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Supporting Information Text S1 
 
Thermodynamic model of protein binding to membranes 

The goal of this section is to express the fraction of the total protein or protein 
domains (e.g. amphipathic helices) bound to the liposomes through the change of the 
membrane elastic energy resulting from the protein binding. To calculate the fraction 
of bound proteins to membranes we use the classical thermodynamic formalism in 
which the energy of protein binding to the membrane sets the equilibrium distribution 
between bound and unbound protein. We define a thermodynamic system consisting 
of 𝑁! lipid molecules forming liposomes of a given size, 𝑁! water molecules as 
solvent, and 𝑁! proteins. The number of lipid molecules in solution is negligibly 
small compared to their number in liposomes. The number of the protein molecules in 
solution and in the liposome bound state will be denoted by 𝑁!

!and 𝑁!!, respectively 
so that, 𝑁!! + 𝑁!

!   =   𝑁!. The fraction of proteins bound to liposomes to the proteins 
remaining unbound is termed the binding constant, 𝐾!,  

 

 𝐾! =
!!!

!!
!        (S1) 

 
The mole fractions of proteins in solution and in the outer monolayers of the 
liposomes are, respectively, 
 

 𝑐! =   
!!
!

!!
  and 𝑐! =   

!!!

!!
!"# ,       (S2) 

 
where 𝑁!!"# is the total number of lipid molecules in the outer membrane monolayers 
of all liposomes, and it is assumed that 𝑁!

! ≪ 𝑁!, 𝑁!! ≪ 𝑁!!"#. The number 𝑁!!"# is 
related to the total number of lipid molecules by 
 
 𝑁!!"# =   

!!
!
(1+ 𝐽  𝛿) ,       (S3) 

 
where 𝐽 is the total curvature of the mid plane of the liposome membrane, and 𝛿 is the 
distance from the membrane mid plane to the monolayer neutral surface, where the 
lipid molecular areas are equal for the outer and inner membrane monolayers.  
 The mole fractions Eq. S2 can be related to the system energy through the 
requirement of the thermodynamic equilibrium between the bound and free protein. 
The chemical potentials of protein in solution and in the membrane can be written, 
respectively, as, 
 
 𝜇! = 𝜇!! +   𝑘!𝑇  log(𝑐!) 
 𝜇! = 𝜇!! +   𝑘!𝑇  log(𝑐!)      (S4) 
 
where 𝜇!! and 𝜇!! are the “standard” chemical potentials, which include all 
contributions to the free energy per protein molecule except for the contribution of the 
entropy of mixing, the latter taken into account by the terms logarithmic in the protein 
mole fraction; 𝑘!𝑇   ≈ 4.21  10!!"  𝐽𝑜𝑢𝑙𝑒 is the product of the Boltzmann constant and 
the absolute temperature. 
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 Thermodynamic equilibrium requires equality of the protein chemical 
potentials, 𝜇! =   𝜇!, which leads to a relation between the mole fractions of the 
bound and free protein: 
 
 𝑐! =    𝑐! exp − !!"#$

!!!
,       (S5) 

 
where 𝜀!"#$ = 𝜇!! − 𝜇!! is the total free energy of binding of one insertion into the 
membrane. The binding energy can be presented as the sum of a contribution 
independent of the membrane stress, 𝜀!, and a contribution, 𝜀!", accounting for the 
change of the membrane elastic energy as a result of embedding of one insertion,  
 
 𝜀!"#$ = 𝜀! +   𝜀!"   .       (S6) 
 
Based on Eqs. S5 and S6, we can present the ratio of the mole fractions of the bound 
and free protein as 
 
 !!

!!
= exp − !!

!!!
exp − !!"

!!!
,     (S7) 

 
where the first term is a factor independent of the membrane stress. 

The binding constant Eq. S1 is related to the mole fractions Eq. S2 by 
 

 𝐾! = B exp − !!"
!!!

,       (S8) 
 
where  
 
 B = !

!
!!
!!

1+ 𝐽𝛿 exp − !!

!!!
,      (S9) 

 
is the stress-independent part that includes the correction for the different amount of 
lipids between the two monolayers of very small liposomes, where the curvature  is 
𝐽 = 2/𝑅. 

 The fraction of bound protein, Ψ = !!!

!!
, can be directly calculated from the 

binding constant as Ψ = !!
!!!!

. 
 
Properties and the ways of generation of trans-membrane stress 
profile  

The trans-membrane stress profile is described by a function σ(z) [1], where z is the 
coordinate in the direction perpendicular to the monolayer plane measured, commonly, with 
respect to the so-called neutral plane lying close to the interface between the monolayer polar 
head and their hydrocarbon tails [2] (Fig. S1A). The product σ z dz gives the force acting on 
the unit length of an infinitesimal membrane element of thickness  dz parallel to the membrane 
surface and located at the distance z from the neutral surface. According to the previous work, 
two kinds of stresses can develop with a fluid lipid monolayer: the lateral stress, σ!(z), acting 
along and isotropic within the monolayer plane, and transversal stress, σ!(z), directed 
perpendicularly to the monolayer plane. Here we consider the initial states of the membrane 
characterized by a certain lateral stress profile, σ!! z , but with a vanishing transversal stress, 
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σ!! z = 0, which implies that the monolayer elements can be, initially, stretched or 
compressed but there are no forces applied to the membrane and producing its global or local 
transverse stretch deformations. Embedding of an insertion can give rise to trans-monolayer 
distribution of the lateral,   u!(z), and transversal,   u! z , strains of the membrane material. 
This results in contributions to the stress profiles related to the strains by the trans-monolayer 
profiles of the local elastic moduli: the lateral stretching modulus λ!(z), the transverse 
stretching modulus, λ!(z) (which is taken to be equal to the lateral stretching modulus), a 
coupling modulus, λ!"(z), and a transverse shear modulus, λ!" z .  Assuming the strains to be 
small, the stress profiles can be presented as [3] 
 

σ! z =   σ!! z +   λ! z   u! z +   λ!" z   u!(z)   (S10) 
 

 σ! z =   σ!! z +   λ! z   u! z +   λ!" z   u!(z).   (S11) 
 

The trans-monolayer distributions of elastic moduli is taken as 
 

 λ! z = λ! z = λ!" z =
λ!"!"#$%, z ≤ z!
λ!"!"#$, z > z!

