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Summary of PM2.5 Estimation Methods 

CTMs are among the most sophisticated methods to estimate levels of PM2.5 at a fine temporal 

resolution. They aim at modeling the atmospheric and chemical processes involved in the 

production of an air pollutant from pollution sources. They represent the ultimate solution to 

estimating PM2.5 levels and have already proven to be highly valuable in improving our 
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understanding of air pollution. However, CTMs are complex to implement as they require 

detailed information on meteorology, emissions inventories and an advanced understanding of 

chemical processes. Collecting this information is a complex task and running a model over a 

large domain at a fine resolution can be computationally intensive, which makes CTMs a highly 

specialized tool and reduces its accessibility to potential users. CTMs can also have high errors 

because, even in its most refined implementations, they still rely on approximations and 

simplifications of the true underlying air pollution processes (e.g. completely mixed volumes, 

simplifying complex chemical reactions into a few key chemical mechanisms, etc.) and are 

therefore often used in a relative manner. For example, station implementation plans predict 

future air pollution levels by multiplying the ratios of the CTM’s future to current predictions by 

an observationally based estimate on the current levels
1
.  

 

LUR models use a linear regression framework to predict PM2.5 levels based on spatial 

predictors that include land use, elevation and major emission sources. LURs can be tailored to 

use readily available data sources, implemented at low computational costs and the regression 

coefficients can be easily interpretable (e.g. providing an estimate of the increase of PM2.5 

resulting from various major contributing sources).  Hence LURs provide an attractive 

alternative to CTMs by being a simple tool that can be used by a wide audience to estimate 

PM2.5 levels and by quantifying how much total PM2.5 comes from various emission sources. 

Like CTMs, LURs may lead to large estimation errors. However, that weakness can be alleviated 

when used in a relative fashion paired with observationally driven estimation methods. 
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Satellite data provide observationally driven estimates of PM2.5. Satellite data might be 

considered the converse of CTMs in terms of providing sizable observationally driven 

approaches to estimating PM2.5. Its attractiveness comes in the large coverage it provides. One 

Satellite data is available, it can be easily used by a wide audience. However, due to the 

difficulty in estimating ground levels of air pollutions from remote sensing data, PM2.5 

estimates calculated from satellite data are currently subject to high error compared to ground 

measurements of PM2.5 and they are most useful when estimating PM2.5 levels where 

monitoring stations are lacking
2
.  

 

A Review of LUR Domain Size 

The ability of an LUR to explain the variability of an air pollutant is given by its r
2
 statistics. The 

r
2
 of previous LUR models vary widely depending on the type of air pollutant modeled and the 

spatial size of the study domain (Table S1).   

 

A trend emerges when we plot the LUR r
2
 as a function of the radius of the spatial domain 

(Figure S1).  LUR models developed over small domains achieve the highest r
2
. These models 

maximize predictability. But they are only valid over small areas, so they lack generalizability 

(i.e. they are not widely applicable outside the area for which they were developed). They 

provide site specific knowledge (i.e. knowledge that is highly predictive, but specific to a given 

area). The high predictability is achieved by sacrificing generalizability. LURs developed for 

large spatial domains on the other hand are forced to generate regression coefficients that are 

valid for a large region, which increases their physical meaning and plausibility. What these 
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models lose in predictability, they gain in generalizability. They provide general knowledge (i.e. 

knowledge that describes general characteristics of the air pollutant).  

 

In Figure S1 we use the labels “site specific” and “general” to distinguish LUR models 

developed over small versus large domain sizes. This view allows us to craft a strategy on how 

the BME knowledge synthesis framework can be used to integrate the knowledge generated by 

LUR models. Site specific LUR models could be used to generate soft data that are part of the 

site specific knowledge processed at the integration stage of the BME procedure. On the other 

hand large area variability LUR models can be used as part of the general knowledge processed 

at the prior stage of the BME procedure. To our knowledge very few studies have used either 

strategy. In this work we use the latter
3,4

. 

