Palladium-Catalyzed Amination of Unprotected Five-Membered Heterocyclic Bromides

Mingjuan Su, Naoyuki Hoshiya, and Stephen L. Buchwald

Department of Chemistry, Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge, MA 02139

Supporting Information

General Procedures

All reactions were carried out under an argon atmosphere. Lithium bis(trimethylsilyl)amide solution (1.0 M in THF) was purchased from Aldrich Chemical Co. in Sure/SealTM bottles and was used as received. Heteroaryl halides and amines were purchased from Aldrich Chemical Co., Alfa Aesar, Acros, Combi-Blocks, Oakwood or Frontier Scientific and were used without further purification. All reactions were setup in the air outside of the glovebox. Precatalysts,¹ L3,² and L4³ were prepared by literature procedures.

Reactions were monitored by ¹H NMR, LCMS and thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) or 0.20 mm Aluminum oxide/TLC cards (with fluorescent indicator 254 nm) using UV light and Ninhydrin or Iodine stains. Flash silica gel chromatography was performed using Silicycle SiliaFlashP60 (230-400 mesh) silica gel or EMD Millipore (80-325 Mesh) alumina. All compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, and IR spectroscopy. Copies of the ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra can be found at the end of the Supporting Information. Nuclear Magnetic Resonance spectra were recorded on a Varian 300 and Bruker 400 MHz instrument. All ¹H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual methylene chloride (5.32 ppm), methanol- d_4 (3.31 ppm), dimethylsulfoxide- d_6 (2.50 ppm) or acetone- d_6 (2.05 ppm) in the deuterated solvent. All ¹³C NMR spectra are reported in ppm relative to deuteromethylene chloride (53.84 ppm), methanol- d_4 (49.00 ppm) or dimethylsulfoxide- d_6 (39.52 ppm) or acetone- d_6 (29.84 ppm and 206.26 ppm) and all were obtained with ¹H decoupling. ¹⁹F NMR spectra were calibrated using CFCl₃ as an external reference (0 ppm). All IR spectra were taken on a Thermo Scientific Nicolet iS5 FT-IR spectrometer (iD5 ATR). Melting points were obtained on a Mel-Temp II capillary melting point apparatus. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. ESI-MS spectra were recorded on a Bruker Daltonics APEXIV 4.7 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). The pure compounds are estimated to be \geq 95% pure as determined by ¹H NMR.

Optimization Table

((HN	N Br H ₂ N +	1 mc ba	bl % precatalyst 1 mol % L4 se (2.2 equiv) solvent, time	N H	Pd ^{NH2} L4 ^{OTf}
entry	base	solvent	temp. (°C)	time (h)	¹ H NMR yield [%] ^b
1 ^a	LHMDS	THF	100	20	65
2	LHMDS	THF	100	20	82
3	LHMDS	THF	90	20	82
4	KHMDS	THF	90	20	25
5	NaHMDS	THF	90	20	43
6	LiOtBu	THF	90	20	6
7	KOtBu	THF	90	20	-
8	NaOtBu	THF	90	20	16
9	K ₃ PO ₄	THF	90	20	-
10	Cs ₂ CO ₃	THF	90	20	-
11	K ₂ CO ₃	THF	90	20	-
12	LHMDS	Toluene	90	20	-
13	LHMDS	CPME	90	20	28
14	LHMDS	Dioxane	90	20	-
15	LHMDS	tBuOH	90	20	-
16	LHMDS	THF	90	6	78
17	LHMDS	THF	80	6	79
18	LHMDS	THF	70	6	88
19	LHMDS	THF	60	6	90
20	LHMDS	THF	50	6	90

Table S1. Optimization of reaction conditions for the amination of 4-bromo-1*H*-imidazole

(a) Palladacyclic triflate precatalyst analogues (exhibit similar reactivity as the methanesulfonate precatalyst) were used in the current optimization studies.^{1b} (b) Pd₂dba₃ and ligand were premixed in THF at 100 °C for 3 min. (c) ¹H NMR in methanol- d_4 with 1,3,5-trimethoxybenzene as internal standard.

Substrate Synthesis

General Procedure: Pd-Catalyzed Amination of Heterocyclic Bromides

To an oven-dried re-sealable screw-cap test tube, equipped with a magnetic stir bar, was added precatalyst P4 (1.0 mol %), tBuBrettPhos (1.0 mol %, Pd:L = 1:1), heteroaryl halide (1.0 mmol, 1.0 equiv), amine (if it is a solid) (1.2 mmol, 1.2 equiv). The vial was sealed with a teflon screw-cap, evacuated and backfilled with argon (this process was repeated a total of 3 times). Under argon, amine (if it is a liquid) (1.2 mmol, 1.2 equiv) was added followed by LHMDS (1M in THF) (2.2 mL, 2.2 equiv) via syringe. The argon source was removed and the sealed test tube was placed into a pre-heated 50 °C oil bath with vigorous stirring. After stirring for 6 h at 50 °C, the vessel was cooled to room temperature, then quenched by the careful addition of 1M HCl (4 mL), diluted with EtOAc and poured into saturated aqueous NaHCO₃. After extracting with 3 portions of EtOAc and 1 portion of CH₂Cl₂, the combined organic layers were dried over Na₂SO₄, concentrated in vacuo and purified via flash column chromatography.

