.000)
FNR	1.18.1.2M	200(160)	0.000(0.000)	0.000(0.000)	0.000(0.000)
ATPase	3.6.1.14B	300(240)	0.000(0.000)	0.000(0.000)	0.000(0.000)
	TPT_B	750(600)	0.000(0.001)	-0.004(-0.005)	0.001(0.001)
TPT	TPT_M	750(600)	0.000(0.001)	-0.021(-0.024)	0.000(0.000)
5	OAA_M	80(64)	0.000(0.000)	0.000(0.000)	0.000(0.000)
DiTI	MAL_B	150(120)	0.001(0.002)	0.019(0.024)	0.000(0.000)
DiT2	MAL_M	150(120)	0.000(0.000)	0.000(0.000)	0.000(0.000)
	PYR_B	150(120)	0.001(0.002)	0.000(0.000)	0.000(0.000)
MEP	PYR_M	150(120)	0.000(0.000)	0.000(0.000)	0.000(0.000)
PPT	PEP_M	150(120)	0.000(0.000)	0.000(0.000)	0.000(0.000)
J_{max}	—	500(400)	0.600(0.790)	-0.018(-0.030)	0.074(0.099)
I		2000 or 200	0.134(0.219)	-0.008(-0.012)	0.969(1.057)
			× /	× /	× /

		Flux Control Coefficient			
Diffusion parameter	Value	TT: 1 1: 1 /	LowCO	Low	
		nigii ligiit	$Low CO_2$	light	
_	7(5.6)	0.002(0.000)	0 405(0 551)	0.000(0.000)	
gm	μ mol m ⁻² s ⁻¹ Pa ⁻¹	0.002(0.009)	0.495(0.551)		
D_{mal_PD}	$6.77(5.42) \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$	0.000(0.001)	0.041(0.051)	0.000(0.000)	
D _{Pyr_PD}	$7(5.6) \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$	0.000(0.000)	0.000(0.000)	0.000(0.000)	
D _{C3P_PD}	$5.25(4.2) \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$	0.000(0.006)	-0.020(-0.022)	0.002(0.003)	
D _{co2_PD}	$1.7(1.36) \times 10^{-9} \text{ m}^2 \text{ s}^{-1}$	-0.045(-0.040)	-0.047(-0.043)	-0.042(-0.039)	
P_{co2_Bchl}	$20(16) \ \mu m \ s^{-1}$	-0.023(-0.024)	-0.004(-0.005)	-0.020(-0.022)	
Φ	0.03(0.024)	-0.045 (-0.028)	-0.028(-0.019)	-0.040(-0.037)	
L _{pd}	400(320) nm	0.044(0.065)	0.028(0.034)	0.040(0.043)	

2.2 Table S2

Table S2 Comparison of the impacts of using C3 and C4 homologs of enzymes related to C4 photosynthesis on *A* and nitrogen demand. Kinetic parameters for C3 and C4 homologs were used as inputs to the model to predict the CO_2 uptake rate under low and high CO_2 conditions. The CO_2 uptake ratio is ratio of CO_2 uptake rates predicted using kinetic parameters of a C3 homolog to that using a C4 homolog. Nitrogen cost for the synthesis of an enzyme was calculated based on the turnover number, molecular weight and the maximal rate of the enzyme. The nitrogen cost ratio was defined as the ratio of nitrogen required for synthesis of a C3 homolog to that for a C4 version.

PEPC (4.1.1.3	1)	C ₄ homolog	C ₃ homolog	A Ratio (C ₃ /C ₄)
	Vm	1mM	0.069mM	C -5 Da	C -15Da
Eurotional	KIIIPEP	(Uedan, 1976)	(De Nisi, 2000)	$C_i = 5 Pa$	C _i =15ra
Functional	Km _{HCO3}	0.02mM	0.24mM	0.345	0.505
Farameters		(Uedan, 1976)	(De Nisi, 2000)	0.345	
V -170	1-	66 s^{-1}	69s ⁻¹	Nitrogen Cost Ratio	
$v_{max} = 170$	K _{cat}	(Xu, 2006)	(Koizumi, 1996)	(C_{3}/C_{4})	
	MW	96000	110000	1 10	
	MW	(Harpster, 1986)	(Koizumi, 1996)	1.10	

NADP-MDH (1.1.1.82)		C ₄ homolog	C ₃ homolog	A Ratio (O	C ₃ /C ₄)
	V	0.024mM	0.039 mM	C -5 Da	C _i =15Pa
	KIIINADPH	(Kagawa, 1988)	(Fickenscher, 1983)	$C_i = 5 Pa$	
	Vm	0.056mM	0.048 mM		
Free officer of	KIIIOAA	(Kagawa, 1988)	(Fickenscher, 1983)		1
F unctional Denometers	Vm	0.073mM	0.063 mM	1	
rarameters	KIIINADP	(Kagawa, 1988)	(Fickenscher, 1983)	I	
V -90	Km _{MAL}	32mM	0.0145mM		
$v_{max} = 90$		(Kagawa, 1988)	(Fickenscher, 1983)		
µmorm s	12	677 s^{-1}	118 s^{-1}	Nitrogen	Cost
	K _{cat}	(Kagawa, 1988)	(Fickenscher, 1983)	Ratio (C ₃ /	/C ₄)
	MW	43000	38500	5.14	
		(Agostino, 1992)	(Fickenscher, 1983)	5.14	

Rubisco (4.1.1.39)		C ₄ homolog	C ₃ homolog	g A Ratio (C_3/C_4)	
	Vm	0.0162mM	0.0097mM	C -5 Da	C -15Da
E	KIII _{CO2}	(Cousins, 2010)	(Cousins, 2010)	C _i =5 Fa	C _i =15Pa
Functional	Km _{O2}	0.183mM	0.244mM	1.022	1.026
Farameters		(Cousins, 2010)	(Cousins, 2010)	1.055	
V -65	1.	4.7 s^{-1}	3.8 s^{-1}	Nitrogen	Cost
$v_{max} = 0.05$	K _{cat}	(Cousins, 2010)	(Cousins, 2010)	Ratio (C ₃ /C ₄)	
	N 4337	70000	70000	1.24	
	101 00	(Spreitzer, 1999)	(Spreitzer, 1999)		

NADP-ME (1.1.1.40)	C ₄ homolog	C ₃ homologs	A Ratio (O	C ₃ /C ₄)
	Km _{MAL}	0.23 mM (Detarsio, 2004)	2.96 mM $_{ME1}$ (Wheeler, 2008) 3.33 mM $_{ME2}$ (Wheeler, 2008) 0.83 mM $_{ME3}$ (Wheeler, 2008) 0.23 mM $_{ME4}$ (Wheeler, 2008)	C _i =5 Pa	C _i =15Pa
Functional Parameter s V _{max} =90	Кт _{NAD} РН	0.045mM Ziegler (1974)	$\begin{array}{l} 0.205 \text{ mM}_{\text{ME1}} \text{ (Wheeler, 2008)} \\ 0.0721 \text{ mM}_{\text{ME2}} \text{ (Wheeler, 2008)} \\ 0.0065 \text{ mM}_{\text{ME3}} \text{ (Wheeler, 2008)} \\ \textbf{0.0102 \text{ mM}}_{\text{ME4}} \text{ (Wheeler, 2008)} \end{array}$	0.926 _{ME1} 0.915 _{ME2}	0.956 _{ME1} 0.936 _{ME2} 0.979 _{ME3} 0.998 _{ME4}
	Km _{pyr}	3mM (Ziegler , 1974)	 16.9 mM_{ME1} (Wheeler, 2008) 138.9 mM_{ME2} (Wheeler, 2008) 48.2 mM_{ME3} (Wheeler, 2008) 26.3 mM_{ME4} (Wheeler, 2008) 	0.975 _{ME3} 0.999 _{ME4}	
µmol m ⁻² s ⁻¹	k _{cat}	201.3s ⁻¹ (Detarsio,2003)	$38.7s^{-1}_{ME1} \text{ (Wheeler, 2008)}$ $324.1 s^{-1}_{ME2} \text{ (Wheeler, 2008)}$ $268.1 s^{-1}_{ME3} \text{ (Wheeler, 2008)}$ $151.3 s^{-1}_{ME4} \text{ (Wheeler, 2008)}$	Nitrogen Ratio (C ₃ /	Cost /C ₄)
	MW	62000 (Detarsio, 2004)	65000 (Wheeler, 2008)	5.45 0.65 0.79 1.39	ме1 ме2 мез ме4

PPDK (2.7.9	.1)	C ₄ homolog	C ₃ homolog	A Ratio (C ₃ /C ₄)		
	Vm	0.082mM	0.036mM	C -5 Da	C 15 D	
Functional	Km _{ATP}	(Jenkins, 1985)	(Meyer, 1978)	$C_i = 5 Pa$	C _i =15 Pa	
Parameter	Vm	0.082mM	0.025mM	1	1	
S	Km _{PYR}	Jenkins, 1985	(Meyer, 1978)	1		
	k_{cat} k ² s ⁻¹ MW	6.02 s^{-1}	$7.33s^{-1}$	Nitrogen	Cost	
V _{max} =90		McGuire, 1996	(McGuire, 1996)	Ratio (C ₃	/C ₄)	
μ mol m ⁻² s ⁻¹		95000	96600	1	20	
		Chastain, 2000	(Moons, 1998)	1.20		

Abbreviation	Full Name	Units
ADPG	ADP-glucose	mM
CO_2	Carbon dioxide	mM
CA	Total adenylate nucleotide in the chloroplast stroma	mM
	including ATP and ADP	
CN	Total of NADP+ and NADPH in chloroplast stroma	mM
СР	The total concentration of phosphate in chloroplast stroma	mM
DHAP	Dihydroxyacetone-phosphate	mM
DPGA	1,3-bisphosphoglycerate	mM
E4P	Erythrose 4-phosphate	mM
F26BP	Fructose 2,6–bisphosphate	mM
F6P	Fructose 6-phosphate	mM
FBP	Fructose 1,6–bisphosphate	mM
G1P	Glucose 1-phosphate	mM
G6P	Glucose 6-phosphate	mM
GAP	Glyceraldehyde 3-phosphate	mM
GCA	Glycollate	mM
GCEA	Glycerate	mM
GLU	Glutamate	mM
GLY	Glycine	mM
GOA	Glyoxylate	mM
HCO ₃	Bicarbonate	mM
HexP	Hexose phosphate, includes F6P, G6P, and G1P	mM
HPR	Hydroxypyruvate	mM
KG	Ketoglutarate	mM
Mal	Malate	mM

3. List of Abbreviations and Their Definitions

3.1 Metabolites

O ₂	Oxygen	mM
OAA	Oxaloacetate	mM
PEP	phosphoenolpyruvate	mM
PenP	Pentose phosphate including Ri5P, Ru5P, Xu5P	mM
PGA	3-Phosphoglycerate	mM
PGCA	3-Phosphoglycollate	mM
Pi	phosphate	mM
PPi	Pyrophosphate	mM
PYR	Pyruvate	mM
Ri5P	Ribose 5-phosphate	mM
Ru5P	Ribulose 5-phosphate	mM
RuBP	Ribulose 1,5-biphosphate	mM
S7P	Sedoheptulose 7-phosphate	mM
SBP	Sedoheptulose 1,7-bisphosphate	mM
SER	Serine	mM
SUC	Sucrose	mM
SUCP	Sucrose phosphate	mM
T3P	Triose phosphate including DHAP and GAP	mM
UDP	Uridine Diphosphate	mM
UDPG	Uridine Diphosphate Glucose	mM
UTP	Uridine Triphosphate	mM
Xu5P	Xylulose 5-phosphate	mM

EC (or Model	Abbreviation	Full Name	Numbering
Defined)			in the Model
4.2.1.1	CA	Carbonic anhydrase	1
4.1.1.31	PEPC	Phosphoenolpyruvate carboxylase	2
2.7.9.1	PPDK	Pyruvate, phosphate dikinase	5
1.1.1.82	MDH	Malate dehydrogenase (NADP+)	3
1.1.1.40	ME	NADP-Malic enzyme	4
4.1.1.39	Rubisco	Ribulose-bisphosphate carboxylase	6
			Pr1
2.7.2.3	PGAK	Phosphoglycerate kinase	7
2.7.2.3M			7Mchl
1.2.1.13	GAPDH	Glyceraldehyde-3-phosphate	8
1.2.1.13M		dehydrogenase (NADP+)	8Mchl
5.3.1.1	T3PI	Triose-phosphate isomerase	9
4.1.2.13F	Aldolase	Fructose-bisphosphate aldolase	10
4.1.2.138			12
4.1.2.13M			Suc1
3.1.3.37	SBPase	Sedoheptulose-bisphosphatase	13
3.1.3.11	FBPase	Fructose-bisphosphatase	11
3.1.3.11M			Suc2
2.2.1.1X	Transketolase	Transketolase	14
2.2.1.1R			15
5.3.1.6	Ri5PI	Ribose-5-phosphate isomerase	16
5.1.3.1	Ru5PE	Ribulose-phosphate 3-epimerase	17
2.7.1.19	PRK	Phosphoribulokinase	18
5.3.1.9	G6PI	Glucose-6-phosphate isomerase	Sta1
5.3.1.9M			Suc5
5.4.2.2	PGM	Phosphoglucomutase	Sta2

3.2	Enzymes	and	Numb	pering
	•/			

5.4.2.2M			Suc6
2.7.7.27	GPA	Glucose-1-phosphate	Sta3
		adenylyltransferase	
3.6.1.1	Diphosphatase	inorganic diphosphatase	Sta4
2.4.1.21	Starch synthase	Starch synthase	Sta5
2.7.1.105M	PFK	6-phosphofructo-2-kinase	Suc3
3.1.3.46M	F26BPP	Fructose-2,6-bisphosphate	Suc4
		2-phosphatase	
2.7.7.9M	UGPU	UTP-glucose-1-phosphate	Suc7
		uridylyltransferase	
2.4.1.14M	SPS	Sucrose-phosphate synthase	Suc8
3.1.3.24M	SPP	Sucrose-phosphate phosphatase	Suc9
3.1.3.18	PGCAP	Phosphoglycolate phosphatase	Pr2
1.1.3.15	GO	(S)-2-hydroxy-acid oxidase &	Pr3
		Catalase(CAT, EC1.11.1.6)	
2.6.1.4	GGAT	Glycine transaminase	Pr4
2.6.1.45	SGAT	Serine-glyoxylate transaminase	Pr6
1.1.1.29	HPR	Glycerate dehydrogenase	Pr7
2.7.1.31	GLYK	Glycerate kinase	Pr8
3.6.1.14M	ATPase	ATP synthase	ATPM
3.6.1.14B			ATPB
1.18.1.2M	FNR	Ferredoxin-NADP+ reductase	NADPHM
PGASink	PGASink	PGA used for amino acid synthesis or	PGASink
		other metabolic pathway	
Mutase&	Ex	5.4.2.1&4.2.1.11	Ex
Enolase			
Gly_ser	Gly_Ser	EC 1.4.4.2&EC2.1.2.1	Pr5
StarchDag	StarchDag	Starch degradation	StaDag

Model Defined	Abbreviation	Full Name
Numbering		
T _{PGAM}	TPT M	Triose phosphate translocator in mesophyll cell,
T _{DHAPM}		which can transport PGA DHAP and GAP.
T _{GAPM}		
T _{PGAM}	TPT B	Triose phosphate translocator in bundle sheath cell
T _{DHAPM}		
T _{GAPM}		
TOAAM	DiT1	Dicarboxylate transporter
T _{MALM}		
T _{MALB}	DiT2	
T _{PEPM}	PPT	PEP/phosphate translocator
T _{PYRM}	MEPM	proton:pyruvate cotransporter