 

Explanation and Choice of Hyperparameters 

Many have used differed scales by creating multiple sized buffer zones around locations of 

interest as part of their variables in their LUR models
5–7

. In this work, we call these buffer zones 

hyperparameters. To best gauge which input hyperparameters would be a good initial estimate in 

the multivariate regression, univariate regression hyperparameters from 0.1	�� to 1000	�� 

were exhaustively tested using a few criteria. If there was an absolute �� maximum at less than 

950	�� it was chosen as the best univariate hyperparameter. If the hyperparmeter plot resembles 

a plateau, the beginning of the plateau (working backwards, where �� reduced at least 5%) is 

chosen as the best univariate hyperparameter. Otherwise, a best univariate hyperparameter is not 
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chosen. The best hyperparameters becomes an input in the search routine to find the optimum 

LUR model.  

 

Independent Variables: Source, Calculation and Coefficient Sign 

Elevation 

Elevation data came in the form of a raster file of North America. The raster was converted to 

points. The final elevation file contained over 1.1 million finely resoluted elevation data across 

the United States.   

 

The elevation variable ��
��,� is a purely spatial variable which is approximated for each location 

by using the closest known elevation location. Following past models
8
, the � in the LUR model 

for elevation should be negative. 

 

Total Traffic 

Total traffic and average congestion came from traffic data obtained from the Bureau of 

Transportation Statistics’ (BTS) National Transportation Atlas Database (NTAD)
9
. This contains 

GIS data about all major highways segments in the United States, including road length and 

Annual Average Daily Traffic (AADT) count. Because the AADT was only extensively 

available for 2009 at the time of this analysis, AADT is estimated for specific days by scaling 

2009 data by the sum of national level “Highway Vehicles” emissions of CO and NOX from 

1998 to 2008 given by the EPA. An example calculation can be found below.  
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The following steps are used to calculate AADT across the country for June 28, 2003. 1) A linear 

interpolation is performed to calculate national traffic emissions on June 28, 2003. This involves 

a linear interpolation between national traffic emissions on December 31, 2002 and December 

31, 2003. 2) AADTs are scaled to the national emissions for June 28, 2003. The scaling ratio is 

�������
	�������	���������	���	����	��,�  !
�������
	�������	���������	���	"����#��	!$,�  %. This ratio is multiplied by every available AADT.  

 

The total traffic �&&,� at � ' (), *+ has units of vehicular �� driven per ���, and is calculated 

by dividing the total number of vehicular miles driven (in year *) within a circular buffer as 

defined by the hyperperameter centered on s, by the area (in ���) of that buffer. The total traffic 

measures the areal density of traffic, which positively affects on road mobile emissions, and 

therefore its � should be positive.  

 

Average Congestion 

The average congestion �,-,� has units of vehicular �� driven per road ��. It is calculated by 

dividing the number vehicular miles driven within a given buffer by the cumulative length of 

roads within that buffer. This variable measures the traffic throughput. For a given traffic 

density, higher throughput will lead to higher traffic congestion. A higher congestion will lead to 

inefficient traffic idling which will increase on road mobile emission, and therefore its � should 

also be positive.  
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Emissions Efficiency 

Emission efficiency comes from population data. Population data were collected at the block 

group level in 2000 and county level from 1998-2009 by the US Census
10

. Data were also 

collected from the Mexican census for 2000 and 2005
11

 and the Canadian census for 2001 and 

2006
12

. Because block group populations are only available for 2000, block group population 

was estimated for specific days by interpolating block groups that were scaled using county level 

estimates. An example of a block group estimate is provided below. For Canada and Mexico, a 

linear interpolation is performed for the two years where data exist in order to calculate 

population estimates between those two given years. To estimate outside this window, the linear 

relationship is extrapolated for any particular day where population estimates needed to be 

calculated. 