N-(4-ethoxyphenyl)-1H-imidazol-4-amine (Table 1, entry 1a)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 4-bromo-1H-imidazole (147 mg, 1.0 mmol), 4-ethoxyaniline (129 µL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:49) to

provide the title compound as grey solid (154 mg, 76%), mp 131-132 °C. ¹H NMR (400 MHz, methanol- d_4) δ 7.45-7.44 (m, 1H), 6.79 (q, J = 8.8, 9.2 Hz, 4H), 6.69 (m, 1H), 3.94 (q, J = 6.8 Hz, 2H), 1.33 (t, J = 7.2, 6.8 Hz, 3H); ¹³C NMR (100 MHz, methanol- d_4) δ 153.6, 142.8, 141.2, 133.4, 117.2, 116.7, 105.0, 65.2, 15.5; IR (film) v_{max} 3296, 2893, 1579, 1571, 1509, 1475, 1450, 1409, 1392, 1317, 1300, 1317, 1250, 1218, 1174, 1116, 1087, 1049, 999, 941, 920, 838, 826, 782, 720, 679, 634, 614, 604, 600 cm⁻¹; Anal. Calcd. For C₁₁H₁₃N₃O: C, 65.01; H, 6.45. Found: C, 64.72; H, 6.31.

N-(2,5-dimethoxyphenyl)-1H-imidazol-4-amine (Table 1, entry 1b)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-imidazole (147 mg, 1.0 mmol), 2,5-dimethoxyaniline (184 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:24) to provide the title compound as blue oil (175 mg, 80%). ¹H NMR (400 MHz, CD_2Cl_2) δ 10.81 (br-s,

1H), 7.39 (s, 1H), 6.76-6.74 (m, 2H), 6.65 (d, J = 3.2 Hz, 1H), 6.36 (s, 1H), 6.26 (dd, J = 2.8, 3.2 Hz, 1H), 3.81 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 155.1, 142.0, 140.7, 136.2, 132.9, 103.8, 101.4, 100.7, 56.7, 55.9; IR (film) v_{max} 3116, 2832, 1706, 1602, 1575, 1513, 1451, 1423, 1361, 1284, 1220, 1177, 1163, 1129, 1087, 1044, 1023, 997, 951, 819, 781, 710, 619 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₁H₁₃N₃O₂: 220.1081; Found, 220.1083.

N-(3-phenoxyphenyl)-1H-imidazol-4-amine (Table 1, entry 1c)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-imidazole (147 mg, 1.0 mmol), 3-phenoxyaniline (223 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:24) to

provide the title compound as brown solid (218 mg, 87%), mp 59-60 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.34-7.29 (m, 3H), 7.15 (t, J = 8.0 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.02-7.00 (m, 2H), 6.68-6.60 (m, 3H), 6.42 (dd, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 158.7, 157.6, 147.4, 140.2, 132.8, 130.7, 130.1, 123.5, 119.2, 109.8, 109.3, 105.1, 104.6; IR (film) v_{max} 3064, 2887, 2358, 1717, 1699, 1695, 1645, 1585, 1575, 1559, 1557, 1554, 1541, 1538, 1484, 1456, 1436, 1419, 1257, 1213, 1160, 1143, 1072, 1022, 1001, 961, 821, 746, 667, 629, 618, 614 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₅H₁₃N₃O: 252.1131; Found, 252.1139.

N-(4-cyanophenyl)-1H-imidazol-4-amine (Table 1, entry 1d)

(m/z) [M + H]⁺ calcd for C₁₀H₈N₄: 185.0822; Found, 185.0828.

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 4-cyanoaniline (142 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 12 h. The crude product was purified via trituration with EtOAc to provide the title compound as dark brown solid (141 mg, 77%), mp 256-257 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 11.96 (s, 1H), 8.82 (s, 1H), 7.52-7.49 (m, 3H), 7.08 (d, J = 8.8 Hz, 2H), 6.86 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 149.9, 139.9, 133.9, 133.2, 121.1, 114.1, 103.7, 97.9; IR (film) v_{max} 3378, 3016, 2208, 1602, 1575, 1549, 1486, 1462, 1342, 1267, 1252, 1171, 1151, 1131, 1089, 1006, 992, 933, 842, 814, 727, 688, cm⁻¹; HRMS-ESI

N-(pyridin-3-yl)-1H-imidazol-4-amine (Table 1, entry 1e)

Following the general procedure, a mixture of **P4** (17.1 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), 4-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 3-aminopyridine (113 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title

compound as pale pink solid (120 mg, 75%), mp 154-155 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.91 (br-s, 1H), 8.32 (d, J = 2.4 Hz, 1H), 8.25 (s, 1H), 7.86 (dd, J = 1.6, 1.2 Hz, 1H), 7.50 (d, J = 1.2 Hz, 1H), 7.41-7.38 (m, 1H), 7.13-7.10 (m, 1H), 6.80 (d, J = 1.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 141.9, 140.3, 138.1, 136.6, 132.3, 123.6, 119.2, 101.6; IR (film) v_{max} 3250, 3048, 2865, 2675, 1604, 1556, 1484, 1412, 1333, 1297, 1246, 1227, 1185, 1131, 1103, 1050, 1023, 994, 924, 871, 818, 776, 693, 620, 606 cm⁻¹; Anal. Calcd. For C₈H₈N₄: C, 59.99; H, 5.03. Found: C, 59.77; H, 5.24.