3.3 Metabolite Transport Process Through Chloroplast Membrane

4 Equations

4.1 Rate Equations

4.1.1 CO₂ diffusion from air space to mesophyll cell.

$$v_{inf} = g_m \cdot \frac{1}{S_c} \cdot 10^{-3} \cdot (C_i - [CO_2]_{MC})$$

4.1.2 C4 cycle reactions

$$v_{1} = \frac{V_{m_{-1}} \left([CO_{2}]_{MC} - \frac{[HCO_{3}^{-}]_{MC} \cdot [H^{+}]_{MC}}{k_{e_{-1}}} \right)}{K_{mCO_{2}-1} \cdot \left(1 + \frac{[CO_{2}]_{MC}}{K_{mCO_{2}-1}} + \frac{[HCO_{3}^{-}]_{MC}}{K_{mHCO_{3}-1}} \right)}$$

$$v_{2} = \frac{V_{m_{2}} [HCO_{3}^{-}]_{MC} \cdot [PEP]_{MC}}{\left([PEP]_{MC} + K'_{mPEP_{2}} \right) \left([HCO_{3}^{-}]_{MC} + K_{mHCO_{3}_{2}_{2}} \right)}$$
$$K'_{mPEP_{2}} = \frac{K_{mPEP_{2}_{2}} \left(1 + \frac{[MAL]_{MC}}{K_{iMAI_{2}_{2}_{2}}} \right)}{\left(1 + \frac{[G6P]_{MC}}{K_{aG6P_{2}_{2}_{2}}} + \frac{[T3P]_{MC}}{K_{aT3P_{2}_{2}_{2}_{2}}} \right)}$$

$$v_{3} = \frac{V_{m_{3}}\left(\left[OAA\right]_{Mchl} \cdot \left[NADPH\right]_{Mchl} - \frac{\left[NADP\right]_{Mchl} \cdot \left[MAL\right]_{Mchl}}{k_{e_{3}}}\right)}{K_{mOAA_{3}} K_{mNADPH_{3}} \alpha_{3}}$$

$$\alpha_{3} = 1 + \frac{\left[OAA\right]_{Mchl}}{K_{mOAA_{3}}} + \frac{\left[NADPH\right]_{Mchl}}{K_{mNADPH_{3}}} + \frac{\left[NADP\right]_{Mchl}}{K_{mNADP_{3}}} + \frac{\left[MAl\right]_{Mchl}}{K_{mMAl_{3}}} + \frac{\left[OAA\right]_{Mchl} \cdot \left[NADPH\right]_{Mchl}}{K_{mOAA_{3}} K_{mNADPH_{3}}} + \frac{\left[NADP\right]_{Mchl} \cdot \left[MAl\right]_{Mchl}}{K_{mNADP_{3}} K_{mMAl_{3}}}$$

$$v_{4} = \frac{V_{m_{4}}\left(\left[MAl\right]_{Bchl} \cdot [NADP]_{Bchl} - \frac{[PYR]_{Bchl} \cdot [NADPH]_{Bchl} \cdot [CO_{2}]_{Bchl}}{k_{e_{4}}}\right)}{K_{mMAL_{4}} K_{mNADP_{4}} \alpha_{4}}$$

$$\alpha_{4} = 1 + \frac{[MAl]_{Bchl}}{K_{mMAL_{4}}} + \frac{[NADP]_{Bchl}}{K_{mNADP_{4}}} + \frac{[PYR]_{Bchl}}{K_{mPYR_{4}}} + \frac{[NADPH]_{Bchl}}{K_{mNADPH_{4}}} + \frac{[CO_{2}]_{Bchl}}{K_{mCO_{2}-4}} + \frac{[MAl]_{Bchl} \cdot [NADP]_{Bchl}}{K_{mMAL_{4}} K_{mNADP_{4}}} + \frac{[PYR]_{Bchl} \cdot [NADPH]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[CO_{2}]_{Bchl} \cdot [NADPH]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[CO_{2}]_{Bchl} \cdot [NADPH]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}} K_{mCO_{2}}} + \frac{[CO_{2}]_{Bchl} \cdot [NADPH]_{Bchl}}{K_{mCO_{2}} + K_{mNADPH_{4}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNADPH_{4}} K_{mCO_{2}}} + \frac{[PYR]_{Bchl} \cdot [CO_{2}]_{Bchl}}{K_{mPYR_{4}} K_{mNA$$

$$v_{5} = \frac{V_{m_{5}} [PYR]_{Mchl} \cdot [ATP]_{Mchl}}{\left([PYR]_{Mchl} + K_{mPYR_{5}} \cdot \left(1 + \frac{[PEP]_{Mchl}}{K_{iPEP_{5}}} \right) \right) \left([ATP]_{Mchl} + K_{mATP_{5}} \right)}$$

4.1.3 Calvin Cycle reactions

$$v_{6} = \frac{V_{m_{6}} \min\left(1, \frac{[RuBP]_{Bchl}}{[Rubisco]_{Bchl}}\right) \cdot [RuBP]_{Bchl} \cdot [CO_{2}]_{Bchl}}{\left([CO_{2}]_{Bchl} + K_{mCO_{2}-6}^{'}\right)\left([RuBP]_{Bchl} + K_{mRuBP_{6}-6}^{'}\right)}$$

$$K_{mCO_{2}-6}^{'} = K_{mCO_{2}-6} \left(1 + \frac{[O_{2}]_{Bchl}}{K_{iO_{2}-6}}\right)$$

$$K_{mRuBP_{6}-6}^{'} = K_{mRuBP_{6}-6} \left(1 + \frac{[PGA]_{Bchl}}{K_{iPGA_{6}-6}} + \frac{[FBP]_{Bchl}}{K_{iFBP_{6}-6}} + \frac{[SBP]_{Bchl}}{K_{iSBP_{6}-6}} + \frac{[Pi]_{Bchl}}{K_{iPi_{6}-6}} + \frac{[NADPH]_{Bchl}}{K_{iNADPH_{6}-6}}\right)$$

$$v_{7} = \frac{V_{m_{7}} [PGA]_{Bchl} \cdot [ATP]_{Bchl}}{\left([PGA]_{Bchl} + K_{mPGA_{7}} \right) \left([ATP]_{Bchl} + K_{mATP_{7}} \cdot (1 + \frac{[ADP]_{Bchl}}{K_{iADP_{7}}}) \right)}$$

$$v_{8} = \frac{V_{m_{8}} \left[DPGA \right]_{Bchl} \cdot \left[NADPH \right]_{Bchl}}{\left(\left[DPGA \right]_{Bchl} + K_{mPGA_{8}} \right) \left(\left[NADPH \right]_{Bchl} + K_{mNADPH_{8}} \right)}$$

$$v_{10} = \frac{V_{m_{-1}0} \left([GAP]_{Bchl} \cdot [DHAP]_{Bchl} - \frac{[FBP]_{Bchl}}{k_{e_{-1}0}} \right)}{K_{mGAP_{-1}0} K_{mDHAP_{-1}0} \alpha_{10}}$$

$$\alpha_{10} = 1 + \frac{[GAP]_{Bchl}}{K_{mGAP_{-1}0}} + \frac{[DHAP]_{Bchl}}{K_{mDHAP_{-1}0}} + \frac{[FBP]_{Bchl}}{K_{mFBP_{-1}0}} + \frac{[GAP]_{Bchl} \cdot [DHAP]_{Bchl}}{K_{mGAP_{-1}0} K_{mDHAP_{-1}0}}$$

$$v_{11} = \frac{V_{m_{-}11}\left(\left[FBP\right]_{Bchl} - \frac{\left[F6P\right]_{Bchl} \cdot \left[Pi\right]_{Bchl}}{k_{e_{-}11}}\right)}{\left(\left[FBP\right]_{Bchl} + K_{mFBP_{-}11} \cdot \left(1 + \frac{\left[F6P\right]_{Bchl}}{K_{iF6P_{-}11}} + \frac{\left[Pi\right]_{Bchl}}{K_{iPi_{-}11}}\right)\right)}$$

$$v_{12} = \frac{V_{m_{-1}2} \left([DHAP]_{Bchl} \cdot [E4P]_{Bchl} - \frac{[SBP]_{Bchl}}{k_{e_{-1}2}} \right)}{\left([DHAP]_{Bchl} + K_{mDHAP_{-1}2} \right) \left([E4P]_{Bchl} + K_{mE4P_{-1}2} \right)}$$

$$v_{13} = \frac{V_{m_{13}}\left([SBP]_{Bchl} - \frac{[Pi]_{Bchl} \cdot [S7P]_{Bchl}}{k_{e_{13}}}\right)}{\left([SBP]_{Bchl} + K_{mSBP_{13}} \cdot \left(1 + \frac{[Pi]_{Bchl}}{K_{iPi_{13}}}\right)\right)}$$

$$v_{14} = \frac{V_{m_{-}14} \left([F6P]_{Bchl} \cdot [GAP]_{Bchl} - \frac{[Xu5P]_{Bchl} \cdot [E4P]_{Bchl}}{k_{e_{-}14}} \right)}{\left([F6P]_{Bchl} + K_{mF6P_{-}14}^{'} \right) \left([GAP]_{Bchl} + K_{mGAP_{-}14} \right)}$$
$$K_{mF6P_{-}14}^{'} = K_{mF6P_{-}14} \left(1 + \frac{[Xu5P]_{Bchl}}{K_{iXu5P_{-}14}} + \frac{[E4P]_{Bchl}}{K_{iE4P_{-}14}} \right)$$

$$v_{15} = \frac{V_{m_{-}15} \left([GAP]_{Bchl} \cdot [S7P]_{Bchl} - \frac{[Ri5P]_{Bchl} \cdot [Xu5P]_{Bchl}}{k_{e_{-}15}} \right)}{\left([GAP]_{Bchl} + K_{mGAP_{-}15}^{'} \right) \left([S7P]_{Bchl} + K_{mS7P_{-}15}^{'} \right)}$$
$$K_{mGAP_{-}15}^{'} = K_{mGAP_{-}15} \left(1 + \frac{[Xu5P]_{Bchl}}{K_{iXu5P_{-}14}} + \frac{[Ri5P]_{Bchl}}{K_{iRi5P_{-}15}} \right)$$

$$v_{18} = \frac{V_{m_{-18}} \left([ATP]_{Bchl} \cdot [Ru5P]_{Bchl} - \frac{[ADP]_{Bchl} \cdot [RuBP]_{Bchl}}{k_{e_{-18}}} \right)}{\left([ATP]_{Bchl} + K'_{mATP_{-18}} \right) \left([Ru5P]_{Bchl} + K'_{mRu5P_{-18}} \right)}$$

$$K'_{mATP_{-18}} = K_{mATP_{-18}} \left(1 + \frac{[ADP]_{Bchl}}{K_{iADP_{-18}}} \right)$$

$$K'_{mRu5P_{-18}} = K_{mRu5P_{-18}} \left(1 + \frac{[PGA]_{Bchl}}{K_{iPGA_{-18}}} + \frac{[RuBP]_{Bchl}}{K_{iRuBP_{-18}}} + \frac{[Pi]_{Bchl}}{K_{iPi_{-18}}} \right)$$

$$v_{7M} = \frac{V_{m_{-7M}} \left([PGA]_{Mchl} + K_{mPGA_{-7M}} \right) \left([ATP]_{Mchl} + K_{mATP_{-7M}} \cdot \left(1 + \frac{[ADP]_{Mchl}}{K_{iADP_{-7M}}} \right) \right)}$$

$$v_{8M} = \frac{V_{m_{8M}} \left[DPGA \right]_{Mchl} \cdot \left[NADPH \right]_{Mchl}}{\left(\left[DPGA \right]_{Mchl} + K_{mPGA_{8M}} \right) \left(\left[NADPH \right]_{Mchl} + K_{mNADPH_{8M}} \right)}$$

4.1.4 Starch synthesis reactions

$$\begin{aligned} &V_{m_Sta3} = \frac{V_{m_Sta3} \cdot \left([G1P]_{Bchl} \cdot [ATP]_{Bchl} - \frac{[ADPG]_{Bchl} \cdot [PPi]_{Bchl}}{K_{e_Sta3}} \right)}{K_{mG1P_Sta3} \cdot K_{mATP_Sta3} \cdot \alpha_{Sta3}} \\ &V_{m_Sta3} = V_{m_Sta3} \cdot \frac{[PGA]_{Bchl}}{\left([PGA]_{Bchl} + K_{aPGA_Sta3} \right)} \\ &K_{mATP_Sta3} = K_{mATP_Sta3} \cdot \left(1 + \frac{[ADP]_{Bchl}}{K_{iAADP_ATP_Sta3}} + \frac{[PPi]_{Bchl}}{K_{iCPPi_ATP_Sta3}} + \frac{[Pi]_{Bchl}}{K_{iAPi_ATP_Sta3}} \right) \\ &\alpha_{Sta3} = 1 + \frac{[G1P]_{Bchl}}{K_{mG1P_Sta3}} + \frac{[ATP]_{Bchl}}{K_{mATP_Sta3}} + \frac{[ADPG]_{Bchl}}{K_{mADPG_Sta3}} + \frac{[PPi]_{Bchl}}{K_{mP1_Sta3}} + \\ &+ \frac{[G1P]_{Bchl} \cdot [ATP]_{Bchl}}{\left(K_{mG1P_Sta3} \cdot K_{mATP_Sta3} \right)} + \frac{[ADPG]_{Bchl} \cdot [PPi]_{Bchl}}{\left(K_{mADPG_Sta3} \cdot K_{mP1_Sta3} \right)} \end{aligned}$$

$$v_{Sta4} = \frac{V_{m_{Sta4}} \cdot \left([PPi]_{Bchl} - \frac{[PPi]_{Bchl}^2}{K_{e_{Sta4}}} \right)}{[PPi]_{Bchl} + K_{mPPi_{Sta4}}}$$

$$v_{Sta5} = \frac{V_{m_Sta5} \cdot [ADPG]_{Bchl}}{\left([ADPG]_{Bchl} + K_{mADPG_Sta5} \right)}$$

4.1.5 Sucrose synthesis reactions

$$v_{Suc1} = \frac{V_{m_{Suc1}}\left(\left[GAP\right]_{MC} \cdot \left[DHAP\right]_{MC} - \frac{\left[FBP\right]_{MC}}{k_{e_{Suc1}}}\right)}{K_{mGAP_{Suc1}}K_{mDHAP_{Suc1}}\alpha_{Suc1}}$$
$$\alpha_{Suc1} = 1 + \frac{\left[GAP\right]_{MC}}{K_{mGAP_{Suc1}}} + \frac{\left[DHAP\right]_{MC}}{K_{mDHAP_{Suc1}}} + \frac{\left[FBP\right]_{MC}}{K_{mFBP_{Suc1}}} + \frac{\left[GAP\right]_{MC} \cdot \left[DHAP\right]_{MC}}{K_{mGAP_{Suc1}} \cdot K_{mDHAP_{Suc1}}}$$

$$v_{Suc2} = \frac{V_{m_{Suc2}}\left([FBP]_{MC} - \frac{[F6P]_{MC} \cdot [Pi]_{MC}}{k_{e_{Suc2}}}\right)}{K_{mFBP_{Suc2}}^{'} \alpha_{Suc2}}$$

$$\alpha_{Suc2} = 1 + \frac{[FBP]_{MC}}{K_{mFBP_{Suc2}}^{'}} + \frac{[F6P]_{MC}}{K_{mF6P_{Suc2}}} + \frac{[Pi]_{MC}}{K_{mPi_{Suc2}}} + \frac{[F6P]_{MC} \cdot [Pi]_{MC}}{K_{mF6P_{Suc2}} K_{mPi_{Suc2}}}$$

$$K_{mFBP_{Suc2}}^{'} = K_{mFBP_{Suc2}}\left(1 + \frac{[F26BP]_{MC}}{K_{iF26BP_{Suc2}}}\right)$$

$$v_{Suc3} = \frac{V_{m_{-}Suc3}\left([ATP]_{MC} \cdot [F6P]_{MC} - \frac{[ADP]_{MC} \cdot [F26BP]_{MC}}{k_{e_{-}Suc3}}\right)}{\left([ATP]_{MC} + K_{mATP_{-}Suc3}'\right)\left([F6P]_{MC} + K_{mF6P_{-}Suc3}'\right)}$$
$$K_{mATP_{-}Suc3}' = K_{mATP_{-}Suc3}\left(1 + \frac{[ADP]_{MC}}{K_{iADP_{-}Suc3}}\right)$$
$$K_{mF6P_{-}Suc3}' = K_{mF6P_{-}Suc3}\left(1 + \frac{[F26BP]_{MC}}{K_{iF26BP_{-}Suc3}}\right) \cdot \left(1 + \frac{[DHAP]_{MC}}{K_{iDHAP_{-}Suc3}}\right)$$

$$v_{Suc4} = \frac{V_{m_{Suc4}} [F26BP]_{MC}}{K_{mF26BP_{Suc4}} \left(1 + \frac{[F26BP]_{MC}}{K_{mF26BP_{Suc4}}} \right) \left(1 + \frac{[Pi]_{MC}}{K_{mPi_{Suc4}}} \right) \left(1 + \frac{[F6P]_{MC}}{K_{mF6P_{Suc4}}} \right)$$

$$v_{Suc7} = \frac{V_{m_{suc7}}\left([UTP]_{MC} \cdot [G1P]_{MC} - \frac{[UDPG]_{MC} \cdot [PPi]_{MC}}{k_{e_{suc7}}}\right)}{K_{mUTP_{suc7}} K_{mG1P_{suc7}} \alpha_{Suc7}}$$

$$\alpha_{Suc7} = 1 + \frac{[UTP]_{MC}}{K_{mUTP_{suc7}}} + \frac{[G1P]_{MC}}{K_{mG1P_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[PPi]_{MC}}{K_{mPPi_{suc7}}} + \frac{[UTP]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UTP]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUTP_{suc7}}} + \frac{[UDPG]_{MC}}{K_{mUDPG_{suc7}}} + \frac{[UDPG]_{MC$$

$$v_{Suc8} = \frac{V_{m_{Suc8}}\left([F6P]_{MC} \cdot [UDPG]_{MC} - \frac{[SUCP]_{MC} \cdot [UDP]_{MC}}{k_{e_{Suc8}}}\right)}{\left([F6P]_{MC} + K_{mF6P_{Suc8}}'\right)\left([UDPG]_{MC} + K_{mUDPG_{Suc8}}'\right)}$$

$$K_{mF6P_{Suc8}}' = K_{mF6P_{Suc8}}\left(1 + \frac{[FBP]_{MC}}{K_{iFBP_{Suc8}}}\right)$$

$$K_{mUDPG_{Suc8}}' = K_{mUDPG_{Suc8}}\left(1 + \frac{[UDP]_{MC}}{K_{iUDP_{Suc8}}}\right)\left(1 + \frac{[SUCP]_{MC}}{K_{iSUCP_{Suc8}}}\right)\left(1 + \frac{[SUCP]_{MC}}{K_{iSUCP_{Suc8}}}\right)\left(1 + \frac{[Pi]_{MC}}{K_{iPi_{Suc8}}}\right)$$

$$v_{Suc9} = \frac{V_{m_Suc9}\left(\left[SUCP\right]_{MC} - \frac{\left[SUC\right]_{MC} \cdot \left[Pi\right]_{MC}}{k_{e_Suc9}}\right)}{\left[SUCP\right]_{MC} + K_{mSUCP_Suc9} \cdot \left(1 + \frac{\left[SUC\right]_{MC}}{K_{mSUC_Suc9}}\right)}$$

$$v_{Suc10} = V_{m_{Suc10}} \frac{[SUC]_{MC}}{\left([SUC]_{MC} + K_{mSUC_{Suc10}}\right)}$$