 

The following steps are used to calculate block group estimates for November 19, 2002. 1) The 

block group is estimated for July 1 for the year of interest by assuming the following ratio: 

#
��.	/���0	0�0�
�����	���	��
1	$,�  �
�����1	0�0�
�����	���������	���	��
1	$,�  � '

#
��.	/���0	0�0�
�����	���	��
1	$,�   
�����1	0�0�
�����	���	��
1	$,�   . Note that the ratio 

was compared to July 1, 2000. This is due to having exact estimates for this year because it is a 

census year. The county in question is the county in which the block group resides. The block 

group population is known for July 1, 2000, the county population is known for July 1, 2000, and 

the county population estimates are known for July 1, 2002. These values can be plugged into the 

equation to solve for the block group population for July 1, 2002. This equation is performed for 

every block group for July 1 from 1998-2010. 2) A linear interpolation is done for November 19, 

2002. A linear interpolation is done for each block group between July 1, 2002 and July 1, 2003 

for every day of interest.  
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When calculating population density, a buffer is extended from each PM2.5 space/time location. 

If the centriod of the block group is included within the buffer, the total population of the block 

group is included in the calculation for population density. This is explained visually in Figure 

S2. This centriod method shows good agreement with the exact area of the buffer. Thus it can be 

said that the centriod method is an appropriate approximation for calculating population density. 

Figure S3 shows how these methods compare with different buffer sizes. This method provides 

computational efficiency. 

 

Emission efficiency ���,� is measured from the population density (people per ���) within a 

given buffer. We include this variable due to the discrepancy between the data available to 

estimate TT and the estimation needed of PM2.5. Data used in TT are traffic counts – not 

emissions. This assumes that every mile driven produces the same amount of emissions 

regardless of vehicle type. Emission efficiency corrects for this assumption by hypothesizing that 

areas with high population density tend to have vehicles better suited for urbanized 

environments, which (in general) are more fuel efficient (i.e. smaller cars, hybrid or electric 

vehicles, etc). Thus, for a given value for TT (traffic), PM2.5 should decrease with increasing EE 

(emission efficiency). As a result,  plausible � values for emission efficiency should be negative 

when the regression model contains both the TT and EE variables, in support of our hypothesis 

that the TT variable over estimates emission from traffic in urbanized environment where cars 

are presumably more fuel efficient.  
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Stationary Sources 

Point source emissions data were obtained from the EPA’s National Emissions Inventory (NEI) 

website
13

. Data were separated by year and pollutant (i.e. SO2 stationary source emissions, NH3 

stationary source emissions, PM2.5-primary stationary source emissions, and NOX stationary 

source emissions). The NEI is published every three years (i.e. 1999, 2002, 2005) with some 

summary files for years in-between (i.e. 1998, 2000, and 2001). For this study, total non-mobile 

stationary source emissions at the county-level were used. Between NEIs, the EPA also 

publishes national level annual emissions broken down by pollutant and tier one type. Because 

NEI data only exist for a few years, NEI emissions are scaled by these national level emissions to 

establish stationary source values for specific days. An example of this calculation is given 

below.  

 

The following steps are used to calculate point source data for March 18, 2004. 1) The last 

available NEI data is chosen. In this case the last available NEI is December 31, 2002. 2) A 

linear interpolation is done to determine national emissions on March 18, 2004. This involves 

performing a linear interpolation between national emissions from December 31, 2003 and 

December 31, 2004. 3) Points are then scaled by national emissions to determine stationary 

source values for March 18, 2004. Thus the scaling ratio is 
�������
	����������	���	2���3	$�,�  4

�������
	���������	���	"����#��	!$,�  �. 

This ratio is multiplied to all December 31, 2002 stationary values. 

 

The emissions were modeled as a single stack being emitted from the centriod of each county for 

the years data exist. National annual emissions in 2009 were not available and thus were 

estimated. Calculations for these estimates are given below. 



S11 

 

 

It is assumed that the ratio of national emissions between years remains constant. That is, the 

following equation is assumed: 

�������
	567	���������	���	"����#��	!$,�  �
�������
	567���������	���	"����#��	!$,�  8 '

�������
	567	���������	���	"����#��	!$,�  8
�������
	567���������	���	"����#��	!$,�  9. The national 

NH3 emissions for December 31, 2006 and December 31, 2007 are known. These values can be 

plugged in to solve for national NH3 emissions for December 31, 2008. 