N-(pyridin-2-yl) -1H-imidazol-4-amine (Table 1, entry 1f)

Following the general procedure, a mixture of **P4** (17.1 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), 4-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 2-aminopyridine (132 mg, 1.4 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title

compound as grey solid (134 mg, 84%), mp 139-140 °C. ¹H NMR (400 MHz, methanol- d_4) δ 8.05-8.04 (m, 1H), 7.49-7.41 (m, 2H), 7.09 (s, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.64-6.60 (m, 1H); ¹³C NMR (100 MHz, methanol- d_4) δ 158.0, 148.3, 139.0, 138.8, 133.2, 114.9, 110.1, 106.9; IR (film) v_{max} 3061, 2852, 2641, 1575, 1501, 1475, 1441, 1251, 1227, 1081, 1047, 1002, 863, 822, 730, 679, 667, 624, 609, 607, 600 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₈H₈N₄: 161.0822; Found, 161.0816.

N-(quinolin-3-yl)-1H-imidazol-4-amine (Table 1, entry 1g)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 1.0 mol %), 4-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 3-aminoquinoline (173 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:19) to

provide the title compound as green solid (176 mg, 84%), mp 227-228 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.02 (s, 1H), 8.81-8.76 (m, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.75-7.73 (m, 2H), 7.60 (s, 1H), 7.43-7.35 (m, 2H), 7.02 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 144.0, 141.5, 140.6, 138.7, 132.4, 129.4, 128.5, 126.7, 126.3, 124.6, 110.7, 100.9; IR (film) v_{max} 3257, 3050, 2856, 2685, 1599, 1573, 1486, 1419, 1402, 1371, 1304, 1259, 1220, 1191, 1146, 1102, 1018, 994, 936, 926, 877, 853, 819, 802, 771, 735, 700, 623, 603 cm⁻¹; Anal. Calcd. For C₁₂H₁₀N₄: C, 68.56; H, 4.79. Found: C, 68.64; H, 4.80.

N-(4-morpholinophenyl)-1*H*-imidazol-2-amine (Table 1, entry 1h)

Following the general procedure, a mixture of **P4** (8.6 mg, 1.0 mol %), **L4** (4.9 mg, 1.0 mol %), 2-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 4-morpholinoaniline (214 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:49) to provide the title compound as brown solid (222 mg, 91%), mp 215-216 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 10.57 (br-s, 1H), 8.32 (s, 1H), 7.31 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.64 (s, 2H), 3.72 (t, J = 4.4, 5.2 Hz, 4H), 2.96 (t, J = 4.8 Hz, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ 145.7, 144.5, 136.0, 116.6, 116.4, 66.3, 49.9; IR (film) v_{max} 3363, 3039, 2944, 2851, 2812, 2752, 1602, 1538, 1514, 1459, 1449, 1425, 1412, 1383, 1338, 1303, 1270, 1251, 1230, 1173, 1163, 1114, 1100, 1091, 1065, 1053, 1028, 1013, 1005, 926, 907, 858, 830, 783, 749, 727, 712, 702, 629, 618, 609, 606, 604, 602 cm⁻¹; Anal. Calcd. For C₁₃H₁₆N₄O: C, 63.91; H, 6.60. Found: C, 63.77; H, 6.77.

N-hexyl-1H-imidazol-2-amine (Table 1, entry 1i)

Following the general procedure, a mixture of **P4** (8.6 mg, 1.0 mol %), **L4** (4.9 mg, 1.0 mol %), 2-bromo-1*H*-imidazole (147 mg, 1.0 mmol), n-hexylamine (159 μ L, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The

crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:99) to provide the title compound as red-brown solid (137 mg, 82%), mp 68-69 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 10.95 (br-s, 1H), 6.61 (s, 2H), 4.75 (br-s, 1H), 3.23 (t, *J* = 7.2 Hz, 2H), 1.56-1.51 (m, 2H), 1.34-1.28 (m, 6H), 0.90-0.87 (m, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 152.2, 117.8, 44.7, 32.0, 30.5, 27.0, 23.0, 14.2; IR (film) v_{max} 3352, 3049, 2950, 2926, 2850, 1603, 1524, 1479, 1466, 1454, 1362, 1336, 1287, 1273, 1197, 1166, 1154, 1122, 1098, 1081, 1041, 996, 984, 899, 846, 728, 697 cm⁻¹; Anal. Calcd. For C₁₃H₁₆N₄O: C, 64.63; H, 10.25. Found: C, 64.46; H, 10.13.

N-(2,5-dimethoxyphenyl)-1H-imidazol-2-amine (Table 1, entry 1j)

Following the general procedure, a mixture of **P4** (17.1 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), 2-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 2,5-dimethoxyaniline (184 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:99) to provide the title compound as pale grey solid (195 mg, 89%), mp 161-162 °C. ¹H NMR (400 MHz,

acetone- d_6) δ 10.22 (br-s, 1H), 8.24 (d, J = 2.8 Hz, 1H), 7.64 (br-s, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.74 (s, 2H), 6.32 (dd, J = 3.2 Hz, 1H), 3.79 (s, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ 155.3, 146.2, 142.0, 133.2, 111.4, 103.7, 103.4, 56.6, 55.6; IR (film) v_{max} 3371, 2931, 2836, 1618, 1572, 1544, 1498, 1466, 1454, 1419, 1363, 1298, 1244, 1212, 1200, 1176, 1169, 1112, 1087, 1041, 960, 924, 833, 734, 706, 691, 610 cm⁻¹; Anal. Calcd. For C₁₁H₁₃N₃O₂: C, 60.26; H, 5.98. Found: C, 60.26; H, 6.04.