4.1.6 PGA Sink reaction

$$v_{PGAsink} = V_{m_{PGAsink}} \frac{[PGA]_{MC}}{\left([PGA]_{MC} + K_{mPGA_{PGAsink}}\right)}$$

4.1.7 Light reactions

$$J_{m} = \frac{I_{m} + J_{\max_{m}} - \sqrt{\left(I_{m} + J_{\max_{m}}\right)^{2} - 4\theta I_{m} J_{\max_{m}}}}{2\theta}$$
$$J_{b} = \frac{I_{b} + J_{\max_{b}} - \sqrt{\left(I_{b} + J_{\max_{b}}\right)^{2} - 4\theta I_{b} J_{\max_{b}}}}{2\theta}$$
$$I_{m} = X_{m} \cdot I \cdot abs(1 - f) \cdot \frac{1}{2}$$
$$J_{\max_{m}} = Y_{m} \cdot J_{\max}$$
$$I_{b} = X_{b} \cdot I \cdot abs(1 - f)$$
$$J_{\max_{b}} = Y_{b} \cdot J_{\max}$$

$$v_{ATPM} = \frac{\min(V_{m_ATPM}, D \cdot J_m) \cdot \left[[ADP]_{MC} \cdot [Pi]_{MC} - \frac{[ATP]_{MC}}{k_{e_ATPM}} \right]}{K_{mADP_ATPM} \cdot K_{mPi_ATPM} \cdot \alpha_{ATPM}}$$

$$\alpha_{ATPM} = 1 + \frac{[ADP]_{MC}}{K_{mADP_ATPM}} + \frac{[Pi]_{MC}}{K_{mPi_ATPM}} + \frac{[ATP]_{MC}}{K_{mATP_ATPM}} + \frac{[ADP]_{MC} \cdot [Pi]_{MC}}{K_{mADP_ATPM} \cdot K_{mPi_ATPM}}$$

$$v_{NADPHM} = \frac{\min(V_{m_ATPM}, E \cdot J_m) \cdot \left([NADP]_{MC} - \frac{[NADPH]_{MC}}{k_{e_NADPM}} \right)}{K_{mNADP_NADPHM} \cdot \left(1 + \frac{[NADP]_{MC}}{K_{mNADP_NADPHM}} + \frac{[NADPH]_{MC}}{K_{mNADPH_NADPHM}} \right)}$$

$$w_{ATPB} = \frac{\min(V_{m_ATPB}, G \cdot J_b) \cdot \left([ADP]_{BSC} \cdot [Pi]_{BSC} - \frac{[ATP]_{BSC}}{k_{e_ATPB}} \right)}{K_{mADP_ATPB} \cdot K_{mPi_ATPB} \cdot \alpha_{ATPB}}$$
$$\alpha_{ATPB} = 1 + \frac{[ADP]_{BSC}}{K_{mADP_ATPB}} + \frac{[Pi]_{BSC}}{K_{mPi_ATPB}} + \frac{[ATP]_{BSC}}{K_{mATP_ATPB}} + \frac{[ADP]_{BSC} \cdot [Pi]_{BSC}}{K_{mADP_ATPB} \cdot K_{mPi_ATPB}}$$

4.1.8 PGA<->PEP reaction

$$v_{Ex} = \frac{V_{m_{Ex}} \cdot \left([PGA]_{MC} - \frac{[PEP]_{MC}}{k_{e_{Ex}}} \right)}{K_{mPGA_{Ex}} \cdot \left(1 + \frac{[PGA]_{MC}}{K_{mPGA_{Ex}}} + \frac{[PEP]_{MC}}{K_{mPEP_{Ex}}} \right)}$$

4.1.9 Photorespiration reactions

$$v_{\text{Pr1}} = \frac{V_{m_{-}\text{Pr1}}^{'}\min\left(1, \frac{[RuBP]_{Bchl}}{[Rubisco]_{Bchl}}\right) \cdot [RuBP]_{Bchl} \cdot [O_{2}]_{Bchl}}{([O_{2}]_{Bchl} + K_{mO_{2}_{-}\text{Pr1}}^{'})([RuBP]_{Bchl} + K_{mRuBP_{-}\text{Pr1}}^{'})}$$

$$V_{m_{-}Pr1}^{'} = V_{m_{-}Pr1} \frac{[CO_{2}]_{Bchl}}{K_{ACO_{2}_{-}Pr1} + [CO_{2}]_{Bchl}}$$

$$K_{mO_{2}_{-}Pr1}^{'} = K_{mO_{2}_{-}Pr1} \left(1 + \frac{[CO_{2}]_{Bchl}}{K_{iCO_{2}_{-}Pr1}}\right)$$

$$K_{mRuBP_{-}Pr1}^{'} = K_{mRuBP_{-}Pr1} \left(1 + \frac{[PGA]_{Bchl}}{K_{iPGA_{-}Pr1}} + \frac{[FBP]_{Bchl}}{K_{iFBP_{-}Pr1}} + \frac{[SBP]_{Bchl}}{K_{iSBP_{-}Pr1}} + \frac{[Pi]_{Bchl}}{K_{iPi_{-}Pr1}} + \frac{[NADPH]_{Bchl}}{K_{iNADPH_{-}Pr1}}\right)$$

$$v_{\text{Pr2}} = \frac{V_{m_{\text{Pr2}}} \left[PGCA\right]_{Bchl}}{\left(\left[PGCA\right]_{Bchl} + K_{mPGCA_{\text{Pr2}}} \cdot \left(1 + \frac{\left[GCA\right]_{Bchl}}{K_{iGCA_{\text{Pr2}}}}\right) \left(1 + \frac{\left[Pi\right]_{Bchl}}{K_{iPi_{\text{Pr2}}}}\right)\right)}\right)$$

$$v_{\text{Pr3}} = \frac{V_{m_{-}\text{Pr3}} \cdot [GCA]_{Bper}}{\left([GCA]_{Bper} + K_{mGCA_{-}\text{Pr3}}\right)}$$

$$v_{\text{Pr4}} = \frac{V_{m_{\text{Pr4}}} \cdot \left([GOA]_{Bper} \cdot [GLU]_{Bper} - \frac{[KG]_{Bper} \cdot [GLY]_{Bper}}{k_{e_{\text{Pr4}}}} \right)}{\left([GOA]_{Bper} + K_{mGOA_{\text{Pr4}}} \right) \left([GLU]_{Bper} + K_{mGLU_{\text{Pr4}}} \cdot \left(1 + \frac{[GLY]_{Bper}}{K_{iGLY_{\text{Pr4}}}} \right) \right)}$$

$$v_{\text{Pr5}} = \frac{V_{m_{\text{Pr5}}} \cdot [GLY]_{Bper}}{[GLY]_{Bper} + K_{mGLY_{\text{Pr5}}} \cdot \left(1 + \frac{[SER]_{Bper}}{K_{iSER_{\text{Pr5}}}}\right)}$$

$$v_{\text{Pr6}} = \frac{V_{m_{-}\text{Pr6}} \cdot \left[[GOA]_{Bper} \cdot [SER]_{Bper} - \frac{[HPR]_{Bper} \cdot [GLY]_{Bper}}{k_{e_{-}\text{Pr6}}} \right]}{\left([GOA]_{Bper} + K_{mGOA_{-}\text{Pr6}} \right) \left([SER]_{Bper} + K_{mSER_{-}\text{Pr6}} \cdot \left(1 + \frac{[GLY]_{Bper}}{K_{iGLY_{-}\text{Pr6}}} \right) \right)}$$

$$v_{\text{Pr7}} = \frac{V_{m_{\text{Pr7}}} \cdot \left([HPR]_{Bper} \cdot [NADH]_{Bper} - \frac{[NAD]_{Bper} \cdot [GCEA]_{Bper}}{k_{e_{\text{Pr7}}}} \right)}{\left([HPR]_{Bper} + K_{mHPR_{\text{Pr6}}} \cdot \left(1 + \frac{[HPR]_{Bper}}{K_{iHPR_{\text{Pr7}}}} \right) \right)}$$

$$v_{\text{Pr8}} = \frac{V_{m_{\text{Pr8}}} \cdot \left[[ATP]_{Bchl} \cdot [GCEA]_{Bchl} - \frac{[ADP]_{Bchl} \cdot [PGA]_{Bchl}}{k_{e_{\text{Pr8}}}} \right]}{\left([GCEA]_{Bchl} + K_{mGCEA_{\text{Pr8}}} \right) \left([ATP]_{Bchl} + K_{mATP_{\text{Pr8}}} \cdot \left(1 + \frac{[PGA]_{Bchl}}{K_{iPGA_{\text{Pr8}}}} \right) \right)}$$

$$v_{Pr9} = \frac{V_{m_{Pr9}} \cdot [GCA]_{Bchl}}{\left([GCA]_{Bchl} + K_{mGCA_{Pr9}} \cdot (1 + \frac{[GCEA]_{Bchl}}{K_{iGCEA_{Pr9}}})\right)} - \frac{V_{m_{Pr9}} \cdot [GCA]_{Bper}}{\left([GCA]_{Bper} + K_{mGCA_{Pr9}} \cdot (1 + \frac{[GCEA]_{Bper}}{K_{iGCEA_{Pr9}}})\right)}$$

$$v_{Pr10} = \frac{V_{m_{Pr10}} \cdot [GCEA]_{Bper}}{\left([GCEA]_{Bper} + K_{mGCEA_{Pr10}} \cdot (1 + \frac{[GCA]_{Bper}}{K_{iGCA_{Pr10}}}) \right)} - \frac{V_{m_{Pr10}} \cdot [GCEA]_{Bchl}}{\left([GCEA]_{Bchl} + K_{mGCEA_{Pr10}} \cdot (1 + \frac{[GCA]_{Bchl}}{K_{iGCA_{Pr10}}}) \right)}$$

4.1.10 CO2 leakage rate

$$\mathbf{v}_{leak_Bchl} = J_{CO_2_Bchl} \cdot \frac{S_{chl}}{S_l} = P_{CO_2_Bchl} \cdot \frac{S_{chl}}{S_l} \cdot ([CO_2]_{Bchl} - [CO_2]_{BSC})$$
$$\mathbf{v}_{leak} = J_{CO_2_PD} \cdot \frac{S_{PD}}{S_l} = \frac{D_{CO_2_PD}}{l_{PD}} \cdot \frac{S_w \cdot \phi}{S_l} \cdot ([CO_2]_{BSC} - [CO_2]_{MC})$$

 $S_{PD} = S_w \cdot \varphi$

4.1.11 Metabolite transport reactions

$$\mathbf{v}_{TMAL} = J_{MAL_PD} \cdot \frac{S_{PD}}{S_l} = \frac{D_{MAL_PD}}{l_{PD}} \cdot \frac{S_w \cdot \phi}{S_l} \cdot \left([MAL]_{MC} - [MAL]_{BSC} \right)$$

$$\mathbf{v}_{TPYR} = J_{PYR_PD} \cdot \frac{S_{PD}}{S_l} = \frac{D_{PYR_PD}}{l_{PD}} \cdot \frac{S_w \cdot \phi}{S_l} \cdot \left([PYR]_{BSC} - [PYR]_{MC} \right)$$

$$\begin{split} \mathbf{v}_{TPGA} &= J_{PGA_PD} \cdot \frac{S_{PD}}{S_{l}} = \frac{D_{PGA_PD}}{l_{PD}} \cdot \frac{S_{w} \cdot \phi}{S_{l}} \cdot \left([PGA]_{BSC} - [PGA]_{MC} \right) \\ \mathbf{v}_{TGAP} &= J_{GAP_PD} \cdot \frac{S_{PD}}{S_{l}} = \frac{D_{GAP_PD}}{l_{PD}} \cdot \frac{S_{w} \cdot \phi}{S_{l}} \cdot \left([GAP]_{MC} - [PGA]_{BSC} \right) \\ \mathbf{v}_{TDHAP} &= J_{DHAP_PD} \cdot \frac{S_{PD}}{S_{l}} = \frac{D_{DHAP_PD}}{l_{PD}} \cdot \frac{S_{w} \cdot \phi}{S_{l}} \cdot \left([DHAP]_{MC} - [DHAP]_{BSC} \right) \\ \mathbf{v}_{TOAA_M} &= V_{m_OAA_M} \cdot \frac{\left([OAA]_{MC} - \frac{[OAA]_{Mchl}}{K_{_OAA_M}} \right)}{[OAA]_{MC} + K_{m_OAA_M}} \cdot \left(1 + \frac{[malate]_{MC}}{K_{imod_OAA_M}} \right) \\ \mathbf{v}_{TMAL_M} &= \frac{V_{MAL_M} \cdot ([MAL]_{Mchl} - [MAL]_{Mchl}}{[MAL]_{Mchl} + K_{mMAL_MAL_M}} \cdot \left(1 + \frac{[OAA]_{Mchl}}{K_{iond_OAA_M}} \right) \\ \mathbf{v}_{TMAL_B} &= \frac{V_{MAL_B} \cdot ([MAL]_{BSC} - [MAL]_{Bchl})}{[MAL]_{BSC} + K_{mAML_MAL_B}} \\ \mathbf{v}_{TPYR_B} &= \frac{V_{m_PYR_M} \cdot [PYR]_{Bchl}}{[PYR]_{Bchl} + K_{m_PYR_M}} \\ \mathbf{v}_{TPFP_M} &= \frac{V_{m_PYR_M} \cdot [PYR]_{MC}}{[PYR]_{MC} + K_{m_PYR_M}} \\ \mathbf{v}_{TPFP_M} &= \frac{V_{m_PPR_M} \cdot [PEP]_{Mchl}}{[PGA]_{Bchl} + K_{mPGA} \cdot \left(1 + \frac{[DHAP]_{Bchl}}{K_{mDHAP}} \right) \left(1 + \frac{[GAP]_{Bchl}}{K_{mGAP}} \right) \\ &- \frac{V_{m_C3P_B} \cdot [PGA]_{BSC}}{[PGA]_{BSC} + K_{mPGA} \cdot \left(1 + \frac{[DHAP]_{Bchl}}{K_{mDHAP}} \right) \left(1 + \frac{[GAP]_{Bchl}}{K_{mGAP}} \right) \end{aligned}$$

$$\mathbf{v}_{TGAP_B} = \frac{V_{m_C3P_B} \cdot [GAP]_{BSC}}{[GAP]_{BSC} + K_{mGAP} \cdot \left(1 + \frac{[DHAP]_{BSC}}{K_{mDHAP}}\right) \left(1 + \frac{[PGA]_{BSC}}{K_{mPGA}}\right)} - \frac{V_{m_C3P_B} \cdot [GAP]_{Bchl}}{[GAP]_{Bchl} + K_{mGAP} \cdot \left(1 + \frac{[DHAP]_{Bchl}}{K_{mDHAP}}\right) \left(1 + \frac{[PGA]_{Bchl}}{K_{mPGA}}\right)}$$

