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S1 Simplification of the next generation matrix

Under certain circumstances, we can find a simple expression for R0 from the next generation matrix.
The derivation is similar to the simplification of R0 for the multi-city epidemic model described in
Ref. [1]. For this we need the following theorems:

Theorem S1.1 Let B be a n by n matrix with transpose C = BT . Then B and C have the same
eigenvalues. (Standard result).

Theorem S1.2 Let B be a n by n matrix with entries bij and spectral radius ρ(B). Then:

min(
∑
j

bij) ≤ ρ(B) ≤ max(
∑
j

bij).

i.e. ρ(B) is bounded by the limits of the row sums of B, (standard result, see for example [2]).

Corollary S1.3 Using Theorems 0.1 and 0.2, it is therefore true that for a matrix B with entries bij
and spectral radius ρ(B), ρ(B) is bounded by the column sums of B:

min(
∑
i

bij) ≤ ρ(B) ≤ max(
∑
i

bij).

Proof By Theorem 0.1 it is true that for the matrices C and B where C = BT , the spectral radius
of C and B is the same: ρ(C) = ρ(B).
By Theorem 0.2 it is true that the spectral radius of matrix C is bounded by the limits of the row
sums of matrix C:

min(
∑
j

cij) ≤ ρ(C) ≤ max(
∑
j

cij). (S1)

As C = BT the row sums of matrix C are equivalent to the column sums of matrix B: min(
∑

j cij) =
min(

∑
i bij).

Therefore it follows that Eqn. S1 may be equivalently written:

min(
∑
i

bij) ≤ ρ(B) ≤ max(
∑
i

bij).
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Therefore, we calculate the column sums for the Next Generation Matrix defined as:

Gij = NiTβ
D∑
k=1

mikmjk∑D
p=1mpkNp

(S2)

where T was the time spent infected (which depended on recovery rate r such that T = 1
r , same

for all pixels), Ni was the number of individuals in pixel i, infectious contacts were made with other
individuals present in the pixel with rate β and m was the mobility matrix defined earlier. We let∑D

k=1mkiNk = NN
i , the total number of individuals in pixel i at any time (where mki is the probability

that for an individual from pixel k, given that the individual made a contact, this contact was with
an individual from pixel i). Recall that

∑D
k=1mjk = 1. Then summing the jth column of the next

generation matrix gives:

D∑
i=1

Gij =G1j +G2j + ...+GDj

=N1Tβ
m11mj1

NN
1

+ ...+N1Tβ
m1DmjD

NN
D

+N2Tβ
m21mj1

NN
1

+ ...+N2Tβ
m2DmjD

NN
D

+ ...

+NDTβ
mD1mj1

NN
1

+ ...+NDTβ
mDDmjD

NN
D

=βTmj1

(
m11N1 + ...+mD1ND

NN
1

)
+ ...

+ βTmjD

(
m1DN1 + ...+mDDND

NN
D

)
=βT (mj1 + ...+mjD)

=βT (S3)

This holds for all columns j of G. Therefore using Corollary S1.3 it follows that ρ(G) = βT . This
holds for all values of sd and γ in the mobility matrix m and for any resolution (any number of pixels
over the same region).

S2 Final epidemic size

We showed in the main text that the final epidemic size (the final cumulative attack rate) for a
population was the same at all resolutions and all mobilities we considered (as long as for all pixels,
i and j, mij > 0). Here we demonstrate how this is an outcome of the particular way our model was
defined. The derivation is based on those in Refs. [3, 4].

Our SIR meta-population model can be defined as a system of differential equations as follows:

dSi
dt

= −λiSi
dIi
dt

= λiSi − rIi (S4)

dRi
dt

= γIi,
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where r is the recovery rate and λi is the force of infection in pixel i:

λi = β
D∑
j=1

mij

∑D
l=1mljIl∑D
p=1mpjNp

. (S5)

D is the total number of pixels, m is the mobility model and Ni is the total number of individuals in
pixel i. Transmission occurs during a contact between an infected and a susceptible individual at a
rate β.

Then it is straightforward to show that a final equilibrium exists, we represent this equilibrium as
Si(∞), Ii(∞) and Ri(∞) and we can show that Ii(∞) = 0 and Si(∞) +Ri(∞) = Ni.