 

Like above, it is assumed that the ratio of national emissions between years remains constant. 

That is, the following equation is assumed: 
�������
	:	���������	���	"����#��	!$,�  %
�������
	:	���������	���	"����#��	!$,�  � '

�������
	:	���������	���	"����#��	!$,�  �
�������
	:���������	���	"����#��	!$,�  8 , where X = NH3, NOX, PM2.5, and SO2. Emissions for 

all national stationary sources are known for December 31, 2007 and December 31, 2008. These 

values can be plugged in to solve for national stationary source emissions.  

 

The effect that a stationary source emission has on the concentration at space/time location � is a 

function of the distance between the stationary source and �. We assume that the effects of 

stationary source emissions decrease exponentially with distance and are additive. Thus, the 

predictor variable describing the effect of stationary source emissions of PM2.5 constituents ;, 
; ' <=2,?@3, BC2.5, ?=D, is   

 ��,� ' ∑ F��(G�, *+exp	(K!‖GMK�‖NOP
+5�Q$  (Eq. S1) 

where F��(G�, *+ is the emissions in tons/year of constituent ; at stationary source emissions 

location G� and time * and R�P is the exponential decay range in �� (i.e. the hyperparameter) for 

each pollutant ;. 
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LUR Offset and Covariance Models 

Two different models were used for the global offset ST(�+ defined in Equation (2): a constant 

offset and an LUR offset. The global offset was calculated as the average of all PM2.5 

concentrations, which we found to be 11.72 UV/�!. The LUR offset values ranged from about 

5.7 UV/�! to about 18.4 UV/�!.  

 

For each space/time point pi where an annual average PM2.5 concentration value zi exists, we 

use Equation (2) to calculate the corresponding transformed value X� ' Y� 	Z S[(��+. We then 

model the uncertainty and variability of the transformed PM2.5 values using a 

homogeneous/stationary S/TRF D(�+ for which a realization corresponds to the observed values.  

The G-KB for the transformed S/TRF D(�+ consists of its expected value  

�:(�+ ' \]D(�+^, (Eq. S2) 

where \]∙^is the stochastic expectation operator, and its covariance function 

`:(�, �′+ ' \]aD(�+ Z �:(�+b cD(�′+ Z �:(�′+d^ . (Eq. S3) 

The expected value for the homogeneous/stationary S/TRF D(�+ is constant and we set it to zero 

since the offset captures the general mean of the data. The covariance of D(�+ is modeled by first 

calculating experimental covariance values as a function of spatial and temporal lags, and fitting 

a permissible covariance model to these experimental values. Other models where attempted; 

however, the sum of exponential models had the best fit. This model captures variability at 

multiple spatial and temporal ranges in space/time. This model is highly interpretable and 
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consistent with previous studies
14,15

. The model is expressed by the following equation  

e:(�, f+ ' `$ exp gZ !�
�Oh

i exp gZ !j
�kh

i l `� exp gZ !�
�Om

i exp gZ !j
�km

il`! exp gZ !�
�O7

i exp gZ !j
�k7

i

 (Eq. S4) 

 

When using the LUR offset we obtain transformed data that result in the experimental covariance 

shown in figure S4. Using least square fitting we obtain the following parameters for its 

covariance model (Eq. S4): `$ ' 1.18, o�h ' 0.60	RFV�FFq, ojh ' 351	Rorq , `� ' 1.99, 

o�m ' 0.60	RFV�FFq, ojm ' 49951	Rorq, `! ' 3.05, o�7 ' 9.60	RFV�FFq, oj7 ' 49951	Rorq. 

This covariance model is the sum of three space/time covariance structures. The first structure 

models variability occurring over short spatial and temporal ranges, while the third structure 

models variability at longer spatial and temporal ranges.  

 

We followed the same procedure for the constant offset (figure not shown), which resulted in the 

following parameters `$ ' 1.74, o�h ' 0.5	RFV�FFq, ojh ' 251	Rorq , `� ' 3.82, o�m '
0.5	RFV�FFq, ojm ' 43501	Rorq, `! ' 6.02, o�7 ' 16.5	RFV�FFq, oj7 ' 43501	Rorq. 

