Supporting Information

High-affinity small molecule inhibitors of the menin-Mixed Lineage Leukemia (MLL) interaction closely mimic a natural protein-protein interaction

Shihan He^{a,#}, Timothy J. Senter^{b,c,d,e,#}, Jonathan Pollock^a, Changho Han^{b,c,d}, Sunil Kumar Upadhyay^a, Trupta Purohit^a, Rocco D. Gogliotti^{b,c,d}, Craig W. Lindsley^{b,c,d,e}, Tomasz Cierpicki^a, Shaun R. Stauffer^{b,c,d,e}, Jolanta Grembecka^{a,*}

^aDepartment of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA

^bDepartment of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^cVanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA

^dVanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^eDepartment of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

[#] S.H. and T.J.S. contributed equally to this work

^{*}To whom correspondence should be addressed: <u>jolantag@umich.edu</u>, Tel: 734-615-9319, Fax: 734-615-0688

Table of Contents

1.	Supplementary Figure 1	.S2
2.	Supplementary Figure 2	.S3
3.	Supplementary Table 1	S4
4.	Procedures and Products	.85
5.	¹ H and ¹³ C NMR spectra	S28
6.	Chiral SFC Traces	S78

Supplementary Figure 1. Structure and activity of less potent HTS hit identified by screening for inhibitors of menin-MLL interaction.

Supplementary Figure 2. Structure and activity of the menin-MLL inhibitor MIV-6. a)

Chemical structure of **MIV-6**. b) Titration curve from the competition FP experiment of **MIV-6R** with MLL for binding to menin. c) ITC titrations demonstrating direct binding of **MIV-6R** to menin.

Table S1. Data collection and refinement statistics for menin-ligand complexes. Numbers in

 parenthesis refer to the highest resolution shell.

Structure	MIV-3S	MIV-3R	MIV-4	MIV-5	MIV-6	MIV-7
PDB code	4GO4	4GO3	4GO6	4GO5	4GO8	4GO7
Data collection						
Space group	P212121	P212121	P212121	P212121	P212121	P212121
Cell Dimensions						
a, b, c (Å)	48.9, 80.2,	48.9, 80.3,	48.6, 79.9,	48.7, 80.1,	48.8, 80.2,	48.0, 79.7,
	124.7	124.7	124.5	124.5	124.7	124.8
Solvent (%)	45.2	45.2	44.5	44.8	45.1	43.9
Resolution (Å)	1.45	2.01	1.49	1.63	1.53	2.08
	(1.48-1.45)	(2.04-2.01)	(1.52-1.49)	(1.66-1.63)	(1.56-1.53)	(2.11-2.08)
Unique reflections	87254	33475	74065	61076	73430	28805
	(4307)	(1648)	(3255)	(2957)	(3414)	(1401)
Total Reflections	633852	242461	368758	410885	483441	189357
R _{sym}	0.087	0.145	0.065	0.068	0.069	0.125
	(0.700)	(0.784)	(0.596)	(0.755)	(0.584)	(0.877)
Ι / σΙ	36.5 (2.3)	16.89 (2.45)	22.85 (2.02)	23.47 (2.03)	28.38 (2.52)	19.64 (2.21)
Completeness (%)	100 (100)	100 (100)	92.8 (82.2)	99.1 (98.4)	98.5 (93.2)	98.1 (99.3)
Redundancy	7.3 (7.1)	7.2 (7.2)	5.0 (4.2)	6.7 (6.4)	6.6 (5.7)	6.6 (6.3)
Refinement						
R_{work}/R_{free}	16.16/18.86	15.54/20.85	16.06/18.82	16.30/19.40	15.12/17.60	17.23/22.17
No. atoms						
Protein	3742	3650	3763	3728	3742	3667
Water	461	322	463	373	429	168
Mean B-factor (Å ²)	25.07	26.3	19.98	24.08	20.16	34.97
R.m.s. Dev.						
Bond lengths (Å)	0.018	0.018	0.017	0.017	0.016	0.017
Bond angles(°)	2.00	1.83	1.82	1.82	1.74	1.79
Ramachandran plot						
Most favored regions						
(%)	98.06	98.27	98.27	98.06	98.06	98.06
Additional allowed						
regions (%)	1.94	1.73	1.73	1.94	1.94	1.94