$$\mathbf{v}_{TDHAP_B} = \frac{V_{m_C GAP_B} \cdot [DHAP]_{BSC}}{[DHAP]_{BSC} + K_{mDHAP} \cdot \left(1 + \frac{[GAP]_{BSC}}{K_{mGAP}}\right) \left(1 + \frac{[PGA]_{BSC}}{K_{mPGA}}\right)} - \frac{V_{m_C GAP_B} \cdot [DHAP]_{Bchl}}{[DHAP]_{Bchl} + K_{mDHAP} \cdot \left(1 + \frac{[GAP]_{Bchl}}{K_{mGAP}}\right) \left(1 + \frac{[PGA]_{Bchl}}{K_{mPGA}}\right)}$$

$$\mathbf{v}_{TPGA_M} = \frac{V_{m_C3P_B} \cdot [PGA]_{MC}}{[PGA]_{MC} + K_{mPGA} \cdot \left(1 + \frac{[DHAP]_{MC}}{K_{mDHAP}}\right) \left(1 + \frac{[GAP]_{MC}}{K_{mGAP}}\right)} - \frac{V_{m_C3P_B} \cdot [PGA]_{Mchl}}{[PGA]_{Mchl} + K_{mPGA} \cdot \left(1 + \frac{[DHAP]_{Mchl}}{K_{mDHAP}}\right) \left(1 + \frac{[GAP]_{Mchl}}{K_{mGAP}}\right)}$$

$$\mathbf{v}_{TGAP_M} = \frac{V_{m_C3P_B} \cdot [GAP]_{Mchl}}{[GAP]_{Mchl} + K_{mGAP} \cdot \left(1 + \frac{[DHAP]_{Mchl}}{K_{mDHAP}}\right) \left(1 + \frac{[PGA]_{Mchl}}{K_{mPGA}}\right) - \frac{V_{m_C3P_B} \cdot [GAP]_{MC}}{[GAP]_{MC} + K_{mGAP} \cdot \left(1 + \frac{[DHAP]_{MC}}{K_{mDHAP}}\right) \left(1 + \frac{[PGA]_{MC}}{K_{mPGA}}\right)}$$

$$\mathbf{v}_{TDHAP_M} = \frac{V_{m_C3P_B} \cdot [DHAP]_{Mchl}}{[DHAP]_{Mchl} + K_{mDHAP} \cdot \left(1 + \frac{[GAP]_{Mchl}}{K_{mGAP}}\right) \left(1 + \frac{[PGA]_{Mchl}}{K_{mPGA}}\right)} - \frac{V_{m_C3P_B} \cdot [DHAP]_{MC}}{[DHAP]_{MC} + K_{mDHAP} \cdot \left(1 + \frac{[GAP]_{MC}}{K_{mGAP}}\right) \left(1 + \frac{[PGA]_{MC}}{K_{mPGA}}\right)}$$

4.1.12 Carbon isotope (13CO2) discrimination

$$\begin{split} ^{13}C_{i} &= C_{i} \cdot R_{a} \cdot \frac{1}{\alpha_{0}} \\ ^{12}C_{i} &= C_{i} \cdot (1 - R_{a} \cdot \frac{1}{\alpha_{0}}) \\ v_{inf-h} &= g_{m} \cdot \frac{1}{S_{c}} \cdot 10^{-3} \frac{1}{\alpha_{1}} \cdot (^{13}C_{i} - [^{13}CO_{2}]_{MC}) \\ v_{inf} &= g_{m} \cdot \frac{1}{S_{c}} \cdot 10^{-3} (^{12}C_{i} - [^{12}CO_{2}]_{MC}) \\ v_{1-h} &= v_{1} \cdot \frac{1}{\alpha_{2}} \cdot \frac{1}{\alpha_{3}} \cdot \frac{[^{13}CO_{2}]_{MC}}{[^{12}CO_{2}]_{MC}} \\ v_{2-h} &= v_{2} \cdot \frac{1}{\alpha_{4}} \cdot \frac{[H^{13}CO_{3}]_{Bchl}}{[H^{12}CO_{3}]_{Bchl}} \\ v_{4-h} &= v_{4} \cdot \frac{v_{2-h}}{v_{2}} \\ v_{6-h} &= v_{6} \cdot \frac{1}{\alpha_{5}} \cdot \frac{[^{13}CO_{2}]_{Bchl}}{[^{12}CO_{2}]_{Bchl}} \\ v_{leak_Bchl_h} &= P_{CO_{2_Bchl}} \cdot \frac{S_{chl}}{S_{l}} \cdot \frac{1}{\alpha_{6}} \cdot \left([^{13}CO_{2}]_{Bchl} - [^{13}CO_{2}]_{BSC}\right) \\ v_{leak_h} &= \frac{D_{CO_{2_}PD}}{l_{PD}} \cdot \frac{S_{w} \cdot \varphi}{S_{l}} \cdot \frac{1}{\alpha_{6}} \left([^{13}CO_{2}]_{BSC} - [^{13}CO_{2}]_{MC}\right) \\ R_{d_h} &= R_{d} \cdot \frac{R_{a}}{1 + \Delta_{l}} \\ R_{d_h}^{'} &= R_{d} \cdot (1 - \frac{R_{a}}{1 + \Delta_{l}}) \\ v_{pr5_h} &= v_{pr5} \cdot (\frac{R_{a}}{1 + \Delta_{l}}) \end{split}$$

4.2. Differential Equations

4.2.1. Metabolite concentration changes in mesophyll cell cytosol

$$\begin{aligned} \frac{d[CO_2]_{MC}}{dt} &= \left(v_{inf} - v_1 + v_{ieak} + R_m\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[HCO_3]_{MC}}{dt} &= \left(v_1 - v_2\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[OAA]_{MC}}{dt} &= \left(v_2 - v_{OAA_-M}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[OPEP]_{MC}}{dt} &= \left(v_{PEP_-M} - v_2 + v_{Ex}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[Malate]_{MC}}{dt} &= \left(v_{MAL_-M} - v_{MAL}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[Pyruvate]_{MC}}{dt} &= \left(v_{PGA} - v_{PGA_-M} - v_{Ex} - v_{PGASink}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[PGA]_{MC}}{dt} &= \left(v_{Suc1} - v_{Suc2}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[IDPG]_{MC}}{dt} &= \left(v_{Suc7} - v_{Suc8}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[SUCP]_{MC}}{dt} &= \left(v_{Suc9} - v_{Suc9}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[F26BP]_{MC}}{dt} &= \left(v_{Suc9} - v_{Suc4}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[IT26BP]_{MC}}{dt} &= \left(v_{Suc9} - v_{Suc4}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[IT26BP]_{MC}}{dt} &= \left(v_{Suc9} - v_{Suc7} - v_{Suc3}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[IT3P]_{MC}}{dt} &= \left(v_{GAP_-M} + v_{DHAP_-M} - v_{GAP} - v_{DHAP} - 2v_{Suc1}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[HexP]_{MC}}{dt} &= \left(v_{Suc2} + v_{Suc4} - v_{Suc7} - v_{Suc8}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[HexP]_{MC}}{dt} &= \left(v_{Suc2} + v_{Suc4} - v_{Suc7} - v_{Suc8}\right) \cdot \frac{1}{Vol_{Mcyto}}} \\ \frac{d[HexP]_{MC}}{dt} &= \left(v_{Suc2} + v_{Suc4} - v_{Suc7} - v_{Suc8}\right) \cdot \frac{1}{Vol_{Mcyto}} \\ \frac{d[HexP]_{MC}}{dt} &= \left(v_{Suc2} + v_{Suc4} - v_{Suc7} - v_{Suc8}\right) \cdot \frac{1}{Vol_{Mcyto}}} \\ \end{bmatrix}$$

4.2.2. Metabolite concentration changes in mesophyll cell chloroplast

$$\frac{d[OAA]_{Mchl}}{dt} = (v_{OAA_M} - v_3) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[Malate]_{Mchl}}{dt} = (v_3 - v_{MAL_M}) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[PEP]_{Mchl}}{dt} = (v_5 - v_{PEP_M}) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[Pyruvate]_{Mchl}}{dt} = (v_{PYR_M} - v_5) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[NADPH]_{Mchl}}{dt} = (v_{NADGPHM} - v_3 - v_{8Mchl}) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[ATP]_{Mchl}}{dt} = (v_{ATPM} - 2v_5 - v_{7Mchl} - v_{tATP}) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[PGA]_{Mchl}}{dt} = (v_{PGA_M} - v_{7Mchl}) \cdot \frac{1}{Vol_{Mchl}}$$

$$\frac{d[T^3P]_{Mchl}}{dt} = \left(v_{8Mchl} - v_{GAP_M} - v_{DHAP_M}\right) \cdot \frac{1}{Vol_{Mchl}}$$

4.2.3. Metabolite concentration changes in bundle sheath cell cytosol

$$\frac{d[T3P]_{BSC}}{dt} = \left(v_{GAP} + v_{DHAP} - v_{GAP_B} - v_{DHAP_B}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

$$\frac{d[PGA]_{BSC}}{dt} = \left(v_{PGA_B} - v_{PGA}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

$$\frac{d[Malate]_{BSC}}{dt} = \left(v_{MAL} - v_{MAL_B}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

$$\frac{d[Pyruvate]_{BSC}}{dt} = \left(v_{PYR_B} - v_{PYR}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

$$\frac{d[CO_2]_{BSC}}{dt} = \left(v_{leak_Bchl} + v_{Pr5} + R_b - v_{leak}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

4.2.4. Metabolite concentration changes in bundle sheath cell chloroplast

$$\begin{aligned} \frac{d[CO_2]_{Behl}}{dt} &= \left(v_4 - v_0 - v_{leok_Behl}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[RuBP]_{Behl}}{dt} &= \left(v_{18} - v_6 - v_{Pr1}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[PGA]_{Behl}}{dt} &= \left(2v_6 - v_7 - v_{PGA_B} + v_{Pr1} + v_{Pr3}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[ATP]_{Behl}}{dt} &= \left(v_{ATPR} - v_7 - v_{18} - v_{au3} - v_{Pr3}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[NADPH]_{Behl}}{dt} &= \left(v_4 - v_8\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[SBP]_{Behl}}{dt} &= \left(v_{12} - v_{13}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[SBP]_{Behl}}{dt} &= \left(v_{12} - v_{13}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[SPP]_{Behl}}{dt} &= \left(v_{13} - v_{15}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[SPP]_{Behl}}{dt} &= \left(v_{10} - v_{11}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[E4P]_{Behl}}{dt} &= \left(v_{10} - v_{11}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[FBP]_{Behl}}{dt} &= \left(v_{11} - v_{12}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[HexP]_{Behl}}{dt} &= \left(v_{11} - v_{14} - v_{503}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[Pent]_{Behl}}{dt} &= \left(v_{14} + 2v_{15} - v_{18}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[Pent]_{Behl}}{dt} &= \left(v_{14} + 2v_{15} - v_{18}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[Pyruvate]_{Behl}}{dt} &= \left(v_{4} - v_{PTR_B}\right) \cdot \frac{1}{Vol_{Behl}} \\ \frac{d[PPr1]_{Behl}}{dt} &= \left(v_{503} - v_{504}\right) \cdot \frac{1}{Vol_{Behl}} \end{aligned}$$

$$\frac{d[ADPG]_{Bchl}}{dt} = \left(v_{Sta3} - v_{Sta5}\right) \cdot \frac{1}{Vol_{Bchl}}$$
$$\frac{d[PGCA]_{Bchl}}{dt} = \left(v_{Pr1} - v_{Pr2}\right) \cdot \frac{1}{Vol_{Bchl}}$$
$$\frac{d[GCA]_{Bchl}}{dt} = \left(v_{Pr2} - v_{Pr9}\right) \cdot \frac{1}{Vol_{Bchl}}$$
$$\frac{d[GCEA]_{Bchl}}{dt} = \left(v_{Pr10} - v_{Pr8}\right) \cdot \frac{1}{Vol_{Bchl}}$$

4.2.5. Metabolite concentration changes in bundle sheath cell peroxisome

 $\frac{d[GCA]_{Bper}}{dt} = (v_{Pr9} - v_{Pr3}) \cdot \frac{1}{Vol_{Bper}}$ $\frac{d[GOA]_{Bper}}{dt} = (v_{Pr3} - v_{Pr4} - v_{Pr6}) \cdot \frac{1}{Vol_{Bper}}$ $\frac{d[GLY]_{Bper}}{dt} = (v_{Pr4} + v_{Pr6} - 2v_{Pr5}) \cdot \frac{1}{Vol_{Bper}}$ $\frac{d[SER]_{Bper}}{dt} = (v_{Pr5} - v_{Pr6}) \cdot \frac{1}{Vol_{Bper}}$ $\frac{d[HPR]_{Bper}}{dt} = (v_{Pr6} - v_{Pr7}) \cdot \frac{1}{Vol_{Bper}}$ $\frac{d[GCEA]_{Bper}}{dt} = (v_{Pr7} - v_{Pr10}) \cdot \frac{1}{Vol_{Bper}}$

4.2.6. Metabolite concentration changes for calculation of Carbon isotope (¹³CO₂) discrimination

$$\frac{d[CO_{2}]'_{MC}}{dt} = \left(v'_{inf} - v_{1} + v_{leak} + R'_{m}\right) \cdot \frac{1}{Vol_{Mcyto}}$$
$$\frac{d[OAA]'_{MC}}{dt} = \left((v_{2} + v_{2_{h}}) - v_{OAA_{m}}\right) \cdot \frac{1}{Vol_{Mcyto}}$$
$$\frac{d[PEP]'_{MC}}{dt} = \left(v_{PEP_{m}} - (v_{2} + v_{2_{h}}) + v_{Ex}\right) \cdot \frac{1}{Vol_{Mcyto}}$$

$$\frac{d[CO_{2}]_{BSC}}{dt} = \left(v_{leak_Bchl} + v_{Pr5} + R_{b} - v_{leak}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

$$\frac{d[RuBP]_{Bchl}}{dt} = \left(v_{18} - (v_{6} + v_{6_h}) - v_{Pr1}\right) \cdot \frac{1}{Vol_{Bchl}}$$

$$\frac{d[PGA]_{Bchl}}{dt} = \left(2 \cdot (v_{6} + v_{6_h}) - v_{7} - v_{PGA_B} + v_{Pr1} + v_{Pr8}\right) \cdot \frac{1}{Vol_{Bchl}}$$

$$\frac{d[Malate]_{Bchl}}{dt} = \left(v_{MAL_B} - (v_{4} + v_{4_h})\right) \cdot \frac{1}{Vol_{Bchl}}$$

$$\frac{d[Pyruvate]_{Bchl}}{dt} = \left((v_{4} + v_{4_h}) - v_{PYR_B}\right) \cdot \frac{1}{Vol_{Bchl}}$$

$$\frac{d[NADPH]_{Bchl}}{dt} = \left((v_{4} + v_{4_h}) - v_{8}\right) \cdot \frac{1}{Vol_{Bchl}}$$

$$\frac{d[^{13}CO_{2}]_{MC}}{dt} = \left(v_{1_h} - v_{1_h} + v_{leak_h} + R_{m_h}\right) \cdot \frac{1}{Vol_{Mcyto}}$$

$$\frac{d[^{13}CO_{2}]_{BSC}}{dt} = \left(v_{leak_Bchl_h} + v_{Pr5_h} + R_{b_h} - v_{leak_h}\right) \cdot \frac{1}{Vol_{Bcyto}}$$

4.3. Constants

4.3.1. Constants in mesophyll cell cytosol

$$[CA]_{MC} = [ATP]_{MC} - [ADP]_{MC}$$

$$[CU]_{MC} = [UDP]_{MC} + [UTP]_{MC} + [UDPG]_{MC}$$

$$[CP]_{MC} = [PiT]_{MC} + 2[FBP]_{MC} + 2[F26BP]_{MC} + [PGA]_{MC} + [T3P]_{MC} + [HexP]_{MC} + [SUCP]_{MC} + [UTP]_{MC} + [ATP]_{MC} + [PEP]_{MC}$$

$$[Pi]_{MC} = \frac{1}{2} (\sqrt{K_{ePi}^{2} + 4 \cdot K_{ePi} \cdot [PiT]_{MC}} - K_{ePi})$$

$$[PPi]_{MC} = [PiT]_{MC} - [Pi]_{MC}$$
$$[GAP]_{MC} = \frac{K_{e_{-9}} \cdot [T3P]_{MC}}{(1 + K_{e_{-9}})}$$
$$[DHAP]_{MC} = \frac{[T3P]_{MC}}{(1 + K_{e_{-9}})}$$
$$[G6P]_{MC} = \frac{[HexP]_{MC}}{\frac{1}{K_{e_{-}Suc5}} + K_{e_{-}Suc6} + 1}$$
$$[G1P]_{MC} = \frac{K_{e_{-}Suc6} \cdot [HexP]_{MC}}{\frac{1}{K_{e_{-}Suc5}} + K_{e_{-}Suc6} + 1}$$
$$[F6P]_{MC} = \frac{\frac{[HexP]_{MC}}{K_{e_{-}Suc5}}}{\frac{1}{K_{e_{-}Suc5}} + K_{e_{-}Suc6} + 1}$$