We have shown earlier that R0 for the system is constant and R0 = βT , where T = 1
r , the mean

infectious period.
In each pixel i the fraction who did not get infected is σi = Si(∞)

Si(0)
, so the final epidemic size in

each pixel is xi = Ni(1 − σi) (recall that Ni is the total population in pixel i). Then the total final
epidemic size in the whole population is

Z =

∑D
i xi∑D
i Ni

=

∑D
i Ni(1− σi)∑D

i Ni

. (S6)

We divide dSi
dt (Eqn. (S4)) by Si and integrate between 0 and ∞, then we have:∫ ∞

0

dSi
dt

Si
dt =

∫ ∞
0
−λidt

= −
∫ ∞
0

β
D∑
j=1

mij

∑D
l=1mljIl∑D
p=1mpjNp

= −β
D∑
j=1

mij

∑D
l=1mlj

∫∞
0 Ildt∑D

p=1mpjNp

(S7)

and we note that: ∫ ∞
0

dRi
dt

dt =

∫ ∞
0

rIidt

Ri(∞)−Ri(0) = r

∫ ∞
0

Iidt

therefore∫ ∞
0

Iidt =
Ri(∞)−Ri(0)

r

=
Ni(1− σi)

r
(S8)

as Ri(∞)−Ri(0) = Ni(1− σi), the final epidemic size in pixel i. Therefore,∫ ∞
0

dSi
dt

Si
dt = −β

D∑
j=1

mij

∑D
l=1mlj

Nl(1−σl)
r∑D

p=1mpjNp

(S9)

and as it is also true that: ∫ ∞
0

dSi
dt

Si
dt = log(

Si(∞)

log(Si(0))
)

= log(σi). (S10)
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we can write (recalling that 1
r = T ):

log(σi) = −βT
D∑
j=1

mij

∑D
l=1mljNl(1− σl)∑D

p=1mpjNp

(S11)

equivalently, as xi = Ni(1− σi):

xi = Ni

[
1− exp

−βT D∑
j=1

mij

∑D
l=1mljxl∑D
p=1mpjNp

]. (S12)

Now, with the condition that mij > 0 for all i, j (i.e. there is always some contact between every
pixel), then if the total final epidemic size is non-zero, then the final epidemic size in each pixel, xi
or (1− σi), is also non-zero [3]. To see this, let an arbitrary pixel i have no infection, so σi = 1, then
Eqn. (S11) implies that

βT
D∑
j=1

mij

∑D
l=1mljNl(1− σl)∑D

p=1mpjNp

= −log(σi) = log(1) = 0. (S13)

But, as mij > 0, then for the left hand side to be zero it must be that (1−σl) = 0 for all l, so no pixel
has infection. Therefore, if Z > 0 then xi > 0 for all pixels i.

Now, we focus on the RHS of Eqn. (S11). Note that the matrix m (mobility) is a positive, right
stochastic matrix, as its rows sum to 1. Therefore, ρ(m) = 1 (by definition of a stochastic matrix, and
using Corollary S1.3).

We can simplify the RHS as follows (recall that
∑D

p=1mpjNp = NN
j :

− βT
D∑
j=1

mij

∑D
l=1mljNl(1− σl)∑D

p=1mpjNp

= −βT
D∑
l=1

D∑
j=1

mijmljNl(1− σl)
NN
j

= −βT
D∑
l=1

(1− σl)

[
mi1ml1Nl

NN
1

+ ...+
miDmlDNl

NN
D

]

= −βT

[
(1− σ1)

(
mi1m11N1

NN
1

+ ...+
miDm1DN1

NN
D

)
+ ...

+ (1− σD)

(
mi1mD1ND

NN
1

+ ...+
miDmDDND

NN
D

)]
(S14)

Therefore, let C be a D x D matrix, with entries Cij = −βT
∑D

l=1
mijmljNl

NN
j

, then the RHS of Eqn.

(S11) is the ith row of matrix C multiplied by (1-σ), which is a vector of length D with entries (1−σj).
Note that the matrix C is mathematically similar to R, the next generation matrix (defined in

Eqn. (S2)); this means that there exists a matrix ∆, such that C = ∆−1R∆. In this case, ∆ is the D
x D matrix with the number of individuals in each pixel, Ni, on its diagonal. As C and R are similar,
they have the same spectral radius: ρ(C) = ρ(R) = R0 = βT . We note that the row sums of C are
all equal to βT , the proof is similar to that for the column sums of R in the next generation matrix
simplification (i.e. note that

∑D
j=1

∑D
l=1

mijmljNl

NN
j

= 1).

Then, as all rows are equal, transmission in each patch is equal (to βT ) and so, as in [3], the final
fraction infected is given implicitly by F = 1− exp(−R0F ). With R0 = 1.8 as in the main text, this
can be solved numerically to give F = 0.73243, as we saw from the simulations.
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