4. Procedures and Products

4-(2-hydroxy-3-(4-(hydroxydiphenylmethyl)piperidin-1-yl)propoxy)benzonitrile, 1 (MIV-1) In a round bottom flask equipped with a stir bar, diphenyl(piperidin-4-yl)methanol (500 mg, 1.77 mmol) was dissolved in DMF (3.54 mL). Potassium carbonate (294 mg, 2.12 mmol) was added in a single batch followed by epibromohydrin (291 mg, 2.12 mmol). The reaction mixture was warmed to 50 °C and stirred for 6 h. 4-hydroxybenzonitrile (264 mg, 2.21 mmol) was then added in a single batch, and stirring was continued at 50 °C for 18 h. The reaction was quenched with H₂O and extracted with EtOAc. The combined organic layers were washed with brine, and dried over Na₂SO_{4.} Concentration *in vacuo* afforded the crude product as an oil, which was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to provide the desired product at as a clear amorphous solid in 509 mg (65%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.56 (2H, d, J = 9 Hz), 7.47 (4H, d, J = 7.6 Hz), 7.30 (4H, t, J = 8 Hz), 7.19 (2H, t, J = 7.5 Hz), 6.96 (2H, d, J = 9 Hz), 4.07 (1H, m), 3.99 (2H, m), 3.05 (1H, d, J = 11 Hz), 2.89 (1H, d, J = 11 Hz), 2.49 (3H, m), 2.33 (2H, m), 2.05 (1H, dt, J = 11.5, 3 Hz), 1.53 (3H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.1, 145.9, 134.1, 128.4, 126.8, 125.8, 119.3, 115.5, 104.4, 79.6, 70.7, 65.3, 60.5, 56.0, 52.9, 44.0, 26.7, 26.4; HRMS (ES+, M+H) calc. for C₂₈H₃₁N₂O₃: 443.2335, found: 443.2334

4-(3-(4-benzhydrylpiperidin-1-yl)propoxy)benzonitrile, 3.

In a round bottom flask equipped with a stir bar, 4-benzhydrylpiperidine (2.1 g, 8.46 mmol) was combined with K₂CO₃ (6.9 g, 50 mmol) in DMF (40 mL), followed by 1-bromo-3-chloropropane (1.6 g, 10 mmol). The reaction progress was monitored by LC-MS, and upon full consumption of starting material, 4-cyanophenol (1.3 g, 11 mmol) was added and the reaction allowed to stir overnight. The mixture was poured onto water and extracted with EtOAc, washed with brine and dried over Na₂SO₄. The volatiles were removed under reduced pressure and the crude mixture purified on silica gel (9:1 CH₂Cl₂/MeOH) to afford 2.7 g (78%) of 4-(3-(4-benzoylpiperidin-1-yl)propoxy)benzonitrile: ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.57 (2H, d, J = 8.7 Hz), 7.29 (8H, m), 7.12 (2H, m), 6.94 (2H, m), 4.05 (2H, t, J = 6.5 Hz), 3.52 (1H, d, J = 10.9 Hz), 2.90 (2H, d, J = 11.7 Hz), 2.50 (2H, t, J = 7.2 Hz), 2.14 (1H, m), 1.97 (4H, m), 1.59 (2H, d, J = 13 Hz), 1.26 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.5, 143.9, 134.1, 128.6, 128.2, 126.3, 119.4, 115.3, 103.9, 66.9, 59.0, 55.4, 54.2, 39.7, 31.5, 26.8; HRMS (ES+, M+H) calc. for C₂₈H₃₀N₂O: 411.2436, found: 411.2434

(1-(3-phenoxypropyl)piperidin-4-yl)diphenylmethanol, 4.

In a round bottom flask equipped with a stir bar, diphenyl(piperidin-4-yl)methanol (300 mg, 1.06 mmol) was dissolved in DMF (3.0 mL). Potassium carbonate (295 mg, 2.13 mmol) was added in a single batch followed by 1-bromo-3-chloropropane (184 mg, 1.17 mmol). The mixture was stirred for 6 h, at which point starting material was consumed by TLC observation. Phenol (190 mg, 1.60 mmol) was added to the stirring mixture, and the mixture was warmed to 50 °C and stirred for 18 h. The reaction mixture was quenched with H₂O, and extracted with EtOAc. Combined organic layers were washed with brine and dried over Na₂SO₄. Concentration *in vacuo* afforded the crude product, which was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to provide the desired product in 399 mg (88%) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51 (4H, d, *J* = 7.5 Hz), 7.31 (6H, m), 7.21 (2H, t, *J* = 7.5 Hz), 6.95 (1H, t, *J* = 7.5 Hz), 6.90 (2H, d, *J* = 8.2 Hz), 4.02 (2H, t, *J* = 6 Hz), 3.09 (2H, d, *J* = 11.5 Hz), 2.61 (2H, t, *J* = 7.4 Hz), 2.50 (1H, m), 2.16-2.00 (4H, m), 1.61 (4H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 159.0, 146.1, 129.6, 128.4, 126.7, 120.8, 114.6, 79.6, 66.2, 55.5, 54.2, 44.1, 26.8, 26.2; HRMS (ES+, M+H) calc. for C₂₇H₃NO₂: 402.2433, found: 402.2433

(1-(3-chloropropyl)piperidin-4-yl)(phenyl)methanone, 23a.

To a solution of phenyl(piperidin-4-yl)methanone (500 mg, 2.64 mmol) in dry DMF (8.8 mL) was added potassium carbonate (803 mg, 5.81 mmol) followed by 1-bromo-3-chloropropane (500 mg, 3.17 mmol). Mixture was warmed to 50 °C and stirred for 4 h. The reaction was quenched with H₂O and extracted three times with EtOAc. The organic layers were combined and washed with sat. aqueous NaCl, then dried over Na₂SO₄ and filtered. Concentration *in vacuo* provided the crude product which was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to yield the desired product in 533 mg (75%) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.92 (2H, d, *J* = 7.7 Hz), 7.54 (1H, t, *J* = 7.7 Hz), 7.45 (2H, t, *J* = 7.7 Hz), 3.59 (2H, t, *J* = 6.1 Hz), 3.23 (1H, m), 2.96 (2H, m), 2.49 (2H, t, *J* = 7.2 Hz), 2.11 (2H, td, *J* = 11.2, 3.5 Hz), 1.95 (2H, quintet, *J* = 6.6 Hz), 1.84 (4H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 202.6, 136.0, 132.8, 128.6, 127.8, 55.5, 53.3, 43.6, 43.2, 30.0, 28.7; HRMS (ES+, M+H) calc. for C₁₅H₂₁NOCI: 266.1312, found: 266.1312