4.3.2. Constants in mesophyll cell chloroplast

$$\begin{split} & [CA]_{Mchl} = [ATP]_{Mchl} + [ADP]_{Mchl} \\ & [CN]_{Mchl} = [NADPH]_{Mchl} + [NADP]_{Mchl} \\ & [CP]_{Mchl} = [Pi]_{Mchl} + [PGA]_{Mchl} + 2[DPGA]_{Mchl} + [T3P]_{Mchl} + [ATP]_{Mchl} + [PEP]_{Mchl} \\ & [GAP]_{Mchl} = \frac{K_{e_{-}9} \cdot [T3P]_{Mchl}}{(1 + K_{e_{-}9})} \end{split}$$

$$[DHAP]_{Mchl} = \frac{[T3P]_{Mchl}}{(1+K_{e_{9}})}$$

4.3.3. Conatants in bundle sheath cell cytosol

$$[GAP]_{BSC} = \frac{K_{e_{-9}} \cdot [T3P]_{BSC}}{(1 + K_{e_{-9}})}$$

$$[DHAP]_{BSC} = \frac{[T3P]_{BSC}}{(1+K_{e_{9}})}$$

4.3.4. Conatants in bundle sheath cell chloroplast

$$\begin{split} & [CA]_{Bchl} = [ATP]_{Bchl} + [ADP]_{Bchl} + [ADPG]_{Bchl} \\ & [CN]_{Bchl} = [NADPH]_{Bchl} + [PGA]_{Bchl} + 2[DPGA]_{Bchl} + [T3P]_{Bchl} + 2[FBP]_{Bchl} + \\ & + [HexP]_{Bchl} + [E4P]_{Bchl} + 2[SBP]_{Bchl} + [STP]_{Bchl} + [Pent]_{Bchl} + \\ & + 2[RuBP]_{Bchl} + [ATP]_{Bchl} + [PGCA]_{Bchl} + 2[PPi]_{Bchl} \\ & [GAP]_{Bchl} = \frac{K_{e_{-}9} \cdot [T3P]_{Bchl}}{(1+K_{e_{-}9})} \\ & [DHAP]_{Bchl} = \frac{[HexP]_{Bchl}}{(1+K_{e_{-}9})} \\ & [G6P]_{Bchl} = \frac{[HexP]_{Bchl}}{\frac{1}{K_{e_{-}Sal}} + K_{e_{-}Sal2} + 1} \\ & [G1P]_{Bchl} = \frac{K_{e_{-}Sal2} \cdot [HexP]_{Bchl}}{\frac{1}{K_{e_{-}Sal1}} + K_{e_{-}Sal2} + 1} \\ & [F6P]_{Bchl} = \frac{[HexP]_{Bchl}}{\frac{1}{K_{e_{-}Sal1}} + K_{e_{-}Sal2} + 1} \\ & [Ru5P]_{Bchl} = \frac{[PenP]_{Bchl}}{\frac{1}{K_{e_{-}Sal}} + \frac{1}{K_{e_{-}17}} + 1} \\ & [Ru5P]_{Bchl} = \frac{[PenP]_{Bchl}}{\frac{1}{K_{e_{-}16}} + \frac{1}{K_{e_{-}17}} + 1} \\ & [Ri5P]_{Bchl} = \frac{[PenP]_{Bchl}}{\frac{1}{K_{e_{-}16}} + \frac{1}{K_{e_{-}17}} + 1} \\ \end{split}$$

Parameters

5.1 Vmax of photosynthetic enzymes

EC	Numbering	Vmax (µmol m-2 s-1)	Reference
			Hatch and Burnell (1990) with
4.2.1.1	1	200000 or variable	modification
			Kanai and Edwards (1999), Hatch
4.1.1.31	2	170 or variable	(1987), von Caemmerer (2000) with
			modification
			Kanai and Edwards (1999), Hatch
1.1.1.82	3	90 or variable	(1987) with modification
			Kanai and Edwards (1999), Hatch
1.1.1.40	4	90 or variable	(1987) with modification
			Kanai and Edwards (1999), Hatch
2.7.9.1	5	90 or variable	(1987) with modification
			Kanai and Edwards (1999), Hatch
4.1.1.39	6	65 or variable	(1987), von Caemmerer (2000) with
			modification
27238			Laisk and Edwards. (2000), with
1.2.1.13	7 and 8	225 or variable	modification
4.1.2.13FBP	10	58.5 or variable	Zhu et al. (2007) with modification
3.1.3.11	11	43.6 or variable	Zhu et al. (2007) with modification
4.1.2.13SBP	12	110 or variable	Zhu et al. (2007) with modification
3.1.3.37	13	29.2 or variable	Zhu et al. (2007) with modification
2.2.1.1X	14	281 or variable	Zhu et al. (2007) with modification
2.2.1.1R	15	281 or variable	Zhu et al. (2007) with modification
2.7.1.19	18	1170 or variable	Zhu et al. (2007) with modification
) 7) 2M <i>8-</i>			Laisk and Edwards. (2000), with
1.2.1.13M	7M and 8M	300 or variable	modification
4.1.2.13FBP	Suc1	8.05 or variable	Zhu et al. (2007) with modification

Μ			
3.1.3.11M	Suc2	6.40 or variable	Zhu et al. (2007) with modification
2.7.7.9	Suc7	5.77 or variable	Zhu et al. (2007) with modification
2.4.1.14	Suc8	27.8 or variable	Zhu et al. (2007) with modification
3.1.3.24	Suc9	27.8 or variable	Zhu et al. (2007) with modification
2.7.1.105	Suc3	1.01 or variable	Zhu et al. (2007) with modification
3.1.3.46	Suc4	0.841 or variable	Zhu et al. (2007) with modification
2.7.7.27	Sta3	30 or variable	Zhu et al. (2007) with modification
3.6.1.1	Sta4	1000 or variable	Zhu et al. (2007) with modification
2.4.1.21	Sta5	25 or variable	Zhu et al. (2007) with modification
StarchDag	StarchDag	0 or 3.6	Assumed
PGASink	PGASink	2 or variable	Zhu et al. (2007) with modification
4.1.1.39PR	Pr1	Vm_6*0.11 or variable	Cousins et al. (2010) with modification
3.1.3.18	Pr2	2621 or variable	Zhu et al. (2007) with modification
1.1.3.15	Pr3	72.8 or variable	Zhu et al. (2007) with modification
2.6.1.4	Pr4	137 or variable	Zhu et al. (2007) with modification
Gly_ser	Pr5	125 or variable	Zhu et al. (2007) with modification
2.6.1.45	Pr6	165 or variable	Zhu et al. (2007) with modification
1.1.1.29	Pr7	500 or variable	Zhu et al. (2007) with modification
2.7.1.31	Pr8	286 or variable	Zhu et al. (2007) with modification
Tgca	Pr9	300 or variable	Zhu et al. (2007) with modification
Tgcea	Pr10	250 or variable	Zhu et al. (2007) with modification
5.4.2.1&4.2.	Ev	1 or variable	Laisk and Edwards. (2000), with
1.11		I of variable	modification
ImavM	ImayM	300 or variable	von Caemmerer (2000) with
JIIIAXIVI	JIIIdXIVI	Soo or variable	modification
ImovR	ImayB	JmaxM *(1-Y)/Y or variable	Assumed, von Caemmerer (2000) with
σπαλD	μαλυ		modification
3.6.3.14M	ATPM	300 or variable	Assumed
3.6.3.14B	ATPB	300 or variable	Assumed

1.18.1.2M	NADPHM	200 or variable	Assumed
TPTM	TPGAM, TDHAPM,	750 or variable	Assumed
	TGAPM		
	TPGAM,		
ТРТВ	TDHAPM,	750 or variable	Assumed
	TGAPM		
DiT	TOAAM	80 or variable	Assumed
	TmalB	150 or variable	Assumed
	TmalM	150 or variable	Assumed
PPT	TPEPM	150 or variable	Assumed
MEPM	TpyrM	150 or variable	Assumed
MEPB	TpyrB	150 or variable	Assumed

5.2 Michaelis-constant and other paremeters

EC	Numbering	parameters	Reference
	inf	$g_m=0.7 \text{ mol } m^{-2} \text{ bar}^{-1}$	Assumed
		$Sc = 0.33 \times 10^{-4}$	Uchida et al. (1983), Hoofd et al.
		mmol L ⁻¹ µbar ⁻¹	(1986)
4.2.1.1	1	K _{mCO2_1} =2.8 mM	Hatch and Burnell (1990)
		$K_{mHCO3_1}=34 \text{ mM}$	Pocker and Miksch (1978)
		[H+]=10e-7.3mM	Felle and Bertl (1986)
		$K_{e_{-1}} = 5.6e-7mM$	Pocker and Miksch (1978)
4.1.1.31	2	$K_{mHCO3_2} = 0.02 \text{ mM}$	Uedan and Sugiyama (1976)
		$K_{mPEP_2}=0.1\ mM$	Mukerji (1977)
		$K_{imal_2}=0.5 \text{ mM}$	Gao and Woo (1996)
1.1.1.82	3	$K_{mNADPH_3} = 0.024 \text{ mM}$	Kagawa and Bruno (1988)
		$K_{mOAA_3} {=} 0.056 \text{ mM}$	Kagawa and Bruno (1988)
		$K_{mNADP_3} = 0.073 \ mM$	Kagawa and Bruno (1988)
		$K_{mmal_3} = 32.0 \text{ mM}$	Kagawa and Bruno (1988)
		$K_{e_3} = 4450.0$	Laisk and Edwards (2000)

1 1 1 40	4	K $cor = 1.1 \text{ mM}$	Ienkins <i>et al.</i> (1987)
1.1.1.40	-	$K_{mC02_4} = -0.0080 \text{ mM}$	Detersio <i>et al.</i> (2003)
		$K_{mNADP_4} = 0.0030$ mivi	<i>D</i> etaisio <i>ei ui</i> . (2003)
		$K_{mNADPH_4} = 0.045 \text{ mM}$	Ziegler (1974)
		$K_{mPyr_4} = 3.0 \text{ mM}$	Ziegler (1974)
		$K_{mmal_4} = 0.23 \text{ mM}$	Detarsio et al. (2003)
		$K_{e_4} = 0.051 \text{ mM}$	Harary <i>et al.</i> (1953)
2.7.9.1	5	$K_{iPEP_{5}} = 0.15 \text{ mM}$	Jenkins and Hatch (1985)
		$K_{mATP_5} = 0.082 \text{ mM}$	Jenkins and Hatch (1985)
		$K_{mPyr_5} = 0.082 \text{ mM}$	Jenkins and Hatch (1985)
4.1.1.39	6	$K_{mCO2_6} = 0.0162 \text{ mM}$	Cousins et al. (2010)
		$K_{mO2_6} = 0.222 \text{ mM}$	Cousins et al. (2010)
		$K_{mRuBP_6} = 0.02 \text{ mM}$	Farquhar (1979)
		$K_{iPGA_6} = 2.52 \text{ mM}$	Assumed, Badger and Lorimer (1981)
		$K_{iFBP_6} = 0.04 \text{ mM}$	Badger and Lorimer (1981)
		$K_{iSBP_6} = 0.75 \ mM$	Badger and Lorimer (1981)
		K_{iPi_6} =3.6 mM	Assumed, Badger and Lorimer (1981)
		$K_{iNADPH_6} = 0.21 \text{ mM}$	Assumed, Badger and Lorimer (1981)
2.7.2.3 &	7 and 8	K _{mPGA_78} =1 mM	Laisk and Edwards (2000)
1.2.1.13		$K_{mATP_78}=0.3 mM$	Laisk and Edwards (2000)
		K _{mNADPH_78} =0.05 mM	Ferri et al.(1978), Trost (1993),
			Macioszek and Anderson (1987),
			Baalmann et al., 1995, Sparla et al.,
			(2004), Sparla et al., (2005),
5.3.1.1	9	K _{e_9} =0.05	Bassham and Krause (1969)

4.1.2.13FBP	10	$K_{mDHAP_10}{=}0.4~mM$	Iwaki et al. (1991)
		$K_{mGAP_{-}10} = 0.3 \text{ mM}$	Iwaki et al. (1991), Zhu et al. (2007)
		$K_{mFBP_{-}10} = 0.02 \text{ mM}$	Brooks and Criddle (1966),
			Schnarrenberger and Kruger (1986)
		$K_{e_{-10}} = 7.1 \text{ mM}^{-1}$	Bassham and Krause (1969),
			Iwaki et al. (1991)
3.1.3.11	11	$K_{iF6P_{-11}} = 0.7 \text{ mM}$	Heldt (1983)
		$K_{iPi_{-}11} = 12.0 \text{ mM}$	Charles and Halliwell (1981)
		K _{mFBP_11} =0.033 mM	Charles and Halliwell (1981)
		K _{e_11} =666000.0 mM	Bassham and Krause (1969), Laisk et
			al.(1989)
4.1.2.13SBP	12	$K_{mDHAP_{12}} = 0.4 \text{ mM}$	Iwaki et al. (1991)
		$K_{mE4P_{12}} = 0.2 \text{ mM}$	Zhu et al. (2007)
		K _{mSBP_12} =0.02 mM	Brooks and Criddle (1966)
		$K_{e_{-12}} = 1.017 \text{ mM}^{-1}$	Bassham and Krause (1969), Laisk et
			al.(1989)
3.1.3.37	13	$K_{iPi_{13}} = 12.0 \text{ mM}$	Woodrow et al. (1983)
		$K_{mSBP_{-13}} = 0.05 \text{ mM}$	Woodrow et al. (1983), Cadet and
			Meunier (1988)
		K _{e_13} =666000.0 mM	Bassham and Krause (1969), Laisk et
			al.(1989)
2.2.1.1X	14	$K_{mE4P_{-}14} = 0.1 \text{ mM}$	Zhu et al. (2007)
		$K_{mF6P_{-}14} = 0.1 \text{ mM}$	Zhu et al. (2007)
		$K_{mGAP_{-}14} = 0.1 \text{ mM}$	Sprenger et al. (1995), Schenk et al.