 ,   (S12) 

 

 λ!" z =
λ!"!"#$%, z ≤ z!
λ!"!"#$, z > z!

,      (S13) 

 
where λ!"!"#$% = 10!  N/m!, λ!"!"#$ = 4×10!  N/m!,   λ!"!"#$% = 0.98×10!  N/m!, and λ!"!"#$ =
3.93×10!  N/m! [3]. The transverse shear modulus is constant and equal to λ!" = 1.5×10!  N/
m! everywhere except in the interface between the two monolayers, where the transverse shear 
modulus vanishes to allow inter-monolayer sliding.  

 
 
The ways of generating the intra-membrane stress profile 

The intra-membrane stresses σ z  can be produced by application to the membrane of 
external forces or by variations of the membrane lipid composition. To understand the essence 
of 𝜎 𝑧  generation, it is convenient to consider the relationship between the internal stresses 
and the overall force factors determining the membrane stressed state, namely, the lateral 
tension 𝛾 and the bending moment 𝜏. In most of the biologically relevant cases, the membrane 
monolayers can freely slip with respect to each other and, hence, undergo uncoupled 
deformations such that the monolayer 𝛾 and 𝜏 sum up to give those of the whole bilayer. 
Therefore, we focus in the following on the relationship for one monolayer.   

The lateral tension of a flat monolayer is related to the lateral stress profile, σ! z , by 
[4] 

 
γ = σ! z dz,       (S14) 
 

It can be inferred from Eq. S14 that application to the monolayer of a stretching force 
generating a positive lateral tension γ > 0 results in an overall positive contribution to the 
trans-monolayer stress profile.  

The monolayer bending moment τ can be expressed as the first moment of the trans-
membrane lateral stress profile determined with respect to the neutral plane [4]  

  
 τ = zσ! z dz.        (S15) 
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As it follows from Eq. S15, the bending moment sets the relationship between the stresses 
above the neutral surface (z > 0) corresponding to the polar region and the stresses below the 
neutral plane (z < 0) corresponding to the monolayer hydrocarbon moiety. For example, 
application to the monolayer of a negative bending moment, τ < 0, can modulate the 
distribution of the intra-monolayer stresses such that the stresses become negative (𝜎 z < 0) 
above and positive (𝜎 z > 0) below the neutral plane. Alternatively, the stresses may be 
negative both in the polar head and hydrocarbon chains sub-layers, but the effect of the former 
is stronger than that of the latter.  

The bending moment, τ, and the corresponding intra-monolayer stress distribution, 
σ! z , can be generated by both external forces and internal monolayer interactions. The 
external force factor producing the bending moment is a torque applied to the edge of an 
initially flat monolayer. The torque direction and value sets the sign and the value of τ.  

The intra-monolayer factor contributing to the bending moment τ is the structure of the 
lipid molecules composing the monolayer. Insertion into the monolayer of molecules with 
bulkier polar heads and/or reduced hydrocarbon moieties modulates the intra-monolayer stress 
distribution such that the stress in the head group region (z > 0) becomes more negative 
compared to that in the hydrocarbon chain region (z < 0) (Fig. S1A). This results in a negative 
bending moment τ < 0 (Fig. S1B). Lipids with a relatively small polar heads and large 
hydrocarbon moieties generate a positive bending moment, τ > 0. An initially flat monolayer 
carrying an internal bending moment τ has a tendency to relax the bending moment by 
acquiring mean curvature, 𝐽.  

Curvature of a monolayer is defined as positive, 𝐽 > 0, if the monolayer bulges towards 
its polar heads and negative, 𝐽 < 0, in the opposite case of bulging towards the hydrocarbon 
moiety.  

For example, a monolayer having a negative bending moment, τ < 0, tends to bulge 
towards the polar heads, hence, acquiring a positive curvature. This is accounted for by 
characterizing the monolayer by spontaneous curvature J! related to the bending moment 
through 

 
 J! =   −   

!
!
 ,        (S16) 

 
where κ is the monolayer bending modulus [5]. A typical example of lipids generating a 
negative bending moment, τ < 0, and, hence, a positive spontaneous curvature, J! > 0, is 
lysolipids, whose hydrophobic moieties consist of one rather than two hydrocarbon tails. A 
positive bending moment, τ > 0, corresponding to a negative spontaneous curvature, J! < 0, is 
generated by such lipids as diacylglycerols (DAG) or phosphatidylethanolamines (PE) [6]. 

Based on Eqs. S15 and S16, we model the generation of the monolayer spontaneous 
curvature, J!!"#, through a trans-monolayer lateral stress profile given by [7] (Fig. S2). 

 

 σ!! z =

!"  !!!!!!"#

!! !"!!!!!!
1+ cos !"!

!!
, z ≤ z!

− !  !!!!!!"#

!!!! !"!!!!!!
sin π !!!!

!!!!
, z > z!

,   (S17) 
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