General Procedure A:

A solution of (1-(3-chloropropyl)piperidin-4-yl)(phenyl)methanone (100 mg, 0.35 mmol) in THF (1.4 mL) was cooled to 0 $^{\circ}$ C. To this was added organomagnesium halide (2 equiv.) dropwise with stirring. The solution was then slowly warmed to ambient temperature, and stirring continued for 2 h, at which point starting material was consumed by TLC analysis. The reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layers were combined and dried over Na₂SO₄. Solution was then transferred to a round-bottom flask,

concentrated *in vacuo* to remove solvent, and then dissolved in DMF (1.0 mL). K_2CO_3 (98 mg) was added, followed by 4-hydroxybenzonitrile (63 mg, 0.53 mmol). Mixture was warmed to 50 °C and stirred for 6 h. The reaction mixture was quenched with H₂O and extracted with EtOAc. The organic layers were combined and washed with sat. aqueous NaCl and dried over Na₂SO₄. Concentration *in vacuo* provided the crude product, which was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to provide the desired products **4-10, 13**.

4-(3-(4-(hydroxydiphenylmethyl)piperidin-1-yl)propoxy)benzonitrile, 2, MIV-2. Phenylmagnesium bromide (3.0 M in Et₂O) was used as described in general procedure A to provide the desired product in 99 mg (66%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, J = 8.7 Hz), 7.48 (4H, d, J = 7.7 Hz), 7.30 (4H, t, J = 7.7 Hz), 7.18 (2H, t, J = 7.7 Hz), 6.92 (2H, d, J = 8.7 Hz), 4.03 (2H, t, J = 6.2 Hz), 2.98 (2H, d, J = 11.8 Hz), 2.47 (3H, m), 2.30 (1H, br s), 1.98 (4H, m), 1.51 (4H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 146.05, 134.1, 128.4, 126.7, 125.9, 119.4, 115.3, 103.8, 79.6, 66.8, 55.1, 54.3, 44.2, 26.7, 26.5; HRMS (ES+, M+H) calc. for C₂₈H₃₁N₂O₂: 427.2386, found: 427.2390

4-(3-(4-(hydroxy(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 5.

Cycolhexylmagnesium bromide (18% in THF) was used as described in general procedure A to provide the desired product in 36 mg (30%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, J = 8 Hz), 7.32 (5H, m), 6.92 (2H, d, J = 8 Hz), 4.38 (1H, d, J = 8 Hz), 4.03 (2H, t, J = 6 Hz), 3.02 (1H, d, J = 11 Hz), 2.89 (2H, d, J = 11 Hz), 1.96 (7H, m), 1.63 (1H, m), 1.46 (1H, m), 1.29 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.3, 143.3, 134.1, 128.5, 127.8, 126.7, 119.4, 115.3, 103.9, 78.9, 66.8, 55.3, 53.8, 53.7, 43.2, 28.5, 28.4, 26.6; HRMS (ES+, M+H) calc. for C₂₂H₂₇N₂O₂: 351.2073, found: 351.2074

4-(3-(4-(1-hydroxy-1-phenylethyl)piperidin-1-yl)propoxy)benzonitrile, 6.

Methylmagnesium Bromide (3.0 M in Et₂O) was used as described in general procedure A to provide the desired product in 73 mg (58%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, J = 8.5 Hz), 7.40 (2H, d, J = 7.8 Hz), 7.33 (2H, t, J = 7.5 Hz), 7.24 (1H, t, J = 7.4 Hz), 6.92 (2H, d, J = 9 Hz), 4.02 (2H, t, J = 6.4 Hz), 2.97 (2H, t, J = 12 Hz), 2.47 (2H, t, J = 7.4 Hz), 1.97 (2H, m), 1.88 (2H, m), 1.63 (2H, m), 1.56 (3H, s), 1.51 (1H, m), 1.41 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 147.4, 134.0, 128.1, 126.8, 125.4, 119.4, 115.3, 103.9, 76.1, 66.9, 55.2, 54.3, 47.4, 26.7, 26.7, 26.6, 26.6; HRMS (ES+, M+H) calc. for C₂₃H₂₉N₂O₂: 365.2229, found: 365.2228

4-(3-(4-(1-hydroxy-1-phenylpentyl)piperidin-1-yl)propoxy)benzonitrile, 7.