N-(3-cyanophenyl)-1*H*-imidazol-2-amine (Table 1, entry 1k)

Following the general procedure, a mixture of **P4** (17.1 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), **2**-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 3-cyanoaniline (142 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:49) to provide the title compound as pale yellow solid (169 mg, 92%), mp 170-171 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.93 (s, 1H), 9.15 (s, 1H), 8.02-8.01 (m, 1H), 7.63-7.60 (m, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.19-7.17 (t, *J* = 1.2 Hz, 1H), 6.75 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 143.8, 143.4, 130.0, 122.1, 119.9, 119.3, 117.4, 111.5; IR (film) v_{max} 3333, 3060, 2781, 2233, 1641, 1595, 1538, 1516, 1486, 1459, 1364, 1331, 1309, 1257, 1170, 1156, 1094, 1008, 985, 873, 831, 810, 791, 776, 743, 697, 648, 601 cm⁻¹; Anal. Calcd. For C₁₀H₈N₄: C, 65.21; H, 4.38. Found: C, 65.19; H, 4.45.

N-(3-cyanophenyl)-1*H*-imidazol-2-amine (Table 1, entry 11)

Following the general procedure, a mixture of **P4** (17.1 mg, 2.0 mol %), **L4** (9.7 mg, 2.0 mol %), 2-bromo-1*H*-imidazole (147 mg, 1.0 mmol), 3-aminopyridine (113 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash alumina chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound as brown solid (136 mg, 85%), mp 169-170 °C. ¹H NMR (400 MHz, methanol- d_4) δ 8.36 (d, J = 2.8 Hz, 1H), 7.99 (dd, J = 1.2 Hz, 1H), 9.58 (dq, J = 1.2 Hz, 1H), 7.28-7.24 (m, 1H), 6.80 (s, 2H); ¹³C NMR (100 MHz, methanol- d_4) δ 155.2, 151.8, 151.1, 148.2, 135.4, 134.0, 130.2 (br); IR (film) v_{max} 3262, 3050, 2843, 1620, 1590, 1545, 1481, 1443, 1411, 1356, 1317, 1284, 1256, 1239, 1188, 1160, 1128, 1105, 1084, 1050, 1023, 996, 917, 867, 830, 803, 753, 685, 640, 623, 610, 605, 603 cm⁻¹; Anal. Calcd. C₈H₈N₄: C, 59.99; H, 5.03. Found: C, 59.73; H, 5.09.

N-phenyl-1H-pyrazol-4-amine (Table 2, entry 2a) (CAS: 916734-78-6)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 4-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), aniline (110 μL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:49) to provide the title compound as an off-white solid (152 mg, 96%), mp 111-112 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 11.45 (br-s, 1H), 7.57 (s,

2H), 7.21-7.16 (m, 2H), 6.80-6.74 (m, 3H), 5.27 (br-s, 1H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 147.2, 129.6, 125.1, 118.9, 113.9; IR (film) v_{max} 3381, 3122, 2952, 1599, 1579, 1538, 1495, 1373, 1347, 1327, 1246, 1134, 1003, 942, 848, 745, 691, 652, 626, 612 cm⁻¹. Anal. Calcd. For C₉H₉N₃: C, 67.90; H, 5.70. Found: C, 67.45; H, 5.44.

N-(quinolin-5-yl)-1H-pyrazol-4-amine (Table 2, entry 2b)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 5-aminoquinoline (173 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to

provide the title compound as an orange solid (170 mg, 81%), mp 255-256 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 8.84-8.76 (m, 2H), 8.00 (s, 1H), 7.69-7.43 (m, 4H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 150.0, 149.0, 143.6, 134.6, 130.3, 130.2, 123.5, 122.4, 119.4, 118.1, 117.5, 105.2; IR (film) v_{max} 3116, 3078, 2904, 2842, 1586, 1520, 1495, 1463, 1404, 1370, 1362, 1348, 1324, 1293, 1273, 1204, 1148, 1135, 1089, 1065, 1023, 1003, 975, 953, 933, 894, 877, 865, 829, 808, 792, 766, 740, 736, 627, 617 cm⁻¹. Anal. Calcd. For C₁₂H₁₀N₄: C, 68.56; H, 4.79. Found: C, 68.32; H, 4.70.

N-(2-phenoxyphenyl)-1H-pyrazol-4-amine (Table 2, entry 2c)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 2-phenoxyaniline (223 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound as a brown solid (238 mg, 95%), mp 101-102 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 10.85 (br-s, 1H), 7.56 (s, 2H), 7.37-7.32 (m, 2H), 7.12-7.08 (m, 1H), 7.05-6.99 (m, 3H), 6.95-6.93 (m, 1H), 6.90-6.87 (m, 1H), 6.74-6.69 (m, 1H), 5.71 (s, 1H); 13 C NMR (100 MHz, CD₂Cl₂) δ 158.0, 143.6, 139.6, 130.3, 129.7, 125.3, 124.5, 123.5, 120.0, 118.7, 118.0, 113.4; IR (film) v_{max} 3130, 2944, 1607, 1581, 1550, 1512, 1488, 1472, 1454, 1383, 1355, 1331, 1292, 1243, 1208, 1180, 1159, 1104, 1073, 953, 927, 894, 878, 834, 786, 743, 690, 646, 619, 610, 604 cm⁻¹. Anal. Calcd. For C₁₅H₁₃N₃O: C, 71.70; H, 5.21. Found: C, 71.51; H, 5.06.