Fundamental Set of BME Equations 

In this study the G-KB and S-KB can therefore be written as  u ' v�:(�+, `:(�, �′+w and 

< ' v	x3	, y�(x�+w, and in this case the BME equation is
1,16

 

yz(X.+ ' 	{K$ |R}	 y~(}�+y�(}+ (Eq. S5) 

where x ' (X., x3, x�+ is a realization of � at points � ' (�., �3 , ��+, y~(x+ is a PDF 

characterizing the knowledge and uncertainty associated with the S-KB, y�(x+ ' F���(x+ is the 
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Gaussian PDF for � with mean and covariance matrix obtained from the G-KB, { is a 

normalization constant, and yz is the BME posterior PDF describing residual PM2.5 at the estimation 

point �.. The S-KB can either be considered hard or soft. Hard data are data measured without 

error while soft data are considered to have some uncertainty associated with its measurements. 

Soft data can be characterized by any PDF (Gaussian, interval, uniform, triangle, etc.). In this 

work, soft data come in the form of truncated Gaussian distributions. 

 

Cross validation equations/Results 

C<\ ' $
�∑ (U. Z Û.+��.Q$  (Eq. S6) 

�C<\ ' √C<\ (Eq. S7) 

C{\ ' $
�∑ |U. Z Û.|�.Q$  (Eq. S8) 

C� ' $
�∑ �.�.Q$  (Eq. S9) 

Below are results of the 10-fold cross-validation for each fold. 

r2 

overall 0.78 

fold 1 0.79 

fold 2 0.83 

fold 3 0.78 

fold 4 0.75 

fold 5 0.69 

fold 6 0.77 

fold 7 0.83 

fold 8 0.76 

fold 9 0.80 

fold 10 0.78 
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Supporting Table 1 

Supporting Information, Table S1: Literature review of past LUR models. BS is black 

smoke. *Domain size was not explicitly stated and was estimated. 

source 

spatial 

domain 

size (km
2
) 

pollu

-tant 
LUR variables r

2
 

(Molter et 

al. 2010)
17

 
2,102* PM10 

light goods vehicles on Motorways (200 m), light 

goods vehicles on A roads (50 m), buses on 

Motorways (50 m), Y coordinate, PM10 emissions 

(800 m), roadside (50 m), buses on A roads (50 

m), distance to nearst A road, dummy variable 

0.97 

(Eeftens et 

al. 2012)
18

 
4,435* PM2.5 

heavy traffic (1000 m), industry (5000 m), 

population (1000 m), x-coordinate 
0.88 

(Dijkema et 

al. 2011)
19

 
6,000 NO2 

background concentration, traffic volume at 

nearest road, distance to nearest busy road, 

residential land use (5000 m) 

0.87 

(Melymuk et 

al. 2013)
20

 
7,124* PCB 

Sum of PCBs in use/storage/building sealants, 

Metal industries, 1971 population density  
0.85 

(Beelen et 

al. 2007)
21

 
41,562 NO2 

n/w/s/e indicator, population (5000 m), non-

rural area, center of town, traffic intensity (100 

m), truck traffic intensity on nearest motorway, 

distance to nearest motorway (< 100 m, 100-300 

m, > 300 m) 

0.84 

(Mavko et 

al. 2008)
22

 
100* NO2 

traffic volume on major roads (300 m wedge), 

length of railroads (100 m), traffic volume on 

major roads (50 m wedge), parks and open space 

(50 m) 

0.81 

(Carr et al. 

2002)
23

 
600* 

ben-

zene 

sum of daily traffic volume (50 m), sum of daily 

traffic volume (50-300m), sum of daily traffic 

volume if traffic jam > 5% (50m), sum of daily 

traffic volume if traffic jam > 5% (50-300m) 

0.803 

(Su et al. 