n-Butylmagnesium chloride (2.0 M in THF) was used as described in general procedure A to provide the desired product in 64 mg (45%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (2H, d, J = 8 Hz), 7.33 (4H, m), 7.21 (1H, m), 6.91 (2H, d, J = 9.1 Hz), 4.02 (2H, t, J = 6.4 Hz), 3.01 (1H, d, J = 11.2 Hz), 2.90 (1H, d, J = 11.2), 2.45 (2H, t, J = 7.2 Hz), 1.95 (3H, m), 1.82 (4H, m), 1.62 (1H, m), 1.39 (3H, m), 1.25 (3H, m), 0.92 (1H, m), 0.82 (3H, t, J = 7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.5, 145.1, 134.1, 128.0, 126.4, 125.9, 119.4, 115.3, 103.9, 78.4, 66.9, 55.2, 54.3, 46.9, 39.0, 26.7, 26.5, 26.1, 25.7, 23.3, 14.1; HRMS (ES+, M+H) calc. for C₂₆H₃₅N₂O₂: 407.2699, found: 407.2701

4-(3-(4-(cyclopropyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 8. Cyclopropylmagnesium bromide (0.5 M in THF) was used as described in general procedure A to provide the desired product in 74 mg (56%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, *J* = 9 Hz), 7.45 (2H, d, *J* = 8 Hz), 7.33 (2H, t, *J* = 7.5 Hz), 7.23 (1H, t, *J* = 7.2 Hz), 6.92 (2H, d, *J* = 9 Hz), 4.03 (2H, t, *J* = 6.2 Hz), 3.01 (1H, d, *J* = 11 Hz), 2.95 (1H, d, *J* = 11 Hz), 2.48 (2H, t, *J* = 7.2 Hz), 1.94 (4H, m), 1.79 (2H, m), 1.49 (3H, m), 1.35 (1H, m), 0.60 (1H, m), 0.53 (1H, m), 0.32 (1H, m), 0.09 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 146.8, 134.1, 128.1, 134.1, 128.0, 126.7, 125.7, 119.4, 115.3, 103.9, 75.9, 66.9, 55.2, 54.4, 54.3, 48.0, 26.8, 26.7, 26.6, 18.2, 2.7, -0.1; HRMS (ES+, M+H) calc. for C₂₅H₃₁N₂O₂: 391.2386, found: 391.2383

4-(3-(4-(1-hydroxy-2-methyl-1-phenylpropyl)piperidin-1-yl)propoxy)benzonitrile, 9. Isopropylmagnesium chloride (2.0 M in THF) was used as described in general procedure A to provide the desired product in 56 mg (41 %): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (2H, d, J = 9 Hz), 7.32 (4H, m), 7.21 (1H, t, J = 7 Hz), 6.90 (2H, d, J = 9 Hz), 4.00 (2H, t, J = 6 Hz), 3.00 (1H, d, J = 11.5 Hz), 2.97 (1H, d, J = 11.5 Hz), 2.50 (2H, t, J = 7 Hz), 2.32 (1H, sept, J = 7 Hz), 2.05-1.84 (6H, m), 1.45 (1H, m), 1.25 (3H, m), 0.87 (3H, d, J = 7 Hz), 0.76 (3H, d, J = 7 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ (ppm): 162.4, 142.8, 134.1, 127.7, 126.6, 126.5, 119.4, 115.3, 103.9, 80.3, 66.8, 55.2, 54.3, 54.2, 42.9, 33.3, 26.5, 25.9, 17.4, 16.4; HRMS (ES+, M+H) calc. for C₂₅H₃₃N₂O₂: 393.2542, found: 393.2542

4-(3-(4-(cyclobutyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 10. Cyclobutylmagnesium Bromide (0.2 M in THF) was prepared by dissolving cyclobutyl bromide (150 mg, 1.1 mmol) in THF (5.0 mL), followed by addition of magnesium (25 mg, 1.1 mmol) and a catalytic amount of iodine. The mixture was stirred for 2 h at ambient temperature, and was used as described in general procedure A to provide the desired product in 85 mg (60 %): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (2H, d, *J* = 8 Hz), 7.34 (2H, d, *J* = 7.5 Hz), 7.30 (2H, t, *J* = 7.5 Hz), 7.20 (1H, t, *J* = 7 Hz), 6.90 (2H, d, *J* = 9 Hz), 4.00 (2H, t, *J* = 6 Hz), 3.14 (1H, pent, *J* = 9 Hz), 2.97 (1H, d, *J* = 11 Hz), 2.89 (1H, d, *J* = 11 Hz), 2.44 (2H, t, *J* = 7.5 Hz), 2.14 (1H, pent, J = 9 Hz), 1.94 (4H, m), 1.80 (4H, m), 1.59 (4H, m), 1.41 (1H, m), 1.28 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 143.8, 134.1, 127.9, 126.6, 126.3, 119.2, 115.3, 103.9, 73.3, 68.8, 55.2, 54.3, 54.2, 45.5, 42.6, 26.9, 26.6, 26.4, 23.4, 23.1, 17.6; HRMS (ES+, M+H) calc. for C₂₆H₃₃N₂O₂: 405.2542, found: 405.2539