N-(3-trifluoromethylphenyl)-1*H*-pyrazol-4-amine (Table 2, entry 2d)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 3-aminobenzotrifluoride (150 µL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:24) to provide the title compound as brown oil (222 mg, 98%). ¹H NMR (400 MHz, CD₂Cl₂) δ 11.68 (br-

s, 1H), 7.62 (s, 2H), 7.31-7.27 (m, 1H), 7.02-6.99 (m, 2H), 6.96-6.93 (m, 1H), 5.53 (s, 1H); ¹³C NMR (100 MHz, CD_2Cl_2) δ 148.0, 131.8 (q, J = 63 Hz), 130.2, 124.8 (q, J = 541 Hz), 124.0, 117.0, 115.1 (q, J = 7.0) Hz), 110.0 (q, J = 8.0 Hz); ¹⁹F NMR (282 MHz, CD₂Cl₂) -63.5; IR (film) v_{max} 3412, 3182, 2960, 1615, 1584, 1475, 1439, 1333, 1272, 1247, 1161, 1115, 1097, 1067, 1004, 995, 954, 942, 921, 904, 863, 783, 754, 712, 696, 670, 658, 626 cm⁻¹. Anal. Calcd. For $C_{10}H_8F_3N_4$: C, 52.87; H, 3.55. Found: C, 52.72; H, 3.71.

N-(4-*tert*-butylphenyl)-1*H*-pyrazol-4-amine (Table 2, entry 2e)

Following the general procedure, a mixture of **P4** (8.6 mg, 1.0 mol %), **L4** (4.9 mg, 1.0 mol %), 4-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 4-*tert*-butylaniline (192 μ L, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:49) to

provide the title compound as pale brown solid (204 mg, 95%), mp 154-155 °C. ¹H NMR (400 MHz, methanol- d_4) δ 7.48 (s, 1H), 7.17 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 1.25 (s, 1H); ¹³C NMR (100 MHz, methanol- d_4) δ 146.0, 142.0, 127.6, 126.9, 114.6, 34.8, 32.2; IR (film) v_{max} 3110, 2949, 2864, 2506, 2431, 1611, 1566, 1512, 1358, 1293, 1189, 1007, 869, 820, 657, 604 cm⁻¹. Anal. Calcd. For C₁₃H₁₇N₃: C, 72.52; H, 7.96. Found: C, 72.53; H, 7.84.

N-(4-cyanophenyl)-1H-pyrazol-4-amine (Table 2, entry 2f)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L1 (9.7 mg, 2.0 mol %), 4-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 4-aminobenzonitrile (142 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 12 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:24) to

provide the title compound as brown solid (163 mg, 89%), mp 174-175 °C. ^TH NMR (400 MHz, acetone- d_6) δ 12.13 (s, 1H), 7.64 (s, 2H), 7.55 (s, 1H), 7.49-7.45 (m, 2H), 6.91-6.87 (m, 2H); ¹³C NMR (100 MHz, acetone- d_6) δ 152.1, 134.8, 134.3, 123.3, 121.2, 120.6, 113.8, 99.7; IR (film) v_{max} 3256, 3124, 3078, 2982, 2215, 1600, 1573, 1528, 1505, 1360, 1271, 1171, 1136, 1001, 934, 853, 822, 764, 725, 648, 606 cm⁻¹. Anal. Calcd. For C₁₃H₁₇N₃: C, 65.21; H, 4.38. Found: C, 64.95; H, 4.28.

N-(4-methoxybenzyl)-1H-pyrazol-4-amine (Table 2, entry 2g)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 4-methoxybenzylamine (157 μ L, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 3:97) to provide the title compound as pale yellow solid (152 mg, 75%), mp 150-151 °C. ¹H NMR (400 MHz, methanol-*d*₄) δ 7.28 (d, *J* = 8.8 Hz, 2H), 7.18 (s, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.04 (s, 2H),

3.76 (s, 3H); ¹³C NMR (100 MHz, methanol- d_4) δ 160.5, 134.3, 133.0, 130.4, 114.9, 55.8, 53.0; IR (film) v_{max} 3331, 3182, 3115, 2957, 2839, 1611, 1585, 1510, 1464, 1441, 1390, 1341, 1315, 1301, 1243, 1172, 1129, 1108, 1090, 1052, 1028, 943, 825, 774, 611 cm⁻¹. HRMS-ESI (*m/z*) [M + H]⁺ calcd for C₁₁H₁₃N₃O: 204.1131; Found, 204.1128.

N-(methylfuran-2-yl)-1*H*-pyrazol-3-amine (Table 2, entry 2h)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 3-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 2-morpholinoaniline (214 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:49) to provide the title compound as a brown solid (222 mg, 91%), mp 45-46 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 11.00 (br-s, 1H), 7.58 (dd, J = 1.2 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.18 (br-s, 1H), 7.18 (br-s), 7.18 (br-s), 7.18

1H), 7.15 (dd, J = 1.2, 1.6 Hz, 1H), 7.08-7.04 (m, 1H), 6.85 (dt, J = 1.6 Hz, 1H), 6.07 (d, J = 2.4 Hz, 1H), 3.84 (t, J = 4.4, 4.8 Hz, 4H), 2.90 (t, J = 4.8 Hz, 4H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 151.5, 139.7, 139.1, 130.3, 125.7, 120.8, 119.6, 114.1, 95.4, 67.9, 52.7; IR (film) v_{max} 3184, 2959, 2825, 1589, 1547, 1506, 1484, 1456, 1372, 1297, 1257, 1229, 1200, 1160, 1113, 1068, 1053, 993, 953, 928, 914, 855, 840, 740, 708, 676, 646 cm⁻¹. HRMS-ESI (*m/z*) [M + H]⁺ calcd for C₁₃H₁₆N₄O: 245.1397; Found, 245.1386.