2009)
24

 
633 NO2 

x coordinate, traffic within 24 hours (650 m), 

expressway casement (400 m), open land use 

(1400 m), railway (1400 m), major road (50 m), 

slope (1400 m), population density (1350 m), 

distance to coast 

0.794 

(Ross et al. 

2006)
7
 

2,800* NO2 
road length (40 m), traffic density (40 to 300 m), 

traffic density (300 to 1000 m), distance to coast 
0.79 

(Clougherty 

et al. 2008)
25

 
170* PM2.5 

central site concentration, roadway length (100 

m), smoking or grilling, population density 
0.76 

(Hoek et al. 

2011)
26

 
324 soot 

traffic intensity*inverse distance to roads, urban 

green area (3000 m), traffic (100 m) 
0.76 
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(Ryan et al. 

2007)
27

 
2,400* EC 

elevation, average daily traffic count on major 

roads (400 m), length of bus routes (100 m) 
0.75 

(Mercer et 

al. 2011)
28

 
6,400* NOX 

distance to nearest A1 road, distance to coast, 

distance to commerical source, length of A2 and 

A3 roads (50 m), length of A1 roads (50 m) 

0.74 

(Brauer et 

al. 2003)
29

 
41,543 PM2.5 

number of high traffic roads (250 m), address 

density (300 m), region west, region middle 
0.73 

(Briggs et al. 

1997)
30

 
48 NO2 

traffic volume (60 m), traffic volume (120 m), 

land cover (60 m), altitude 
0.72 

(Smith et al. 

2011)
31

 
1,500* 

ben-

zene 

distance to nearest road with 10,000 to 20,000 

vehicles per day, distance to nearest road with 

70,000 to 80,000 vehicles per day, distance to 

nearest road with 100,000 to 120,000 vehicles 

per day, traffic intensity (1000 m) 

0.72 

(Dadvand et 

al. 2011)
32

 
2,055 BS 

distance to motorway, distance to A/B roads, 

length of local roads/streets (250 m), easting, 

northing 

0.7 

(Arain et al. 

2007)
33

 
22,500 NO2 

density of roads, land use, population, physical 

geography, meteorology 
0.695 

(Gehring et 

al. 2011)
34

 
170 NO2 

traffic volume on the nearest busy road (50 m), 

distance to nearest main road, percentage of 

greens space (250 m), percentage of water (100 

m) 

0.692 

(Jerrett et 

al. 2007)
35

 
633 NO2 

ln(NO2), expressway (200 m), major roads (50 

m), industrial land use (750 m), density of 

dwellings (2000 m), x coordinate, downwind, 

density of 24 hour traffic counts (500 m)  

0.69 

(Moore et 

al. 2007)
36

 
98,500 PM2.5 

traffic density (300 m), industrial land area (5000 

m), government land area (5000 m) 
0.69 

(Rosenlund 

et al. 2008)
6
 

1,290 NO2 

location of site (inside limited traffic zone, inner 

ring, green strip, main ring road, outside main 

ring road), distance to busy road (less than 150 

m, between 150-500 m, greater than 500 m), size 

of census block, inverse population density of the 

census block, altitude 

0.686 

(Ross et al. 

2007)
37

 
17,404.7* PM2.5 

traffic (500 m), population (1000 m), industrial 

land use (300 m) 
0.642 

(Kanaroglou 

et al. 2005)
38

 
633 NO2 

distance to nearest expressway, measure of 

expressway (200 m), measure of local roads 

within a donut-shaped area (inner radius 300 m-

500 m), measure of major roads (500 m), 

measure of park, open, recreational, or water 

body land (400 m), density of dwellings (2000 m) 

0.633 
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(Henderson 

et al. 2007)
39

 
2,200 NO  

length of highways (100 m), length of highways 

(1000 m), length of major roads (100 m), 

population density (2500 m), elevation, 

longitude, latitude 

0.62 

(Brauer et 

al. 2008)
40

 
2,200 NO 

number of major roads (100 m), number of major 

roads (1000 m), number of secondary roads (100 

m), population density (2500 m), elevation 

0.62 

(Marshall et 

al. 2008)
41

 
2,844 NO 

road density (100-200), elevation, population 

density (2500 m), latitude, road density (750 m) 
0.62 

(Gan et al. 