4-(3-(4-(cyclohexyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 12. Cycolhexylmagnesium bromide (18% in THF) was used as described in general procedure A to provide the desired product in 59 mg (39%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (2H, d, J = 9 Hz), 7.31 (4H, m), 7.22 (1H, t, J = 7.5 Hz), 6.90 (2H, d, J = 9 Hz), 4.01 (2H, t, J = 6.5 Hz), 3.00 (1H, d, J = 11 Hz), 2.94 (1H, d, J = 11 Hz), 2.46 (2H, t, J = 7 Hz), 2.00-1.60 (12H, m), 1.50 (1H, d, J = 12 Hz), 1.29 (5H, m), 0.97 (2H, m), 0.77 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 143.2, 134.1, 127.7, 126.5, 126.4, 119.4, 115.5, 103.9, 80.2, 68.9, 55.3, 54.4, 54.3, 44.2, 42.4, 27.5, 26.9, 26.8, 26.7, 26.6, 26.5, 26.4, 25.9; HRMS (ES+, M+H) calc. for C₂₈H₃₇N₂O₂: 433.2855, found: 433.2854

Scheme 2. Synthesis of hydroxymethyl piperidine derivatives 11, 13-17.

4-(3-(4-(cyclopentanecarbonyl)piperidin-1-yl)propoxy)benzonitrile, 25.

Cyclopentyl(piperidin-4-yl)methanone (2.70 g, 10.0 mmol) was combined with K₂CO₃ (6.9 g, 50.0 mmol) in DMF (40.0 mL), followed by 1-bromo-3-chloropropane (1.55 g, 10.0 mmol). The reaction progress was monitored by LC-MS and upon completion of the reaction 4-cyanophenol (1.3 g, 11.0 mmol) was added and the reaction allowed to stir overnight. The mixture was poured onto water and extracted with EtOAc, washed with brine and dried over Na₂SO₄. The volatiles were removed under reduced pressure and the crude mixture purified on silica gel (9:1 CH₂Cl₂/MeOH) to provide the desired product in 2.71g (78%) as a light yellow oil: ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.56 (2H, d, *J* = 9.0 Hz), 6.93 (2H, d, *J* = 9.0 Hz), 4.05 (2H, t, *J* = 6.5 Hz), 3.00 (1H, quintet, *J* = 7.7 Hz), 2.94 (2H, m), 2.49 (2H, t, *J* = 7.1 Hz), 2.42 (1H, m), 1.99 (4H, m), 1.79 (4H, m), 1.68 (6H, m), 1.56 (2H, m); ¹³C NMR (150.9 MHz, CDCl₃) δ (ppm): 215.7, 162.5, 134.1, 119.4, 115.3, 103.9, 66.8, 55.1, 53.4, 49.4, 48.2, 29.5, 28.1, 26.7, 26.2; HRMS (ES+, M+H) calc. for C₂₁H₂₉N₂O₂: 341.2229, found: 341.2228

General procedure B:

4-(3-(4-(cyclopentanecarbonyl)piperidin-1-yl)propoxy)benzonitrile (30 mg, 0.09 mmol) was dissolved in THF (0.7 mL). Organometallic (2 equiv.) was added dropwise to the solution with stirring. Reaction was then warmed to 50 °C, and stirring was continued for 2 h. Reaction was quenched with sat. aqueous NH₄Cl, and extracted with EtOAc. The combined organic fractions

were washed with saturated NaCl and dried over Na_2SO_4 . Concentration *in vacuo* provided the crude product, which was purified by flash column chromatography (9:1 CH₂Cl₂/MeOH) to provide the desired products in 35 – 74% yield.

4-(3-(4-(cyclopentyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 11 (MIV-3)

Phenylmagnesium bromide (1.0 M in THF) was used as described in general procedure B to provide the desired product in 46 mg (74%): Chiral Separation: Semi-preparative purifications were carried out via stacked injections on a Waters Investigator SFC using a 10 x 250 mm Chiral Technologies CHIRALPAK IA column heated to 40 °C. The eluent was 55% EtOH (0.1% DEA) in CO₂ at a flow rate of 15 mL/minute. Backpressure was maintained at 100 bar. The *first* eluting peak (**11S**), retention time = 0.95 min was inferred as the *S* stereoisomer based upon the absolute configuration observed in the electron density map of the X-ray structure of the **MIV-3S**-Menin complex. The *second* eluting peak (11R), retention time = 2.3 min. was inferred as the *X*-ray structure of the **MIV-3R**-Menin complex.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (2H, d, J = 9 Hz), 7.37 (2H, d, J = 8 Hz), 7.30 (2H, t, J = 8 Hz), 7.22 (1H, t, J = 7 Hz), 6.88 (2H, d, J = 9 Hz), 4.07 (2H, t, J = 6 Hz), 3.21 (2H, m), 2.67 (3H, m), 2.19 (2H, m), 2.05 (2H, m), 1.95 (1H, m), 1.82 (1H, m), 1.72 (1H, m), 1.64 (1H, m), 1.59-1.40 (7H, m), 1.25 (1H, m), 1.07 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 143.9, 134.0, 127.7, 126.5, 126.4, 119.4, 115.3, 103.8, 79.6, 68.9, 55.2, 54.5, 54.4, 45.8,

45.3, 27.5, 27.3, 26.7, 26.4, 26.1, 26.0, 25.6; HRMS (ES+, M+H) calc. for C₂₇H₃₅N₂O₂: 419.2699, found: 419.2698

4-(3-(4-(cyclopentyl(3-fluorophenyl)(hydroxy)methyl)piperidin-1-yl)propoxy)benzonitrile, 13 (MIV-4).

