Supplementary materials

Figure S1. Mass spectrum of full length recombinant CFP-10 (5 μ M) collected in linear mode of MALDI-TOF MS. The molecular weight of recombinant, His-tagged CFP-10 is 11 kDa.

Figure S2. MALDI TOF MS analysis of culture media with or without on-chip fractionation. The top panel shows the overall mass spectra. The bottom panels represent the close-up spectra of CFP-10 fragments. Without prior on-chip processing of samples, signals from the major CFP-10 fragments were overshadowed by other abundant species in solution. With fractionation, the enriched major CFP-10 peaks became more evident and crisp in the mass spectrum. The observed multiple peaks in mass spectra with 1Da difference are caused by the isotope of carbon (13 C) in nature.

Figure S3 (a). LC-MS/MS spectra of recombinant CFP-10 fragments ($[M+H]^+=1142.63$).

Figure S3 (b). LC-MS/MS spectra of recombinant CFP-10 fragments $([M+H]^+=1317.66)$.

Figure S3 (c). LC-MS/MS spectra of recombinant CFP-10 fragments ($[M+H]^+=1593.75$).

Figure S3 (d). LC-MS/MS spectra of recombinant CFP-10 fragments ($[M+H]^+=2003.98$).

Figure S4. The depth profiles of CFP-10 enriched on L121+25% PPG, as determined from the N1s spectrum collected using XPS (described in Supporting Methods). The line represent the exponential fit of $y=y0+A \cdot exp(-x/B)+C \cdot exp(-x/D)$. CFP-10 could penetrate 100nm into the film. The inset shows representative XPS N1S spectra of nanoporous film with and without CFP-10.

Figure S5.BET measurement. (a) The pore size distributions of different nanoporous film determined by N_2 adsorption analysis. (b)-(d) N_2 adsorption/desorption isotherms for L121, L121+25% PPG, and L121+50% PPG, respectively.

Figure S6. The relative intensity of each major CFP-10 fragment to its isotopic fragment is plotted verses the input CFP-10 concentration. The isotopic ¹⁸O-labeled fragments were generated by trypsin digestion in $H_2^{18}O$. Isotopic CFP-10 at 42 nM of was added in equal proportion to known digested CFP-10 before spiking on MALDI MS plate. In this condition, the 1142.63 and 1593.75 fragments show good linear relation with their respective isotopic fragments below 400 nM.

Figure S7 (a). LC-MS/MS spectra of CFP-10 fragments from MTB culture media ([M+H]⁺=1142.63).

Figure S7 (c). LC-MS/MS spectra of CFP-10 fragments from MTB culture media ([M+H]⁺=1593.75).

Figure S8. Titrating the detection curve for major CFP-10 fragments by MALDI TOF MS. 0.5μ l of each known concentration of digested CFP-10 fragments were spotted on the MALDI TOF MS target plate. Under the operating conditions specified in Methods, we were able to detect the presence of CFP-10 at an amount as low as 0.2 fmol. [Average intensities are above background cut-off (mean of negative control + 3X standard deviation)].

concentration (nM)	Ν	Fragments	Mean (ug/ml)	Standard Deviation	Precision (CV)	Accuracy (RE)
90.3	5	1317.664	1.7127	0.9940	58.03%	71.27%
		2003.978	0.0559	0.0351	62.66%	94.41%
11.3	5	1317.664	0.1361	0.0998	73.33%	8.91%
		2003.978	0.0559	0.0351	62.66%	55.24%
1.4	5	1317.664	0.6532	0.4959	75.91%	4080.41%
		2003.978	0.0031	0.0030	97.31%	80.20%

Table S1: Inter-day accuracy and reproducibility of CFP-10 on-chip fractionation-MSanalysis (1317.664 & 2003.978 fragments)

Table S2: Intra-day accuracy and reproducibility of CFP-10 on-chip fractionation-MS analysis. (1317.664 & 2003.978 fragments)

concentration (nM)	Ν	Fragments	Mean (ug/ml)	Standard Deviation	Precision (%CV)	Accuracy (%RE)
90.3	9	1317.664	1.2903	0.6716	52.05%	29.03%
		2003.978	0.0732	0.0412	56.32%	92.68%
11.3	9	1317.664	146.5446	78.1665	53.34%	17.24%
		2003.978	0.0732	0.0412	61.74%	41.44%
1.4	9	1317.664	0.4283	0.4536	105.90%	2641.13%
		2003.978	0.0029	0.0033	112.94%	81.30%

 Table S3: The recipes of coating solution of various nanoporous films used in the paper.

 The amount of reactants in coating solution

	The amount of reactants in coucing solution					
Surfactant Polymer	Silicate sol solution (ml)	Ethanol (ml)	polymer (g)	PPG (g)		
L121	10	5	1.2	0		
L121+25% PPG	10	10	1.2	0.3		
L121+25% PPG (thin)	10	40	1.2	0.3		
L121+50% PPG	10	10	1.2	0.6		
L121+100% PPG	10	10	1.2	1.2		
F127 (2D hexagonal)	7.5	10	1.8	0		
L64	10	10	1.2	0		

Table of Content