			(1998), Zhu et al. (2007)
		$K_{mXu5P} = 0.1 \text{ mM}$	Schenk et al. (1998), Laisk et al.
			(1989), Zhu et al. (2007)
		$K_{e_{-14}} = 0.084$	Datta et al. (1961).
2.2.1.1R	15	$K_{mGAP_{-15}} = 0.072 \text{ mM}$	Albe (1991); Laisk et al. (1989)
		$K_{mRi5P_{15}} = 1.5 \text{ mM}$	Albe (1991); Laisk et al. (1989)
		$K_{mS7P_{15}} = 0.46 \text{ mM}$	Albe (1991); Laisk et al. (1989)
		$K_{mXu5P_{-}15} = 0.1 \text{ mM}$	Albe (1991); Laisk et al. (1989)
		$K_{e_{-15}} = 1.176$	Bassham and Krause (1969), Laisk et
			al. (1989)
5.3.1.6	16	K _{e_16} =0.4	Bassham and Krause (1969)
5.1.3.1	17	K _{e_17} =0.67	Bassham and Krause, (1969)
2.7.1.19	18	$K_{iADP_{-18}} = 2.5 \text{ mM}$	Gardemann et al. (1983)
		$K_{i_ADP_18} = 0.4 \text{ mM}$	Gardemann et al. (1983)
		$K_{iPGA_{18}} = 2.0 \text{ mM}$	Gardemann et al. (1983)
		$K_{iPi_{-18}} = 4.0 \text{ mM}$	Gardemann et al. (1983)
		$K_{iRuBP_{18}} = 0.7 \text{ mM}$	Gardemann et al. (1983)
		$K_{mATP_{18}} = 0.625 \text{ mM}$	Slabas <i>et al.</i> (1976)
		$K_{mRu5P_{18}} = 0.05 \text{ mM}$	Gardemann et al. (1983), Omnaas et
			al.(1985)
		$K_{e_{-18}} = 6846.0$	Bassham and Krause (1969), Laisk et
			al. (1989)
4.1.2.13FBP	Suc1	K_{mDHAP_Suc1} =0.45 mM	Iwaki <i>et al.</i> (1991)
Μ			
		$K_{mGAP_Suc1} = 0.04 \text{ mM}$	Iwaki <i>et al</i> . (1991)
		K _{mFBP_Suc1} =0.023 mM	Schnarrenberger (1986)
		$K_{e_Suc1} = 12.0 \text{ mM}^{-1}$	Thomas et al. (1997), Zhu et al.
			(2007)

3.1.3.11M	Suc2	$K_{iF26BP_Suc2} = 0.007 mM$	Jang et al. (2003)
		$K_{iF6P_Suc2} = 0.7 \text{ mM}$	Heldt et al. (1983)
		K_{iPi_Suc2} =12.0 mM	Charles & Halliwell (1981)
		$K_{mFBP_Suc2} = 0.0025 mM$	Jang et al. (2003)
		$K_{e_{Suc2}} = 174.0 \text{ mM}$	Lawson et al. (1976)
5.3.1.9M	Suc5	K _{e_Suc5} =2.3	Bassham and Krause (1969),
5.4.2.2M	Suc6	$K_{e_{Suc6}} = 0.0584$	Bassham and Krause (1969),
2.7.7.9	Suc7	$K_{mG1P_Suc7} = 0.14 \text{ mM}$	Nakano et al. (1989)
		K _{mPPi_Suc7} =0.11 mM	Nakano et al. (1989)
		$K_{mUDPG_Suc7} = 0.12mM$	Nakano et al. (1989)
		$K_{mUTP_Suc7} = 0.1 \text{ mM}$	Nakano et al. (1989)
		K_{e_Suc7} =0.31 mM	Hansen et al. (1966).
2.4.1.14	Suc8	$K_{iFBP_Suc8} = 0.8 \text{ mM}$	Harbron et al. (1981)
		K_{iPi_Suc8} =11.0 mM	Harbron <i>et al.</i> (1981)
		$K_{iSuc_Suc8} {=} 50.0 \text{ mM}$	Salermo and Pontis (1978)
		$K_{iSucP_Suc8} = 0.4 \ mM$	Harbron <i>et al.</i> (1981)
		$K_{iUDP_Suc8}\!=\!\!0.7~mM$	Harbron et al. (1981)
		$K_{mF6P_Suc8} = 0.8 \text{ mM}$	Lunn and Rees (1990)
		K_{mUDPG_Suc8} = 2.4 mM	Lunn and Rees (1990)
		$K_{e_Suc8} = 10.0$	Lunn and Rees (1990)
3.1.3.24	Suc9	$K_{mSuc_Suc9} = 80.0 \text{ mM}$	Cumino (2001)
		$K_{mSucP_Suc9} = 0.35 \text{ mM}$	Whitaker (1984)
		K _{e_Suc9} =780.0	Zhu et al. (2007)

2.7.1.105	Suc3	K _{iADP_Suc3} =0.16 mM	Kretschmer and Hofmann (1984)
		K _{iDHAP_Suc3} =0.7 mM	Markham and Kruger (2002)
		$K_{mATP_Suc3} = 0.5 \text{ mM}$	Walker and Huber (1987), Markham
			and Kruger (2002)
		K _{mF26BP_Suc3} =0.021 mM	Garcia de Frutos and Baanante (1995)
		$K_{mF6P_Suc3} = 0.5 \text{ mM}$	Walker and Huber (1987), Markham
			and Kruger (2002)
		K _{e_Suc3} =590.0	Cornish-Bowden (1997)
3.1.3.46	Suc4	$K_{iF6P_Suc4} = 0.1 \text{ mM}$	Villadsen and Nielsen (2001)
		$K_{iPi_Suc}4 = 0.5 \text{ mM}$	Villadsen and Nielsen (2001)
		$K_{mF26BP_Suc4} = 0.032 \text{ mM}$	Macdonald et al. (1989)
5.3.1.9	Sta1	Ke_Stal=2.3	Bassham and Krause (1969)
5.4.2.2	Sta2	K _{e_Sta2} =0.058	Colowick and Sutherland (1942)
2.7.7.27	Sta3	KaPGA_Sta1=0.2252 mM	Assumed
		$K_{mG1P_Sta3}{=}0.038~mM$	Fuchs et al. (1979)
		K _{mATP_Sta3} =0.12 mM	Boehlein et al. (2005)
		K _{iPi_ATP_Sta3} =2.96 mM	Boehlein et al. (2005)
		K _{mPPi_Sta3} =0.033 mM	Amir et al. (1972)
		$K_{iCPP1_ATP_Sta3}{=}13.8E{-}4$	Amir et al. (1972)
		mM	
		K _{mADPG_Sta3} =0.24 mM	Sowokinos (1981)
		K _{iADP_ATP_Sta3} =2.0 mM	Ghosh <i>et al.</i> (1966)
		Ke_Sta3=1.1	Espada (1962)
3.6.1.1	Sta4	K _{mPPi_Sta2} =0.154 mM	Van <i>et al.</i> (2005)

		K _{e_Sta2} =1.57 E-4 mM	Flodgaard et al. (1974)
2.4.1.21	Sta5	K _{mADPG_Sta3} =0.077 mM	Hawker et al. (1974)
PGASink	PGAsink	K _{mPGA_PGASink} =2.4 mM	Assumed, Zhu et al. (2007)
4.1.1.39PR	PR1	K _{mCO2_PR1} =0.0162 mM	Cousins et al. (2010)
		$K_{mO2_PR1}{=}0.222~mM$	Cousins et al.(2010)
		K _{mRuBP_PR1} =0.02 mM	Farquhar (1979)
		K_{iPGA_PR1} =2.52 mM	Assumed Badger and Lorimer (1981)
		K_{iFBP_PR1} =0.04 mM	Badger and Lorimer (1981)
		$K_{iSBP_PR1}=0.75 \text{ mM}$	Badger and Lorimer (1981)
		K_{iPi_PR1} =3.6 mM	Assumed Badger and Lorimer (1981)
		K _{iNADPH_PR1} =0.21 mM	Assumed Badger and Lorimer (1981)
3.1.3.18	PR2	K_{mPGCA_PR2} =0.026 mM	Christeller and Tolbert (1978)
		$K_{iPI_PR2}{=}2.55~mM$	Christeller and Tolbert (1978)
		K_{iGCA_PR2} =94.0 mM	Christeller and Tolbert (1978)
1.1.3.15	PR3	$K_{mGCA_{PR3}} = 0.1 \text{ mM}$	Tolbert (1981)
2.6.1.4	PR4	$K_{e_{PS4}} = 607.0$	Cooper and Meister (1972)
		K_{mGOA_PS4} =0.15 mM	Nakamura and Tolbert (1983)
		$K_{mGLU_PS4} = 1.7 \text{ mM}$	Nakamura and Tolbert (1983)
		$K_{iGLY_PS4}{=}2.0 \text{ mM}$	Zhu et al. (2007)
2.6.1.45	PR6	$K_{e_{PR6}} = 0.24$	Guynn (1982)
		K_{mGOA_PR6} =0.15 mM	Nakamura and Tolbert (1983)
		$K_{mSER_{PR6}}=2.7 \text{ mM}$	Nakamura and Tolbert (1983)
		K_{iGLY_PR6} =33.0 mM	Nakamura and Tolbert (1983)

1.1.1.29	PR7	K _{e_PR7} = 2.5 E-5	Guynn (1982), Zhu et al (2007)
		$K_{iHPR_PR7} = 12.0 \text{ mM}$	Kleczkowski and Edwards (1989)
		K _{mHPR_PR7} =0.09 mM	Kleczkowski and Edwards (1989)
2.7.1.31	PR8	$K_{e_{PR8}} = 300.0$	Kleczkowski et al. (1985)
		$K_{mATP_PR8} = 0.21 \ mM$	Kleczkowski et al. (1985)
		K _{mGCEA_PR8} =0.25 mM	Kleczkowski et al. (1985)
		K _{iPGA_PR8} =0.72 mM	Assumed, Zhu et al. (2007)
Gly_ser	PR5	$K_{mGLY_PS5} = 6.0 \text{ mM}$	Douce <i>et al.</i> (2001)
		K _{iSER_PS5} =4.0 mM	Douce <i>et al.</i> (2001)
Tgca	PR9	$K_{mGCA_PR9}=0.2\ mM$	Howitz and McCarty (1985)
		$K_{iGCEA_{PR9}} = 0.22 \text{ mM}$	Howitz and McCarty (1985)
Tgcea	PR10	$K_{mGCEA_{PR10}} = 0.39 mM$	Howitz and McCarty (1986)
		$K_{iGCA_PR10} = 0.28 \text{ mM}$	Howitz and McCarty (1986)
5.4.2.1&4.2.1	Ex	$K_{mPGA_62} = 0.1 \text{ mM}$	Laisk and Edwards (2000)
.11			
		$K_{mPEP_62} = 0.5 \text{ mM}$	Laisk and Edwards (2000)
		Ke_62=0.4302	Laisk and Edwards (2000)
3.6.3.14M	ATPM	$K_{mADP_ATPM} = 0.014 \text{ mM}$	Davenport and Mccarty (1986)
		$K_{mATP_ATPM} = 0.11 \text{ mM}$	Penefsky (1974)
		$K_{mPi}ATPM} = 0.3 \text{ mM}$	Aflalo and Shavit (1983)
		$K_{e_ATPM} = 5.734 \text{ mM-1}$	Bassham and Krause (1969), Laisk <i>et</i>
			al.(1989)
		X =0.667	Assumed light partition coefficient

		Y =0.6	Assumed Jmax partition coefficient,	
			von Caemmerer (2000) with	
			modification	
		F =0.7225	von Caemmerer (2000) F=abs(1-f)	
		θ=0.7	von Caemmerer (2000)	
		D =1	von Caemmerer (2000) ATP/e-	
			whole chain +Qcycle	
3.6.3.14B	ATPB	K _{mADP_ATPB} =0.014 mM	Davenport and Mccarty (1986)	
		KmPi_ATPB =0.11 mM	Penefsky (1974)	
		KmATP_ATPB =0.3 mM	Aflalo and Shavit (1983)	
		$K_{e_ATPB} = 5.734 \text{ mM}^{-1}$	Bassham and Krause (1969), Laisk et	
			al.(1989)	
		G =0.667	von Caemmerer (2000) ATP/e-	
1.18.1.2M	NADPHM	$K_{mNADP_NADPHM}{=}0.0072$	Shin (1972)	
		mM		
		K_{mNADPH_NADPHM} =0.036	Gozzer et al. (1977)	
		mM		
		$K_{e_NADPHM}\!=\!\!502$	Knaff (1996), Keirns (1972), Laisk	
			and Edwards (2000)	
		E =0.5	von Caemmerer (2000)	
Metabolite	Leak	D_{CO2_PD} =1.7×10-9	Evans et al. (2009)	
transport		$l_{PD}=0.4\mu m$	von Caemmerer and Furbank (2003)	
through		$S_W / S_l = 0.83$	Sowinski et al. (2008)	
Plasmodesm		ф=0.03	Hatch and Osmond (1976); Stitt M,	
ata			Heldt HW (1985b)	
	TMAL	$D_{MAL_PD}\!\!=\!\!6.67\!\times\!\!10^{10}$	Sowinski et al (2008)	
	TPYR	$D_{PYR_PD}\!\!=\!\!7.00\!\times\!\!10^{-10}$	Sowinski et al (2008)	

	TPGA	$D_{PGA_PD}\!\!=\!\!5.25\!\times\!\!10^{-10}$	Sowinski et al (2008)	
	TGAP	$D_{GAP_PD} = 5.25 \times 10^{-10}$	Sowinski et al (2008)	
	TDHAP	$D_{DHAP_{PD}} = 5.25 \times 10^{-10}$	Sowinski et al (2008)	
Leak_Bchl	Leak_Bchl	$P_{CO2_m}=0.002 \text{ cm s}^{-1}$	Evans et al (2009)	
			Uehlein et al. (2008)	
		$S_{Chl}/S_1 = 10$	Assumed	
DiT1	TOAAM	$K_{m_OAA_M}$ =0.053	Hatch et al. (1984)	
		K _{imal_OAA_M} =7.5	Hatch et al. (1984)	
	TmalM	$K_{m_MAL_M}=0.5$	Day and Hatch (1981)	
		$K_{iOAA_MAL_M}$ =0.3	Day and Hatch (1981)	
DiT2	TmalB	$K_{m_MAL_B}=1$	Assumed, refer to parameters of DiT1	
РРТ	TPEPM	$K_{m_PEP_M}$ =0.3	Assumed	
MEPM	TpyrM	$K_{m_PYR_M}{=}0.05$	Assumed	
MEPB	TpyrB	$K_{m_PYR_B}{=}0.05$	Assumed	
ТРТМ	TPGAM	$K_{mPGA} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
	TGAPM	$K_{mGAP} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
	TDHAPM	$K_{mDHAP} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
ТРТВ	TPGAB	$K_{mPGA} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
	TGAPB	$K_{mGAP} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
	TDHAPB	$K_{mDHAP} = 2$	Assumed, Zhu et al. (2007) with	
			modification	
Carbon	Inf_h	$\alpha_0 = 1.0044$	160'Leary (1984)	
isotope		$\alpha_1 = 1.0029$	Farquhar (1983)	
(¹³ CO ₂)	\mathbf{v}_1	α2=0.991	Emrich et al. (1970); Mook et al.	

calculation			(1974)	
		$\alpha_{3=}1.0011$	Mook et al. (1974); O'Leary (1984)	
	v _{2_h}	$\alpha_4 = 1.002$	O'Leary et al. (1981)	
	V _{6_h}	α ₅ =1.029	Roeske & O'Leary	
			(1984)	
	V _{leak_h}	$\alpha_6 = 1.0007$	O'Leary (1984)	
	$R_{d_h}, v_{pr_5_h}$	$\Delta_l=4$	Farquhar (1983) standard carbon	
			isotope discrimination of C4 plant	

cic fine (or anne of anne compartment	5.3	The volume	of different	compartments
---------------------------------------	-----	------------	--------------	--------------

	-		
Compartments	Parameters	Reference	
MC cytosol	$Vol_{Mcyto} = 0.01 \text{ Lm}^{-2}$	Different cell type proportions were	
MC chloroplast	$Vol_{Mchl} = 0.02 L m^{-2}$	measured from Maize leaf cross	
BSC cytosol	$Vol_{Bcyto} = 0.0045 \text{ Lm}^{-2}$	section and subcellular volumes was	
BSC chloroplast	$Vol_{Bchl} = 0.009 \text{ Lm}^{-2}$	determined by reference to the	
DCC	$Vol_{Bper} = 0.00045 \text{ Lm}^{-2}$	measurement result of Barley leaf	
BSC peroxysome		(Winter et al., 1993)	

5.4 Initial value of metabolite concentrations

Metabolite	Concentration	Compartmen	Reference
name		t	
CO2	0.004	MC	Jenkins et al. (1989)
НСО3	0.077	MC	Jenkins et al. (1989)
OAA	0.1	MC	Assumed
PEP	2	MC	Stitt et al. (1985)
Malate	35	MC	Stitt et al. (1985)
Pyruvate	6	MC	Stitt et al. (1985)
PGA	4	MC	Stitt et al. (1985)
FBP	1.2	MC	Leegood (1985)
UDPG	0.6	MC	Zhu et al. (2007)

SUCP	0.0	MC	Assumed	
SUC	0.0	MC	Assumed	
F26BP	7.8E-6	MC	Zhu et al. (2007)	
ATP	0.35	MC	Zhu et al. (2007)	
T3P	11	MC	Stitt et al. (1985)	
HexP	5	MC	Leegood, (1985)	
Sucrose	0.0	MC	Assumed	
OAA	0.05	Mchl	Assumed	
Malate	35	Mchl	Stitt <i>et al.</i> (1985)	
PEP	2	Mchl	Stitt <i>et al.</i> (1985)	
Pyruvate	6	Mchl	Stitt et al. (1985)	
NADPH	0.21	Mchl	Zhu et al. (2007), Giersch et al.	
			(1980), Woodrow and Mott (1993)	
ATP	0.68	Mchl	Zhu et al. (2007)	
PGA	4	Mchl	Stitt et al. (1985)	
ТЗР	11	Mchl	Stitt et al. (1985)	
ТЗР	1	BSC	Stitt et al. (1985)	
PGA	13	BSC	Stitt et al. (1985)	
Malate	17	BSC	Stitt et al. (1985)	
Pyruvate	5	BSC	Stitt <i>et al.</i> (1985)	
CO ₂	0.07	BSC	Jenkins et al. (1989)	
CO ₂	0.1	Bchl	Assumed	
RuBP	2.0	Bchl	Zhu et al. (2007), Bassham and	
			Krause (1969), Dietz and Heber	
			(1984), Schimkat et al. (1990),	
			Woodrow and Mott (1993)	
PGA	13	Bchl	Stitt <i>et al.</i> (1985)	
ATP	0.68	Bchl	Zhu et al. (2007)	
NADPH	0.21	Bchl	Zhu et al. (2007), Giersch et al.	