3-Fluorophenylmagnesium bromide (1.0 M in THF) was used as described in general procedure B to provide the desired product in 22 mg (57%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, *J* = 9 Hz), 7.26 (1H, m), 7.13 (2H, m), 6.90 (3H, m), 4.02 (2H, t, *J* = 6 Hz), 3.06 (2H, m), 2.66 (1H, quintet, *J* = 8.5 Hz), 2.55 (2H, m), 2.03 (3H, m), 1.93 (1H, d, *J* = 13 Hz), 1.71 (4H, m), 1.57 (1H, m), 1.47 (6H, m), 1.10 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.8 (d, *J*_{CF} = 247 Hz), 162.3, 146.8 (d, *J*_{CF} = 6 Hz), 134.1, 129.1 (d, *J*_{CF} = 8 Hz), 122.3 (d, *J*_{CF} = 3 Hz), 119.4, 115.3, 114.1 (d, *J*_{CF} = 24 Hz), 113.4 (d, *J*_{CF} = 21 Hz), 103.9, 79.4, 66.7, 55.1, 54.2, 54.1, 46.0, 45.2, 27.4, 26.8, 26.3, 26.1, 26.0, 25.9, 25.5; HRMS (ES+, M+H) calc. for C₂₇H₃₄N₂O₂F: 437.2604, found: 437.2604

4-(3-(4-(cyclopentyl(3,5difluorophenyl)(hydroxy)methyl) piperidin-1yl)propoxy)benzonitrile, 14. 3,5-Difluorophenylmagnesium bromide (0.5 M in THF) was used as described in general procedure B to provide the desired product in 15 mg (36%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (2H, d, *J* = 9 Hz), 6.91 (4H, t, *J* = 8 Hz), 6.66 (1H, tt, *J* = 9.0, 2.2 Hz), 4.00 (2H, t, *J* = 6.3 Hz), 2.99 (2H, d, *J* = 11 Hz), 2.60 (1H, quintet, *J* = 9 Hz), 2.47 (2H, t, *J* = 7 Hz), 1.93 (5H, m), 1.75 (1H, m), 1.68-1.32 (10H, m), 1.05 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.83 (dd, *J*_{CF} = 247, 12 Hz), 162.3, 148.6 (t, *J*_{CF} = 8 Hz), 134.1, 119.4, 115.3, 109.8 (d, *J*_{CF} = 24 Hz), 104.0, 102.0 (t, *J*_{CF} = 24 Hz), 79.5, 77.3, 66.7, 55.2, 54.2, 54.1, 46.1, 45.4, 27.3, 26.9, 26.4, 26.2, 25.9, 25.5; HRMS (ES+, M+H) calc. for C₂₇H₃₃N₂O₂F₂: 455.2510, found: 455.2513

4-(3-(4-((3-chlorophenyl)(cyclopentyl)(hydroxy)methyl) piperidin-1yl)propoxy)benzonitrile, 15.

3-Chlorophenylmagnesium bromide (0.5 M in THF) was used as described in general procedure B to provide the desired product in 24 mg (60%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.56 (2H, d, *J* = 8.7 Hz), 7.42 (1H, s), 7.26 (2H, t, *J* = 7.6 Hz), 7.22 (1H, m), 6.92 (2H, d, *J* = 8.7 Hz), 4.02 (2H, t, *J* = 6.3 Hz), 2.97 (2H, d, *J* = 11 Hz), 2.70 (1H, quintet, *J* = 9 Hz), 2.47 (2H, t, *J* = 7 Hz), 1.95 (5H, m), 1.76 (1H, m), 1.71-1.41 (9H, m), 1.29 (1H, m), 1.04 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 162.4, 146.2, 134.1, 133.9, 128.9, 127.0, 126.8, 125.0, 119.4, 115.3, 103.9, 79.5, 66.8, 55.2, 54.3, 54.2, 45.9, 45.3, 27.5, 27.1, 26.5, 26.3, 26.1, 26.0, 25.6; HRMS (ES+, M+H) calc. for C₂₇H₃₄N₂O₂Cl: 453.2309, found: 453.2305

4-(3-(4-(cyclopentyl(hydroxy)(pyridin-2-yl)methyl)piperidin-1-yl)propoxy)benzonitrile, 16 (MIV-5).

2-Pyridylmagnesium bromide (0.25 M) was used as described in general procedure B to provide the desired product in 13 mg (35%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.52 (1H, d, *J* = 5 Hz), 7.70 (2H, t, *J* = 8 Hz), 7.57 (2H, d, *J* = 8 Hz), 7.31 (1H, d, *J* = 8 Hz), 7.21 (1H, dd, *J* = 8, 5 Hz), 6.92 (2H, d, *J* = 8 Hz), 5.72 (1H, br s), 4.03 (2H, t, *J* = 6 Hz), 3.03 (1H, m), 2.56 (3H, m), 2.09-1.75 (7H, m), 1.65 (2H, m), 1.49 (4H, m), 1.15 (2H, m), 0.76 (1H, m); ¹³C NMR (125.8 MHz, CDCl₃) δ (ppm): 162.2, 161.5, 147.0, 136.6, 134.1, 122.2, 121.1, 119.3, 115.3, 104.1, 78.1, 66.6, 55.1, 54.3, 54.2, 45.8, 45.4, 29.8, 27.1, 26.5, 26.1, 25.7; HRMS (ES+, M+H) calc. for C₂₆H₃₄N₃O₂: 420.2651, found: 420.2650