2011)
42

 
2,200 NO 

length of highways (100 m), length of highways 

(1000 m), the length of major roads (100 m), the 

population density (2,500 m) 

0.62 

(Gulliver et 

al. 2011)
43

 
229,848* SO2 

x coordinate, y coordinate, x
2
 coordinate, y

2
 

coordinate, xy coordinate, minor road length 

(3000 m), low density urban (10000 m), high 

density urban (1000 m) 

0.605 

(Su et al. 

2008)
44

 
2,877* NO 

highways (100 m), highways (1000 m), major 

roads (200 m),  commerical land use (750 m), 

elevation, x coordinate, y coordinate 

0.6 

(Gilbert et 

al. 2005)
5
 

365* NO2 

distance to nearest highway, traffic count on 

nearest highway, length of highways (100 m), 

length of major roads (100 m), length of minor 

roads (500 m), area of open space (100 m), 

population density (2000 m) 

0.54 

(Hart et al. 

2009)
45

 
7,663,942* PM10 

elevation, percent low-intensity residential land 

use (1000 m), percent high-intensity residential 

land use (1000 m), percent ICT land use (1000 m), 

distance of A1 roads, distance to A2 roads, 

distance to A3 roads 

0.49 

(Beelen et 

al. 2009)
46

 
2,854,116* PM10 

hot year round and windy (1000 m), hot 

summers and  cool winters and calm (1000 m), 

cold calm winter and warm windy summers 

(1000 m), altitude (1000 m), agriculture (5000 

m), low density residential (5000 m), high density 

residential (5000 m), topex (5000 m) 

0.41 

(Pearce et 

al. 2009)
47

 
33 PM2.5 

elevation, direct connectivity of surrounding 

intersections 
0.34 

(Adam-

kiewicz et al. 

2010)
48

 

20* NO2 

Session, distance to terminal, total traffic density 

(100 m), total length of class 1 roads (100 m), 

total length of class 2 roads (200 m), distance to 

nearest class 3 road 

0.32 
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(Beckerman 

et al. 2013)
4
 

7,663,942* PM2.5 
remote sensing PM2.5

2
, remote sensing PM2.5

3
, 

developed land (200 m) 
0.21 

  

Supporting Table 2 

Supporting Information, Table S2. Tons of emissions by pollutant for selected years for 

stationary and mobile sources. The NEI exists for the years 1999, 2002, and 2005 for major 

contributing sources. Estimation for non-NEI years was performed by calculating a linear 

interpolation for years in between NEIs and extrapolated for 2006 and 2007 by extending the 

trend between 2002 and 2005.  

1999 2002 2005 

stationary-point SO2     15,481,401.88    12,637,795.89     12,497,868.41  

  NOX        8,634,591.82      7,081,275.68        6,145,388.64  

  NH3              87,444.75          184,880.78           181,609.44  

  PM2.5-pri        1,323,759.85          883,454.69           963,634.27  

  total     25,527,198.30    20,787,407.04     19,788,500.76  

  PM2.5-fil           509,454.42          413,437.22           306,340.47  

stationary-area SO2        1,288,281.05      1,371,710.06        1,374,311.84  

  NOX        1,754,518.62      1,684,373.32        1,746,920.98  

  NH3        4,499,827.90      3,651,324.97        3,601,368.44  

  PM2.5-pri        5,518,185.26      4,253,538.09        4,043,500.49  

  total     13,060,812.82    10,960,946.45     10,766,101.76  

  PM2.5-fil        5,071,063.91      2,248,777.90        2,249,371.69  

mobile (on road) SO2           300,430.69          245,314.06           145,965.66  