			(1980), Woodrow and Mott (1993)
SBP	0.15	Bchl	Zhu et al. (2007), Bassham and
			Krause (1969), Schimkat et al. (1990),
			Woodrow and Mott (1993)
S7P	0.25	Bchl	Zhu et al. (2007), Bassham and
			Krause (1969), Woodrow and Mott
			(1993)
FBP	0.3	Bchl	Leegood, (1985)
E4P	0.05	Bchl	Bassham and Krause (1969),
			Woodrow and Mott (1993)
Starch	0	Bchl	Assumed
ТЗР	1	Bchl	Stitt et al. (1985)
HexP	4	Bchl	Leegood (1985)
Pent	0.05	Bchl	Bassham and Krause (1969),
			Schimkat et al. (1990), Woodrow and
			Mott (1993)
Malate	17	Bchl	Stitt et al. (1985)
Pyruvate	5	Bchl	Stitt et al. (1985)
PGCA	0.0029	Bchl	Zhu et al. (2007)
GCA	0.36	Bchl	Zhu et al. (2007)
GCEA	0.181	Bchl	Zhu et al. (2007)
PPi	0	Bchl	Assumed
ADPG	0	Bchl	Assumed
GCA	0.36	Bper	Zhu et al. (2007)
GOA	0.028	Bper	Zhu et al. (2007)
GLY	1.8	Bper	Zhu et al. (2007)
SER	7.5	Bper	Zhu et al. (2007)
HPR	0.0035	Bper	Zhu et al. (2007)
GCEA	0.1812	Bper	Zhu et al. (2007)

Enzyme Name	EC	Molecular	Catalytic $\frac{1}{(e^{-1})}$	Reference
	4011	weight (D)	number1 (s)	L (2000)
CA	4.2.1.1	160000	110000	Lazova <i>et al.</i> (2008)
DEDG		110000		Yu <i>et al.</i> (2007)
PEPC	4.1.1.31	110000	66	Xu <i>et al.</i> (2006)
NADP-MDH	1.1.1.82	143000	1520	Agostino <i>et al.</i> (1992)
				Lemaire <i>et al.</i> (1996)
NADP-ME	1.1.1.40	226000	805.2	Detarsio et al. (2003)
PPDK	2.7.9.1	370000	144	Sugiyama. 1973
				McGuire <i>et al.</i> . (1996)
Rubisco	4.1.1.39	532000	37.6	Reger et al. (1983)
				Cousins et al. (2010)
PGA Kinase	2.7.2.3	45000	540	Fifis and Scopes (1978),
				Bentahir et al. (2000)
GAP Dehydrogenase	1.2.1.12	180000	50	Speranza and Ferri
				(1982)
Aldolase	4.1.2.13	143000	65	Krueger and
				Sschnarrenberger (1983),
				Moorhead and Pplaxton
				(1990)
FBPase	3.1.3.11	160000	22.9	Tang <i>et al.</i> (2000),
				Reichert et al.(2000)
Transketolase	2.2.1.1	160000	69	Nilsson et al. (1998)
				Teige et al. (1989)
SBPase	3.1.3.37	66000	81	Cadet et al. (1988), Cadet
				et al. (1987)
PRK	2.7.1.19	90000	615	Surek et al. (1985), Porter
				et al. (1986)
ADPG	2.7.7.27	210000	546	Kleczkowski <i>et al.</i>
Pvrophospho-rvlase				(1991). Li and Preiss
- j- · F · F · j				(1992)
Phosphoglycolate	3.1.3.18	100000	292	Kim <i>et al.</i> (2004). Kerr
nhosnhatase	5.115.110	100000	272	and Gear (1974)
phosphutuse				
Glycerate Kinase	27131	47000	200	Kleczkowski <i>et al</i>
Siyeerute Hinase	2.7.1.31	17000	200	(1985) Kleczkowski and
				(1965), RICCZROWSKI and \mathbf{R}
Glycolalate ovidase	1 1 1 70	125000	437	Kleczkowski at al
Grycolalate Unitase	1.1.1./7	123000		(1086) Zalitah (1055)
Sorino Clyowylata	26145	85000	07	(1700), Zellicii (1933)
serine Giyoxylate	2.0.1.45	83000	71	Desploy-1-: 1
aminotransferase				Paszkowski and

5.5 Molecular weight and catalytic number of the enzymes in photosynthetic carbon metabolism

				Niedzielsa (1990)
Glycerate	1.1.1.29	90000	1629	Julliard and Breton-Gilet
dehydrogenase				(1997), Izumi <i>et</i>
				al.(1990)
Glutamate Glyoxylate	2.6.1.44	70800	54	Paszkowski and
aminotransferase				Niedzielska (1989)
Glycine	1.4.4.2	270000	18	Hiraga and Kikuchi
decarboxylase				(1980), Kochi and
				Kikuchi (1974)
6-phosphofructo-2-kin	2.7.1.105	390000	9300	Larondelle et al. 1986,
ase				Baez et al. (2003)
fructose-2,6-bisphosp	3.1.3.46	390000	1550	Pilkis <i>et al.</i> (1987),
hate 2-phosphatase				Villadsen and Nielsen
				(2001),
UDP Glucose	2.7.7.9	53000	400	Gustafson and Gander
pyrophosphorylase				(1972), Sowokinos et al.
				(1993)
Sucrose phosphate	2.4.1.14	480000	640	Sonnewald et al. (1993)
synthase				
Sucrose phosphatase	3.1.3.24	120000	2500	Echeverria and Salerno
				(1994), Lunn et al. (2000)

6 Additional explanations

6.2 Rationale underlying the choice of the default CO₂ permeability coefficient

The value of CO₂ chloroplast membrane permeability (P_{CO2_Chl}), which we used in the model, was considered to be too low for C3 plant and would lead to a negative photosynthesis below 150 ubar (Tholen and Zhu, 2011). While in the C4 system, P_{CO2_Chl} exhibited the opposite effect on A (Fig. S9), because increased the CO₂ chloroplast membrane permeability increased leakiness and decreased the CO₂ concentration around rubisco in BSC chloroplast, thus photorespiration enhanced and photosynthesis reduced. The influence of P_{CO2_Chl} on A in our C4 model was less conspicuous than that performed in C3 photosynthesis model.

6.1 Rationale underlying the choice of the rate equation used to calculate CO₂ uptake rates

The CO_2 assimilation rate (A) was calculated as:

$$A = v_c - 0.5v_o - R_d \tag{18}$$

where v_c and v_o are the rates of RuBP carboxylation and oxygenation respectively. R_d is the rate of mitochondrial respiration. The default value for R_d is 1 µmol m⁻² s⁻¹ with the rate of respiration in both BSC (R_b) and MC (R_m) being equal as 0.5 µmol m⁻² s⁻¹. This equation predicts the same photosynthetic CO₂ uptake rate.

In von Caemmerer's C4 model (von Caemmerer, 2000), CO_2 assimilation was calculated by two equations, besides Eqn. 18, the following equation was also used:

$$A = v_p - v_{Leak} - R_m \tag{19}$$

The minimal of Eqn. 18 and 19 determines the actual *A*. While in our model, both calculation methods always reach the same result. Because when we calculated *A* using the ODE model, all metabolite levels were in steady state, i.e. there is no changes of metabolite levels with time Therefore,

$$\frac{d[CO_2]_{Bchl}}{dt} = (v_{ME} - v_c - v_{leak_Bchl}) \cdot \frac{1}{Vol_{Bchl}} = 0$$
(S1)

$$\frac{d[CO_2]_{BSC}}{dt} = (v_{leak_Bchl} + v_{PR5} + R_b - v_{leak}) \cdot \frac{1}{Vol_{Bcyto}} = 0$$
(S2)

Eqn. (18) and (19) can be written as:

$$v_{ME} = v_c + v_{leak_Bchl}$$
(S3)

$$v_{leak_Bchl} = v_{leak} - v_{PR5} - R_b \tag{S4}$$

Because at the steady state, one RuBP oxygenation lead to release of 0.5 CO_2 in the photorespiratory process, i.e.:

$$v_{PR5} = 0.5 \cdot v_o \tag{S5}$$

In C4 shuttle, since at steady state, no metabolite accumulates, CO_2 fixed by PEPC was equal to CO_2 released by NADP-ME:

$$v_p = v_{ME} \tag{S6}$$

Therefore, Eqn. (19) can be re-written as:

$$A = v_p - v_{Leak} - R_m = v_c + v_{leak} - 0.5 \cdot v_o - R_b - v_{Leak} - R_m = v_c - 0.5 \cdot v_o - R_d$$

7 Reference

Aflalo C, Shavit N (1983) Steadystate kinetics of photophosphorylation: limited access of nucleotides to the active site on the ATP synthetase. FEBS Lett. 154: 1 75-79

Agostino A, Jeffrey P, Hatch MD (1992) Amino Acid Sequence and Molecular Weight of Native NADP Malate Dehydrogenase from the C(4) Plant Zea mays. Plant Physiol 98: 1506-1510

Albe KR (1991) Partial purification and kinetic characterization of transaldolase from Dictyostelium discoideum. Exp Mycol 15:255–62

Amir J, Cherry JH (1972) Purification and properties of adenosine diphosphoglucose pyrophosphorylase from sweet corn. Plant Physiol 49: 893-897

Baalmann E, Backhausen JE, Rak C, Vetter S, Scheibe R (1995) Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 324: 201-208

Badger MR, Lorimer GH (1981) Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Biochemistry-Us 20: 2219-2225

Baez M, Rodriguez PH, Babul J, Guixe V (2003) Structural and functional roles of Cys-238 and Cys-295 in Escherichia coli phosphofructokinase-2. Biochem J 376: 277-283

Bassham JA, Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta 189: 207-221

Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C (2000) Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18. J Biol Chem 275: 11147-11153

Brooks K, Criddle RS (1966) Enzymes of the carbon cycle of photosynthesis. I. Isolation and properties of spinach chloroplast aldolase. Arch Biochem Biophys 117:650–659

Boehlein SK, Sewell AK, Cross J, Stewart JD, Hannah LC (2005) Purification and characterization of adenosine diphosphate glucose pyrophosphorylase from maize/potato mosaics. Plant Physiol 138: 1552-1562

Cadet F, Meunier JC (1988) pH and kinetic studies of chloroplast sedoheptulose-1,7 -bisphosphatase from spinach (Spinacia oleracea). Biochem J 253: 249-254

Cadet F, Meunier JC, Ferte N (1987) Isolation and purification of chloroplastic spinach (Spinacia oleracea) sedoheptulose-1,7-bisphosphatase. Biochem J 241: 71-74

Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts. Biochem J 200: 357-363

Christeller JT, Tolbert NE (1978) Phosphoglycolate phosphatase. Purification and properties. J Biol Chem 253: 1780-1785

Colowick SP, Sutherland EW (1942) Polysaccharide synthesis from glucose by means of purified enzymes. J Biol Chem 144: 423-437

Cooper JL, Meister A (1972) Isolation and properties of highly purified glutamine transaminase. Biochemistry-Us 11: 661-671

Cousins AB, Ghannoum O, Von Caemmerer S, Badger MR (2010) Simultaneous determination of Rubisco carboxylase and oxygenase kinetic parameters in Triticum aestivum and Zea mays using membrane inlet mass spectrometry. Plant Cell Environ 33: 444-452

Cumino A, Ekeroth C, Salerno GL (2001) Sucrose-phosphate phosphatase from Anabaena sp. strain PCC 7120: isolation of the protein and gene revealed significant structural differences from the higher-plant enzyme. Planta 214: 250-256

Datta AG, Racker E (1961) Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme. J Biol Chem 236: 617-623

Davenport JW, McCarty RE (1986) Relationships between rates of steady-state ATP synthesis and the magnitude of the protonactivity gradient across thylakoid membranes. Biochim Biophys Acta 851: 136–145

Day DA, Hatch MD (1981) Dicarboxylate Transport in Maize Mesophyll Chloroplasts. Arch Biochem Biophys 211: 738-742

Detarsio E, Wheeler MC, Campos Bermudez VA, Andreo CS, Drincovich MF (2003) Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites. J Biol Chem 278: 13757-13764

Dietz KJ, Heber U (1984) Rate-limiting factors in leaf photosynthesis. 1. Carbon fluxes in the Calvin cycle. Biochim Biophys Acta 767: 432–443

Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6: 167-176

Echeverria E, Salerno G (1994) Properties of sucrose-phosphate phosphatase from rice (Oryza sativa) leaves. Plant Sci. 96, 15-19

Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate.Earth Planet. Sci. Leu. 8:363-71

Espada J (1962) Enzymic synthesis of adenosine diphosphate glucose from glucose-l-phosphate and adenosine triphosphate. J Biol Chem 237:3577-3581

Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60: 2235-2248

Farquhar GD (1979) Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch Biochem Biophys 193: 456-468

Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10:205-26

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon Isotope Discrimination and Photosynthesis. *Annu Rev Plant Phys.* 40:503-537.

Felle H, Bertl A (1986) The Fabrication Of H+-Selective Liquid-Membrane Microelectrodes for Use In Plant-Cells. J Exp Bot 37: 1416-1428

Ferri G, Comerio G, Iadarola P, Zapponi MC, Speranza ML (1978) Subunit structure and activity of glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. Biochim Biophys Acta 522: 19-31

Fifis T, Scopes RK (1978) Purification of 3-phosphoglycerate kinase from diverse sources by affinity elution chromatography. Biochem J 175: 311-319

Flodgaard H, Fleron P (1974) Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem 249: 3465-3474

Fuchs RL, Smith JD (1979) The purification and characterization of ADP-glucose pyrophosphorylase A from developing maize seeds. Biochim Biophys Acta 566: 40-48

Gao Y, Woo KC (1996) Regulation of phosphoenolpyruvate carboxylase in Zea mays by protein phosphorylation and metabolites and their roles in photosynthesis. Aust J Plant Physiol 23: 25-32

Garcia de Frutos P, Baanante IV (1995) The muscle isoform of 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase of the teleost Sparas aurata: relationship with the liver isoform. Arch. Biochem. Biophys. 321: 297–302

Gardemann A (1983) Control of CO2 fixation: regulation of spinach ribulose-5-phosphate kinase by stromal metabolite levels. Biochim Biophys Acta 722, 51–60

Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241: 4491-4504

Giersch C, Heber U, Kaiser G, Walker DA, Robinson SP (1980a) Intracellular metabolite gradients and flow of carbon during photosynthesis of leaf protoplasts. Arch Biochem Biophys 205: 246-259

Giersch C, Heber U, Kobayashi Y, Inoue Y, Shibata K, Heldt HW (1980b) Energy charge, phosphorylation potential and proton motive force in chloroplasts. Biochim Biophys Acta 590: 59-73

Gozzer C, Zanetti G, Galliano M, Sacchi GA, Minchiotti L, Curti B (1977) Molecular heterogeneity of ferredoxin-NADP+ reductase from spinach leaves. Biochim Biophys Acta 485: 278-290

Gustafson GL, Gander JE (1972) Uridine diphosphate glucose pyrophosphorylase from Sorghum vulgare. Purification and kinetic properties. J Biol Chem 247: 1387-1397

Hansen RG, Albrecht GJ, Bass ST, Seifert LL (1966) Methods Enzymol.; 8, 248

Harary I, Korey SR, Ochoa S (1953) Biosynthesis of dicarboxylic acids by carbon dioxide fixation. VII. Equilibrium of malic enzyme reaction. J Biol Chem 203: 595-604

Harbron S, Foyer C, Walker D (1981) The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Arch Biochem Biophys 212: 237-246

Hatch, M. and Osmond, C.B. (1976) in Encylopedia of Plant Physiology (Stocking, C.R. and Heber, U., eds.), Vol. 3, pp. 144-184. Springer-Verlag. Berlin

Hatch MD (1987) C-4 Photosynthesis - a Unique Blend of Modified Biochemistry, Anatomy and Ultrastructure. Biochim Biophys Acta 895: 81-106

Hatch MD, Burnell JN (1990) Carbonic-Anhydrase Activity in Leaves and Its Role in the First Step of C-4 Photosynthesis. Plant Physiol 93: 825-828