N-(methylfuran-2-yl)-1H-pyrazol-3-amine (Table 2, entry 2i)

Following the general procedure, a mixture of P4 (8.6 mg, 1.0 mol %), L4 (4.9 mg, 1.0 mol %), 3-bromo-1H-pyrazole (147 mg, 1.0 mmol), 3-phenyl-1-propylamine (172 µL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 50 °C for 6 h. The crude product was purified via flash silica gel chromatography

(MeOH/CH₂Cl₂, 3:97) to provide the title compound as an orange oil (173 mg, 86%). ¹H NMR (400 MHz, CD_2Cl_2) δ 7.38-7.34 (m, 3H), 7.28-7.25 (m, 3H), 5.63 (d, J = 2.4 Hz, 1H), 3.23 (t, J = 7.2 Hz, 2H), 2.75 (t, J= 7.6, 8.0 Hz, 2H), 1.96 (s, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 156.8, 142.4, 131.7, 128.8, 128.7, 126.1, 90.4, 45.3, 33.6, 32.0; IR (film) v_{max} 3170, 3024, 2934, 2858, 1594, 1555, 1495, 1453, 1372, 1278, 1105, 1030, 985, 953, 926, 740, 698 cm⁻¹. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₂H₁₅N₃: 202.1339; Found, 202.1336.

N-(methylfuran-2-yl)-1H-pyrazol-3-amine (Table 2, entry 2j)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 3-bromo-1H-pyrazole (147 mg, 1.0 mmol), 2-aminomethylfuran (106 µL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 3:97) to provide

the title compound as an orange oil (133 mg, 82%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.38 (dd, J = 0.8 Hz, 1H), 7.31 (d, J = 2.4 Hz, 1H), 6.34 (dd, J = 2.0 Hz, 1H), 6.24 (dd, J = 0.8 Hz, 1H), 5.66 (d, J = 2.4 Hz, 1H), 4.33 (s, 2H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 156.4, 153.9, 142.1, 131.1, 110.6, 107.1, 91.1, 42.6; IR (film) v_{max} 3179, 2941, 1553, 1503, 1342, 1270, 1182, 1145, 1099, 1073, 1042, 1011, 917, 884, 730 cm⁻¹. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₁H₁₃N₃O: 164.0818; Found, 164.0814.

N-(pyridin-3-yl)-1*H*-pyrazol-4-amine (Table 2, entry 2k)

Following the general procedure, a mixture of P4 (18.2 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 3-aminopyridine (113 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound as pale yellow powder (155 mg, 97%), mp 126-127 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.69 (br-s, 1H), 9.13 (s, 1H), 7.85-7.59 (m, 4H), 7.12-7.07 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 143.3, 137.9, 135.9, 133.0, 123.8, 123.4, 120.7, 118.2; IR (film) v_{max} 3262, 3123, 3019, 2933, 1616, 1580, 1557, 1484, 1429, 1377, 1335, 1279, 1248, 1186, 1068, 1046, 1023, 1002, 952, 930, 884, 865, 842, 777, 694 cm⁻¹; Anal. Calcd. For C₈H₈N₄: C, 59.99; H, 5.03. Found: C, 59.85; H, 5.17.

N-(pyridin-2-yl)-1H-pyrazol-4-amine (Table 2, entry 2l)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 2-aminopyridine (132 mg, 1.4 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound

as yellow powder (150 mg, 94%), mp 173-174 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 12.46 (s, 1H), 8.71 (s, 1H), 8.10-8.08 (m, 1H), 7.73 (br-s, 2H), 7.48-7.44 (m, 1H) 6.67-6.58 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 156.0, 147.5, 136.9, 123.4, 112.6, 108.9; IR (film) v_{max} 3249, 3136, 3064, 3028, 2941, 1616, 1597, 1579, 1535, 1505, 1419, 1377, 1362, 1333, 1313, 1282, 1240, 1156, 1134, 1107, 1050, 1010, 989, 932, 855, 766, 738, 660, 631 cm⁻¹; Anal. Calcd. For C₈H₈N₄: C, 59.99; H, 5.03. Found: C, 59.80; H, 5.05.

N-(quinolin-3-yl)-1*H*-pyrazol-4-amine (Table 2, entry 2m)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 3-aminoquinoline (173 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound as a vellow solid (199 mg, 95%), mp 184-185 °C. ¹H NMR (400 MHz, DMSO d_6) δ 12.74 (s, 1H), 8.59 (d, J = 2.4 Hz, 1H), 8.22 (s, 1H), 7.87-7.79 (m, 2H), 7.72-7.69 (m, 1H), 7.53 (s, 1H), 7.87-7.79 (m, 2H), 7.72-7.69 (m, 1H), 7.53 (s, 1H), 7.87-7.79 (m, 2H), 7.72-7.69 (m, 1H), 7.53 (s, 1H), 7.87-7.79 (m, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.53 (s, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.53 (s, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.53 (s, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.53 (s, 2H), 7.72-7.69 (m, 2H), 7.72-7.69 (m, 2H), 7.53 (s, 2H 1H), 7.43-7.33 (m, 3H) (d, J = 1.6 Hz, 1H), 7.53-7.31 (m, 9H), 5.19 (s, 2H); ¹³C NMR (100 MHz, DMSOd₆) δ 143.5, 141.4, 140.4, 132.9, 129.4, 128.5, 126.7, 126.2, 124.5, 123.4, 120.3, 109.4; IR (film) v_{max} 3308, 3130, 3050, 2889, 1616, 1604, 1583, 1559, 1535, 1489, 1474, 1464, 1423, 1395, 1365, 1331, 1293, 1282, 1245, 1229, 1213, 1145, 1118, 1069, 1022, 1003, 987, 949, 936, 914, 871, 844, 824, 798, 778, 772, 742 cm⁻¹ ¹; Anal. Calcd. For C₁₂H₁₀N₄: C, 68.56; H, 4.79. Found: C, 68.31; H, 4.79.