  NOX        8,371,337.43      7,922,527.06        6,491,820.47  

  NH3           266,820.73          288,421.52           298,856.12  

  PM2.5-pri           183,895.09          156,142.58           136,179.71  

  total        9,122,483.94      8,612,405.22        7,072,821.96  

  PM2.5-fil NA NA NA 

 stationary   1999-2007 

SO2   130,919,278.97  

  NOX     77,771,066.99  

  NH3     35,761,846.24  

  PM2.5-pri     48,993,549.60  

  total   293,445,741.80  

  PM2.5-fil     29,264,027.70  

mobile (on road) SO2        1,821,317.80  

  NOX     65,046,831.33  

  NH3        2,604,765.10  

  PM2.5-pri        1,360,973.89  

  total     70,833,888.12  
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  PM2.5-fil NA 

 

 

Supporting Table 3 

Supporting Information, Table S3: Cross validation results of all hard data points from 

1999. Units: 
a(UV/�!+�, 

b	UV/�!, 
c
unitless.   

  

Method 
LUR 
only 

(a)       
hard/ 

constant 

(b)       
hard/LUR 

(c)         
hard and 
soft/LUR 

% change 
from (a) to 

(b) 

% change 
from (b) to (c) 

MSEa  6.927 6.020 5.618 -13.09 -6.69 

RMSEb  2.632 2.454 2.370 -6.77 -3.40 

MAEb  1.383 1.171 0.990 -15.37 -15.40 

MRb  1.792 1.150 0.947 -35.82 -17.68 

Pearson's 
Corr.c 

 0.820 0.844 0.852 2.97 0.89 

Spearman's 
Corr.c 

  0.868 0.892 0.900 2.70 0.93 

 

 

Supporting Table 4 

Supporting Information, Table S4: Cross validation results of 20,000 randomly selected 

hard data points whose closest five neighbors includes at least two soft data points. For 

units, see above. 

Method 
LUR 
only 

(a)       
hard/ 

constant 

(b)       
hard/LUR 

(c)             
hard and 
soft/LUR 

% change 
from (a) to 

(b) 

% change 
from (b) to (c) 

MSEa  2.877 2.227 1.994 -22.57 -10.49 

RMSEb  1.696 1.492 1.412 -12.01 -5.39 

MAEb  1.119 0.921 0.819 -17.71 -11.08 

MRb  2.024 1.349 1.217 -33.34 -9.82 
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Pearson's 
Corr.c 

 0.864 0.894 0.906 3.49 1.30 

Spearman's 
Corr.c 

  0.886 0.913 0.923 3.05 1.10 

 

Supporting Figure 1 

 

Supporting Information, Figure S1: Domain size versus �� for past LUR models 

distiguished by pollutant type. The largest shape is the LUR model found in this work. BS is 

Black Smoke.  

 

Supporting Figure 2 
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(a)                                                          (b) 

Supporting Information, Figure S2: The exact buffer size (a) when calculating population 

density compared with the approximate centriod inclusion method (b) for an arbitrary 

PM2.5 location. The black dots are the centriods of the block groups. The light gray area is a 

buffer with a 10 km radius. The dark gray area on the right is the total population that will be 

included in a given population density calculation.  

 

Supporting Figure 3 

 

 
Supporting Information, Figure S3: Comparing the areas of the buffer around a PM2.5 

value to calculate population density by comparing the centriod method to the exact area 

for up to 20 km for the PM2.5 station shown in Figure S2. The centriod method includes the 

entire area of a block group if the centriod of that block group in within the buffer. 
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Supporting Figure 4 

 

Supporting Information, Figure S4: Experimental (red circles) and modeled covariance 

(blue line) of the LUR offset removed PM2.5 concentrations shown (a) as a function of 

spatial lag r for a temporal lag � ' �, and (b) as a function of temporal lag τ for a spatial 

lag � ' �. 

 

Supporting Figure 5 

Supporting Information, Figure S5: Movies of BME predicted PM2.5 (��/��) 

concentration estimation maps across the contiguous U.S. on the first day of every month 

from 1/1/1999-12/1/2002 obtained from the following methods (a) constant offset / hard 

data, (b) LUR offset /hard data, (c) LUR offset /hard and soft data. 

 

http://www.unc.edu/depts/case/BMElab/studies/JR_yPM25_US/index.htm 
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