Hatch MD, Droscher L, Flugge UI, Heldt HW (1984) A Specific Translocator for Oxaloacetate Transport in Chloroplasts. Febs Lett 178: 15-19

Hawker JS, Ozbun JL, Ozaki H, Greenberg E, Preiss J (1974) Interaction of spinach leaf adenosine diphosphate glucose alpha-1,4-glucan alpha-4-glucosyl transferase and alpha-1,4-glucan, alpha-1,4-glucan-6-glycosyl transferase in synthesis of branched alpha-glucan. Arch Biochem Biophys 160: 530-551

Hiraga K, Kikuchi G (1980) The mitochondrial glycine cleavage system. Purification and properties of glycine decarboxylase from chicken liver mitochondria. J Biol Chem 255: 11664-11670

Hoofd LJC, Tong RR, Stroeve P (1986) Nonequilibrium Facilitated Transport Of Carbon-Dioxide In Bicarbonate And Bovine Albumin Solutions. Ann Biomed Eng 14: 493-511

Howitz KT, McCarty RE (1985a) Kinetic characteristics of the chloroplast envelope glycolate transporter. Biochemistry 24:2645–52

Howitz KT, McCarty RE (1985b) Substrate specificity of the pea chloroplast glycolate transporter. Biochemistry 24: 3645–3650

Howitz KT, McCarty RE (1986) D-Glycerate transport by the pea chloroplast glycolate carrier. Studies on [1-14C]D-glycerate uptake and D-glycerate dependent O2 evolution. Plant Physiol 80: 390–395

Ireland RJ, Joy KW (1983) Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Archives of Biochemistry and Biophysics, 223, 291–296

Iwaki T, Wadano A, Yokota A, Himeno M (1991) Aldolase - an important enzyme in controlling the ribulose-1,5-bisphos- phate regeneration rate in photosynthesis. Plant Cell Physiol. 32, 1083-1091

Jang HK, Lee SW, Lee YH, Hahn TR (2003) Purification and characterization of a recombinant pea cytoplasmic fructose-1,6-bisphosphatase. Protein Expr Purif 28: 42-48

Jenkins CL, Burnell JN, Hatch MD (1987) Form of inorganic carbon involved as a product and as an inhibitor of c(4) Acid decarboxylases operating in c(4) photosynthesis. Plant Physiol 85: 952-957

Jenkins CL Hatch MD (1985) Properties and reaction mechanism of C4 leaf pyruvate,Pi dikinase. Arch Biochem Biophys 239: 53-62

Jenkins CL, Furbank RT, Hatch MD. (1989) Mechanism of C4 Photosynthesis - a Model Describing the Inorganic Carbon Pool in Bundle Sheath-Cells. Plant Physiol 91: 1372-1381

Julliard JH, Breton-Gilet A (1997) Identification of hydroxypyruvate reductase from parsley by peptide sequence comparison after a two-step purification. Protein Expr Purif 9: 10-14

Kagawa T, Bruno PL (1988) NADP-malate dehydrogenase from leaves of Zea mays: purification and physical, chemical, and kinetic properties. Arch Biochem Biophys 260: 674-695

Keirns JJ, Wang JH (1972) Studies on nicotinamide adenine dinucleotide phosphate reductase of spinach chloroplasts. J Biol Chem 247: 7374-7382

Kerr MW, Gear CF (1974) Phosphoglycolate phosphatase isolated from pea leaves. Biochem. Soc. Trans. 2, 338-340

Kim Y, Yakunin AF, Kuznetsova E, Xu X, Pennycooke M, Gu J, Cheung F, Proudfoot M, Arrowsmith CH, Joachimiak A, Edwards AM, Christendat D (2004) Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum. J Biol Chem 279: 517-526

Kleczkowski LA, Edwards GE (1989) Identification of hydroxypyruvate and glyoxylate reductases in maize leaves. Plant Physiol 91: 278-286

Kleczkowski LA, Randall DD (1988) Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases. Biochem J 250: 145-152

Kleczkowski LA, Randall DD, Blevins DG (1986) Purification and characterization of a novel NADPH(NADH)-dependent glyoxylate reductase from spinach leaves. Comparison of immunological properties of leaf glyoxylate reductase and hydroxypyruvate reductase. Biochem J 239: 653-659

Kleczkowski LA, Randall DD, Zahler WL (1985) The substrate specificity, kinetics, and mechanism of glycerate-3-kinase from spinach leaves. Arch Biochem Biophys 236: 185-194

Kleczkowski, L. A., Villand, P., Lonneborg, A., Olsen, O. A. and Luthi, E. (1991). Plant ADP-glucose pyrophosphorylase--recent advances and biotechnological perspectives (a review). Z Naturforsch C 46: 605-612

Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In DR Ort and CF Yocum, eds, Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 333-361

Kochi H, Kikuchi G (1974) Mechanism of the reversible glycine cleavage reaction in Arthrobacter globiformis. I. Purification and function of protein components required for the reaction. J Biochem 75: 1113-1127

Kanai R, Edwards GE (1999) The Biochemistry of C4 Photosynthesis. In RF Sage, RK Monson, eds, C4 Plant Biology. Academic Press, Toronto, pp 173–211.

Kretschmer M, Hofmann E (1984) Inhibition of rat liver phosphofructokinase-2 by phosphoenolpyruvate and ADP. Biochem Biophys Res Commun 124: 793-796

Kruger I, Schnarrenberger C (1983) Purification, subunit structure and immunological comparison of fructose-bisphosphate aldolases from spinach and corn leaves. Eur J Biochem 136: 101-106

Laisk A, Eichelmann H, Oja V, Eatherall A, Walker DA (1989) A mathematical model of the carbon 61

metabolism in photosynthesis. Difficulties in explaining oscillations by fructose 2,6-bisphosphate regulation. Proc R Soc Lond B Biol Sci 237: 389–415

Laisk A, Edwards GE (2000) A mathematical model of C-4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66: 199-224

Larondelle Y, Mertens E, Van Schaftingen E, Hers HG (1986) Purification and properties of spinach leaf phosphofructokinase 2/fructose 2,6-bisphosphatase. Eur J Biochem 161: 351-357

Lawson JWR, Guynn RW, Cornell N, Veech RL (1976) in "Gluconeogenesis: Its Regulation in Mammalian Species"; R.W. Hanson and M.A. Mehlman, eds.; John Wiley and Sons, New York. pp. 481-512.

Lazova GN, Stemler AJ (2008) A 160 kDa protein with carbonic anhydrase activity is complexed with rubisco on the outer surface of thylakoids. Cell Biol Int 32: 646-653

Leegood RC (1985) The Intercellular Compartmentation of Metabolites in Leaves of Zea-Mays-L. Planta 164: 163-171

Lemaire M, Miginiac-Maslow M, Decottignies P (1996) The catalytic site of chloroplastic NADP-dependent malate dehydrogenase contains a His/Asp pair. Eur J Biochem 236: 947-952

Li L, Preiss J (1992) Characterization of ADPglucose pyrophosphorylase from a starch-deficient mutant of Arabidopsis thaliana(L). Carbohydr Res 227: 227-239

Lunn JE, ap Rees T (1990) Apparent equilibrium constant and mass-action ratio for sucrose-phosphate synthase in seeds of Pisum sativum. Biochem J 267: 739-743

Lunn JE, Ashton AR, Hatch MD, Heldt HW (2000) Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc Natl Acad Sci U S A 97: 12914-12919

Macdonald FD, Chou Q, Buchanan BB, Stitt M (1989) Purification and characterization of fructose-2,6-bisphosphatase, a substrate-specific cytosolic enzyme from leaves. J Biol Chem 264: 5540-5544

Macioszek J, Anderson LE (1987) Changing kinetic properties of the two enzymes phosphoglycerate kinase/NADP-linked glyceraldehyde-3-phosphate dehydrogenase couple from pea chloroplasts during photosynthetic induction. Biochem. Biophys. Acta 892:185–190.

Markham JE, Kruger NJ (2002) Kinetic properties of bifunctional 6-phosphofructo -2-kinase/fructose-2,6-bisphosphatase from spinach leaves. Eur J Biochem 269: 1267-1277

62

McGuire M, Carroll LJ, Yankie L, Thrall SH, DunawayMariano D, Herzberg O, Jayaram B, Haley BH (1996) Determination of the nucleotide binding site within Clostridium symbiosum pyruvate phosphate dikinase by photoaffinity labeling, site-directed mutagenesis, and structural analysis. Biochemistry-Us 35: 8544-8552

Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionations between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci. Left. 22:169-76

Moorhead GB, Plaxton WC (1990) Purification and characterization of cytosolic aldolase from carrot storage root. Biochem J 269: 133-139

Mukerji, SK (1977) Corn Leaf Phosphoenolpyruvate Carboxylases - Purification And Properties Of 2 Isoenzymes. Arch Biochem Biophys 182: 343-351

Nakamura, Y, Tolbert, NE (1983) Serine: glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves. J Biol Chem 258: 7631-7638

Nakano K, Omura Y, Tagaya M, Fukui T (1989) UDP-glucose pyrophosphorylase from potato tuber: purification and characterization. J Biochem 106: 528-532

Nilsson U, Hecquet L, Gefflaut T, Guerard C, Schneider G (1998) Asp477 is a determinant of the enantioselectivity in yeast transketolase. Febs Lett 424: 49-52

O'Leary MH, Reife JE, Slater JD (1981) Kinetic and isotope effect studies of maize phosphenolpyruvate carboxylase. Biochemistry 20:73 08--14

O'Leary MH (1984) Measurement of the isotopic fractionation associated with diffusion of carbon dioxide in aqueous solution. J. Phys. Chem. 88:823-25

Omnaas J, Porter MA, Hartman FC (1985) Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase. Arch Biochem Biophys 236: 646-653

Paszkowski A, Niedzielska A (1989) Glutamate:glyoxylate aminotransferase from the seedlings of rye (Secale cereale L.). Acta biochimica Polonica 36: 17-29

Paszkowski, A, Niedzielska A (1990) Serine:glyoxylate aminotransferase from the seedlings of rye (Secale cereale L.). Acta biochimica Polonica 37: 277-282

Penefsky HS (1974) Mitochondrial and chloroplast ATPases. In Boyer, PD (ed.) The Enzymes. Academic Press, New York, pp. 375–395.

Pocker Y, Miksch RR (1978) Plant Carbonic-Anhydrase - Properties And Bicarbonate Dehydration Kinetics. Biochemistry-Us 17: 1119-1125

Porter MA, Milanez S, Stringer CD, Hartman FC (1986) Purification and characterization of ribulose-5-phosphate kinase from spinach. Arch Biochem Biophys 245: 14-23

Reger BJ, Ku MSB, Potter JW, Evans JJ (1983) Purification and Characterization of Maize Ribulose-1,5-Bisphosphate Carboxylase. Phytochemistry 22: 1127-1132

Reichert A, Baalmann E, Vetter S, Backhausen JE, Scheibe R (2000) Activation properties of the redox-modulated chloroplast enzymes glyceraldehyde 3-phosphate dehydrogenase and fructose-1,6-bisphosphatase. Physiol. Plant. 110, 330-341

Roeske CA, O'leary MH (1984) Carbon isotope effects on the enzymecatalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275-84

Salerno GL, Pontis HG (1978) Studies on sucrose phosphate synthetase. The inhibitory action of sucrose. Febs Lett 86: 263-267

Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase. The international journal of biochemistry & cell biology 30: 1297-1318

Schimkat D, Heineke D, Heldt HW (1990) Regulation of sedoheptulose-1,7-bisphosphatase by sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts. Planta 181: 97–103

Schnarrenberger C, Kruger I (1986) Distinction between Cytosol and Chloroplast Fructose -Bisphosphate Aldolases from Pea, Wheat, and Corn Leaves. Plant Physiol 80: 301-304

Slabas AR, Walker DA (1976) Inhibition of spinach phosphoribulokinase by DL-glyceraldehyde. Biochem J 153: 613-619

Shin M (1972) Ferredoxin-NADPH reductase from spinach. Methods Enzymol. 23:440-445.

Sonnewald U, Quick WP, MacRae E, Krause KP, Stitt M (1993) Purification, cloning and expression of spinach leaf sucrose-phosphate synthase in Escherichia coli. Planta 189: 174-181

Sowinski P, Szczepanik J, Minchin PEH (2008) On the mechanism of C-4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot 59: 1137-1147

Sowokinos JR (1981) Pyrophosphorylases in Solanum tuberosum: II. CATALYTIC PROPERTIES AND REGULATION OF ADP-GLUCOSE AND UDP-GLUCOSE PYROPHOSPHORYLASE ACTIVITIES IN POTATOES. Plant Physiol 68: 924-929

Sowokinos JR, Spychalla JP, Desborough SL (1993) Pyrophosphorylases in Solanum tuberosum (IV. Purification, Tissue Localization, and Physicochemical Properties of UDP-Glucose Pyrophosphorylase).

Plant Physiol 101: 1073-1080

Sparla F, Fermani S, Falini G, Zaffagnini M, Ripamonti A, Sabatino P, Pupillo P, Trost P (2004) Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin. J Mol Biol 340: 1025-1037

Sparla F, Zaffagnini M, Wedel N, Scheibe R, Pupillo P, Trost P (2005) Regulation of photosynthetic GAPDH dissected by mutants. Plant Physiol 138: 2210-2219

Speranza ML, Ferri G (1982) Glyceraldehyde-3-phosphate dehydrogenase (glycolytic form) from spinach leaves. Methods Enzymol. 89, 316-319

Sprenger GA, Schorken U, Sprenger G Sahm H (1995) Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem 230: 525-532

Stitt M, Heldt HW (1985) Generation and Maintenance of Concentration Gradients between the Mesophyll and Bundle Sheath in Maize Leaves. Biochim Biophys Acta 808: 400-414

Surek B, Heilbron A, Austen A Latzko E (1985) Purification and characterization of phosphoribulokinase from wheat leaves. Planta 165: 507-512

Tang GL, Wang YF, Bao JS Chen HB (2000) Overexpression in Escherichia coli and characterization of the chloroplast fructose-1,6-bisphosphatase from wheat. Protein Expr Purif 19: 411-418

Teige M, Melzer M, Suss KH (1989). Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts. Eur. J. Biochem. 252, 237-244

Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50: 133-157

Trost P, Scagliarini S, Valenti V, Pupillo P (1993) Activation of spinach chloroplast glyceraldehyde 3-phosphate dehydrogenase: Effect of glycerate 1,3-bisphosphate. Planta 190: 320–326

Uchida K, Mochizuki M, Niizeki K (1983) Diffusion-Coefficients Of Co2 Molecule And Bicarbonate Ion In Hemoglobin Solution Measured by Fluorescence Technique. Jpn J Physiol 33: 619-634

Uedan, K, Sugiyama T (1976) Purification And Characterization Of Phosphoenolpyruvate Carboxylase From Maize Leaves. Plant Physiol 57: 906-910

Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant

65

Cell 20: 648-657

Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL (2005) Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1709: 84-94

Villadsen D, Nielsen TH (2001) N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochem J 359: 591-597

von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood.

von Caemmerer S, Furbank RT (2003) The C-4 pathway: an efficient CO2 pump. Photosynth Res 77: 191-207

Walker GH, Huber SC (1987) ATP-dependent activation of a new form of spinach leaf 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Arch Biochem Biophys 258: 58-64

Whitaker DP (1984) Purification and properties of sucrose-6-phosphatase from Pisum sativum shoots. Phytochemistry 23, 2429–2430.

Winter H, Robinson DG, Heldt HW (1993) Subcellular Volumes And Metabolite Concentrations In Barley Leaves. Planta 191: 180-190

Woodrow IE, Walker DA (1983) Regulation of stromal sedoheptulose 1,7-bis- phosphatase activity and its role in controlling the reductive pentose phosphate pathway of photosynthesis. Biochim Biophys Acta 722:508-516.

Woodrow IE, Mott KA (1993) Modeling C3 photosynthesis—a sensitivity analysis of the photosynthetic carbon reduction cycle. Planta 191: 421–432

Xu W, Ahmed S, Moriyama H, Chollet R (2006) The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis: mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform. J Biol Chem 281: 17238-17245

Yu S, Xia D, Luo Q, Cheng Y, Takano T, Liu S (2007) Purification and characterization of carbonic anhydrase of rice (Oryza sativa L.) expressed in Escherichia coli. Protein Expr Purif 52: 379-383

Zelitch I (1955). Glycolic acid oxidase and glyoxylic acid reductase. In SP Colowick, NO Kaplan, eds, Methods in Enzymology, Vol I. Academic Press, New York-London, pp 528-535

Zhu X G, De Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiol 145: 513-526

Ziegler I (1974) Malate dehydrogenase in Zea mays: properties and inhibition by sulfite. Biochim Biophys Acta 364: 28-37