4-(3-(4-(cyclopentyl(hydroxy)(thiazol-2-yl)methyl)piperidin-1-yl)propoxy)benzonitrile, 17. Thiazol-2-yllithium (0.15 M in THF) was prepared by dissolving 2-bromothiazole (72.2 mg, 0.44 mmol) in THF and cooling to -78 °C. *n*-Butyllithium (0.18 mL, 2.5 M in hexanes) was slowly added, and then stirred for 20 min. at -78 °C. The solution was then used as described in general procedure B to provide the desired product in 47 mg (75%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.70 (1H, d, *J* = 3.2 Hz), 7.54 (2H, d, *J* = 8.7 Hz), 7.28 (1H, d, *J* = 3.2 Hz), 6.91 (2H, d, *J* = 8.7 Hz), 4.02 (2H, t, J = 6 Hz), 3.40 (1H, br s), 3.03 (2H, d, J = 11.2 Hz), 2.55 (3H, m), 2.05-1.85 (6H, m), 1.75 (2H, m), 1.47 (8H, m), 1.21 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 175.7, 162.3, 114.6, 134.1, 141.6, 134.1, 119.4, 119.2, 115.3, 103.9, 80.9, 66.8, 55.1, 54.1, 47.5, 45.1, 26.7, 26.4, 26.3, 26.0, 25.8, 25.5; HRMS (ES+, M+H) calc. for C₂₄H₃₂N₃O₂S: 426.2215, found: 426.2212

Scheme 3. Synthesis of 18 and 21

(1-(3-chloropropyl)piperidin-4-yl)(pyridin-2-yl)methanone, 23b.

To a solution of piperidin-4-yl(pyridin-2-yl)methanone (791 mg, 2.72 mmol) in dry DMF (9.1 mL) was added potassium carbonate (1.13 g, 8.16 mmol) followed by 1-bromo-3-chloropropane (514 mg, 3.26 mmol). Mixture was warmed to 50 °C and stirred for 4 h. The reaction was quenched with H₂O and extracted three times with EtOAc. The organic layers were combined and washed with sat. aqueous NaCl, then dried over Na₂SO₄ and filtered. Concentration *in vacuo* provided the crude product which was purified by flash chromatography (9:1 CH₂Cl₂/MeOH) to yield the desired product in 790 mg (83%) as a light yellow oil: ¹H NMR (400MHz,CDCl₃) δ (ppm): 8.66 (1H, d, *J* = 4.4 Hz), 8.01 (1H, d, *J* = 8.3 Hz), 7.82 (1H, t, *J* = 7.8

Hz), 7.44 (1H, m), 3.83 (1H, m), 3.59 (2H, t, J = 6.5 Hz), 2.95 (2H, d, J = 11.2 Hz), 2.50 (2H, t, J = 7.2 Hz), 2.16 (2H, m), 1.94 (4H, m), 1.77 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 203.7, 152.7, 148.8, 136.9, 126.9, 122.4, 55.7, 53.2, 43.3, 42.2, 30.0, 28.1; HRMS (ES+, M+H) calc. for C₁₄H₂₀N₂OCl: 267.1264, found: 267.1263

4-(3-(4-((3-fluorophenyl)(hydroxy)(pyridin-2-yl)methyl)piperidin-1-yl)propoxy)benzonitrile, 18.

A solution of (1-(3-chloropropyl)piperidin-4-yl)(pyridin-2-yl)methanone (100 mg, 0.35 mmol.) in THF (1.41 mL) was cooled to 0 °C. To this was added 3-Fluorophenylmagnesium bromide (1.0 M in THF) dropwise with stirring. The solution was then slowly warmed to ambient temperature, and stirring continued for 2 h, at which point starting material was consumed by TLC analysis. The reaction was quenched with sat. aqueous NH₄Cl and extracted with EtOAc. The organic layers were combined and dried over Na₂SO₄. Solution was then transferred to a round-bottom flask, concentrated *in vacuo* to remove solvent, and then dissolved in DMF (1.0 mL). K₂CO₃ (76 mg, 0.55 mmol) was added, followed by 4-hydroxybenzonitrile (131 mg, 1.10 mmol). Mixture was warmed to 50 °C and stirred for 6 h. The reaction mixture was quenched with H₂O and extracted with EtOAc. The organic layers were combined and washed with sat. aqueous NaCl and dried over Na₂SO₄. Concentration *in vacuo* provided the crude product, which was purified by reverse-phase HPLC chromatography to provide the desired product as an off-white powder in 106 mg (65%). Chiral Separation: Semi-preparative purifications were carried out via stacked injections on a Waters Investigator SFC using a 10 x 250 mm Chiral Technologies CHIRALPAK ID column heated to 40 °C. The eluent was 50% IPA (0.1% DEA) in CO₂ at a flow rate of 15 mL/minute. Backpressure was maintained at 100 bar. The *first* eluting peak (**18R**), retention time = 3.09 min. The *second* eluting peak (**18S**), retention time = 3.79 min. ¹H NMR (500 MHz,CDCl₃) δ (ppm): 8.85 (1H, d, *J* = 6 Hz), 8.43 (1H, d, *J* = 7.4 Hz), 8.37 (1H, t, *J* = 7.4 Hz), 7.79 (1H, t, *J* = 6.6 Hz), 7.59 (4H, m), 7.37 (1H, dd, *J* = 16, 8 Hz), 6.96 (3H, m), 4.33 (1H, br s), 4.01 (2H, t, *J* = 6 Hz), 3.59 (3H, m), 3.25 (2H, m), 3.07 (1H, m), 2.58 (1H, m), 2.44 (3H, m), 1.72 (1H, d, *J* = 14 Hz), 1.59 (1H, d, *J* = 14 Hz);); ¹³C NMR (125.8 MHz, CDCl₃) δ (ppm): 162.8 (d, *J*_{CF} = 247 Hz), 162.2, 161.9, 148.4 (d, *J*_{CF} = 6.2 Hz), 147.4, 137.4, 134.1, 129.8 (d, *J*_{CF} = 8.1 Hz), 122.4, 121.5, 120.4, 119.4, 115.3, 113.9, 113.7, 113.5, 113.3, 104.0, 78.6, 66.7, 54.9, 54.0, 26.5, 25.6, 25.3; HRMS (ES+, M+H) calc. for C₂₇H₂₉N₃O₂F: 446.2244, found: 446.2248