N-(pyrimidin-5-yl)-1*H*-pyrazol-4-amine (Table 2, entry 2n)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), 5-aminopyrimidine (114 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title compound as a pale yellow solid (136 mg, 85%), mp 233-234 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 12.76 (br-s, 1H), 8.47 (s, 1H), 8.27 (s, 2H), 7.98 (s, 1H), 7.82 (s, 1H), 7.48 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.6, 141.1, 140.7, 133.3, 122.2, 121.1; IR (film) v_{max} 3167, 3124, 3003, 2903, 1606, 1578, 1553, 1482, 1444, 1419, 1373, 1336, 1294, 1204, 1135, 1123, 1063, 1001, 951, 930, 872, 845, 772, 714,

N-(pyrazin-2-yl)-1H-pyrazol-4-amine (Table 2, entry 20)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 4-bromo-1H-pyrazole (147 mg, 1.0 mmol), aminopyrazine (114 mg, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 16 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:19) to provide the title

compound as yellow powder (143 mg, 89%), mp 142-143 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 12.56 (brs, 1H), 9.30 (s, 1H), 8.10-8.8.05 (m, 2H), 7.77-7.76 (m, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 152.2, 141.5, 133.9, 131.9, 122.2; IR (film) v_{max} 3297, 3155, 3077, 2926, 1623, 1616, 1599, 1538, 1516, 1506, 1456, 1419, 1384, 1362, 1311, 1274, 1213, 1175, 1149, 1073, 1053, 1015, 1004, 939, 890, 859, 822, 763, 684, 646, 610 cm⁻¹; HRMS-ESI (m/z) [M + H]⁺ calcd for C₇H₇N₅: 162.0774; Found. 162.0770.

675, 625, 601 cm⁻¹; Anal. Calcd. For C₇H₇N₅: C, 52.17; H, 4.38. Found: C, 52.10; H, 4.49.

N-(2-methoxypyridin-3-yl)- 1H-pyrazol-3-amine (Table 2, entry 2p)

Following the general procedure, a mixture of P4 (17.1 mg, 2.0 mol %), L4 (9.7 mg, 2.0 mol %), 3-bromo-1H-pyrazole (147 mg, 1.0 mmol), 3-amino-2-methoxypyridine (121 µL, 1.2 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 6 h. The crude product was purified via flash silica gel chromatography

(MeOH/CH₂Cl₂, 1:24) to provide the title compound as a pale brown solid (176 mg, 93%), mp 137-138 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.92 (s, 1H), 8.26-8.22 (m, 2H), 7.76 (d, J = 6.4 Hz, 1H), 7.53 (s, 1H), 6.68 (d, J = 8.8 Hz, 1H), 5.75 (d, J = 1.6 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 156.6, 151.7, 135.4, 132.5, 128.8, 127.2, 109.8, 92.6, 52.8; IR (film) v_{max} 3364, 3267, 3013, 2988, 2942, 1620, 1547, 1484, 1460, 1454, 1433, 1397, 1356, 1299, 1266, 1253, 1234, 1185, 1172, 1119, 1025, 1010, 999, 921, 833, 803, 764, 739, 667, 634, 608 cm⁻¹; Anal. Calcd. For C₉H₁₀N₄: C, 56.83; H, 5.30. Found: C, 56.42; H, 5.27.

N-(pyrazin-2-yl)- 1*H*-pyrazol-3-amine (Table 2, entry 2q)

Following the general procedure, a mixture of P4 (34.2 mg, 4.0 mol %), L4 (19.4 mg, 4.0 mol %), 3-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), aminopyrazine (134 mg, 1.4 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 16 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:24) to provide the title

compound as a orange solid (153 mg, 95%), mp 171-172 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.24 (s, 1H), 9.70 (s, 1H), 8.54 (s, 1H), 8.08 (q, J = 1.6 Hz, 1H), 7.88 (d, J = 2.8 Hz, 1H), 7.61 (s, 1H), 6.42 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.8, 148.6, 141.6, 133.7, 133.4, 128.7, 95.1; IR (film) ν_{max} 3270, 3156, 3007, 2954, 2885, 1621, 1526, 1487, 1471, 1394, 1344, 1297, 1265, 1193, 1169, 1139, 1093, 1053, 997, 923, 891, 816, 744, 681, 667, 624, 614 cm⁻¹; Anal. Calcd. For $C_9H_{10}N_4$: C, 52.17; H, 4.38. Found: C, 52.26; H, 4.41.

N-(pyrimidin-2-yl)-1*H*-pyrazol-3-amine (Table 2, entry 2r)

Following the general procedure, a mixture of **P4** (34.2 mg, 4.0 mol %), **L4** (19.4 mg, 4.0 mol %), 3-bromo-1*H*-pyrazole (147 mg, 1.0 mmol), 2-aminopyrimidine (134 mg, 1.4 mmol), LHMDS (2.2 mL, 2.2 mmol) (1M in THF) was heated to 80 °C for 16 h. The crude product was purified via flash silica gel chromatography (MeOH/CH₂Cl₂, 1:24) to provide the title compound as a pale orange solid (151 mg, 94%), mp 201-202 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.25 (s, 1H), 9.91 (s, 1H), 8.46-8.44 (m, 1H), 7.56 (s, 1H), 6.78 (t, *J* = 4.8 Hz, 1H), 6.55 (br-s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.7, 158.1, 147.9, 128.7, 111.9, 95.9; IR (film) v_{max} 3243, 3139, 3003, 2944, 2857, 1603, 1587, 1554, 1495, 1447, 1414, 1354, 1295, 1251, 1170, 1090, 1056, 1006, 987, 926, 899, 872, 796, 749, 690, 654, 636 cm⁻¹; Anal. Calcd. For C₉H₁₀N₄: C, 52.17; H, 4.38. Found: C, 52.21; H, 4.42.

References

- (a) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. *Chem. Sci.* 2013, *4*, 916. (b) Bruno, N. C.; Buchwald, S. L. *Org. Lett.* 2013, *15*, 2876.
- 2. Su, M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2012, 51, 4710.
- 3. Fors, B. F.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L. Tetrahedron 2009, 65, 6576.

68.313 68.313 73.866 77.866 77.854 77.854 77.854 77.854 77.854 77.854 77.9385 77.129 77.3385 77.3385 77.3385 77.3385 77.3385 77.3385 77.3385 77.129 6.806 6.806

Н

1e

ΗŇ

-11.908

145.65 144.47		116.41	66.26		$ \begin{array}{c} N \\ N \\ NH \end{array} $ $ \begin{array}{c} N \\ N \\ NH \end{array} $ $ \begin{array}{c} N \\ N \\ N \\ N \\ O \end{array} $ $ \begin{array}{c} 1h \end{array} $
		1			
170 160 150 14	40 130 12	0 110 100 90	80 70 60	50 40	

H N→ NH 1i					44.69	// 32.03 // 30.50 // 27.04		
170 160 150	140 130 120	110 100	90 80	70 60	50 4	0 30	20	10 ppm

143.78		1122.14								NH NH	C	, CN
 150 140	130	120	110	100	 80	 60	.	40	 30	20	 10	 maa

190 180 170 160 150 ⁻	140 130 120 110	100 90 80 70 60) 50 40 30 20 ppm

				129.62	118.88	— 113.88							۲ H	N 2	a
					I										

 170	160	150	140	130	120	110	100	 80	70	60	50	40	30	20	10 ppm

 8.831

 8.8338

 8.8338

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.8331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.9331

 8.944

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 8.945

 <t

 	<u> </u>	 				 	 	·····	 		
		 	119.37	~117.52	лт.coт				N HN	H N 2b	N

147.97 132.24 131.92 131.61 131.29 130.24	1128.95	115.19 115.19 115.15 115.15 115.12	L110.02 L109.98 L109.94 L109.90						N) HN	H N 2d	CF ₃
170 160 150 140	130 120	110	100 90	80	 	50	40	30	 		·····

2e	Bu	$\langle \rangle$				

		6 			HN	CN
	I					

	134.29 133.02 130.44	 55.79	
			29 OMe
			and the second secon
 	40 130 12	 70 60 50 40 3	0 20 ppm

	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10 ppm
		*****															*****
			I														
				I													
						. 1	1		1								
																HN-N	2h
			I	11	1 1		I		I								
			— 151	139 - 139		119		ц С					- 52.				
			.47	. 69	. 26	. 61	.05	~	1t 1t		06		65				0

くしく \leq \nearrow くしき

						 			 L
	21								

.333

4

 190	 180	170	 160	150	140	130	 120	 110	100		 80	70	 60	 50	40	 30	20	ر ppm
									-									
										1								
																F	[`] N∕─ ^N 2	ij
			-156.39	-153.9	-142.1	-131.1		-110.6 -107.0		- 91.11					-42.61			

8.132 7.846 7.846 7.837 7.731 7.747 7.121 7.121 7.121 7.099 7.093

 8.714

 8.094

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.092

 8.093

 8.093

 8.094

 8.094

 8.094

 8.094

 8.094

 8.094

 8.094

 8.094

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

 8.095

		147.48	— 136.86										N HN	H N 2I	N
 170	160	150	140	130	120	110	100	 80	70	 50	40	30	20		

Control Contro Control Control Control Control Control Control Control Control Co

12.738

	147.63	141.10		122.21										N HN	H N 2n	N N
				1												
170 160	150	140	130	120	110	100	90	 80	 70	 60	 50	40	30	20	10	ppm

			141.50		— 122.23										N HN-	₩ 20	N N
 							-Mildon - plays - Mile and - sayof									an di an	
 170	160	150	140	130	120	110	100	90	 80	70	60	 50	40	30	20	10 pi	ղ pm

		151.76 148.61		133.72 133.38 128.70			г С	н т • Со ———						/ HN-N	H N N 2q
				I											
 170	160	150	 140		120	110	100	•••••	80	70	60	 40	30	·····	10 pr