4-(3-(4-((3-fluorophenyl)(hydroxy)(pyridin-2-yl)methyl)piperidin-1-yl)propoxy)benzenesulfonamide 21:

A solution of (1-(3-chloropropyl)piperidin-4-yl)(pyridin-2-yl)methanone (100 mg, 0.35 mmol.)in THF (1.41 mL) was cooled to 0 °C. To this was added 3-fluorophenylmagnesium bromide (1.0 M in THF) dropwise with stirring. The solution was then slowly warmed to ambient temperature, and stirring continued for 2 h, at which point starting material was consumed by TLC analysis. The reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The organic layers were combined and dried over Na₂SO₄. Solution was then transferred to a round-

bottom flask, concentrated *in vacuo* to remove solvent, and then dissolved in DMF (1.0 mL). K₂CO₃ (76 mg, 0.55 mmol) was added, followed by 4-hydroxybenzenesulfonamide (190 mg, 1.10 mmol). Mixture was warmed to 50 °C and stirred for 6 h. The reaction mixture was quenched with H₂O and extracted with EtOAc. The organic layers were combined and washed with sat. aqueous NaCl and dried over Na₂SO₄. Concentration in vacuo provided the crude product, which was purified by reverse-phase HPLC chromatography to provide the desired product as an off-white powder in 136 mg (74%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.47 (1H, d, *J* = 4.9 Hz), 7.82 (2H, d, *J* = 8.9 Hz), 7.67 (1H, td, *J* = 10, 7 Hz), 7.44 (1H, d, *J* = 8 Hz), 7.36 (2H, m), 7.26 (1H, m), 7.16 (1H, m), 6.93 (2H, d, J = 9 Hz), 6.87 (1H, m), 6.05 (1H, br s), 5.10 (1H, br s), 4.02 (2H, t, J = 6 Hz), 2.92 (2H, m), 2.46 (2H, t, J = 7 Hz), 2.36 (1H, t, J = 11 Hz), 1.94 (4H, m), 1.62 (2H, m), 1.45 (1H, d, J = 13 Hz), 0.97 (1H, d, J = 13 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 163.1 (d, J_{CF} = 242 Hz), 162.5, 162.1, 148.4 (d, J_{CF} = 7 Hz), 147.3, 137.4, 133.8, 129.8 (d, $J_{CF} = 8$ Hz), 128.6, 122.3, 121.5, 120.4, 114.8, 113.7 (d, $J_{CF} = 21$ Hz), 113.4 (d, J_{CF} = 22 Hz), 78.6, 66.9, 55.0, 54.1, 54.0, 44.7, 26.7, 26.0, 25.8; HRMS (ES+, M+H) calc. for C₂₆H₃₁N₃O₄SF: 500.2019, found: 500.2020

Scheme 4. Synthesis of aminomethyl piperidine 19

4-(3-(4-(cyclopentyl(amino)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 19 (MIV-6).

A CHCl₃ (4.78 mL, 0.25 M) solution of 4-(3-(4-(cyclopentyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile (1.0 g, 2.39 mmol) and sodium azide (1.16 g, 17.9 mmol) was cooled to 0 °C. To the solution H₂SO₄ was added dropwise (0.28 mL, 9.3 mmol). The mixture was allowed to warm to rt over 4h with stirring, then cooled to 0 °C and treated with NH₄OH until pH was basic. The biphasic solution was extracted with CH₂Cl₂ (3x) and the organic layers combined and dried over MgSO₄. Concentration under reduced pressure and concentration *in vacuo* afforded a crude oil which was purified by flash column chromatography (9:1 CH₂Cl₂/MeOH) to afford a colorless oil comprising an inseperable mixture of the desired azide and an elimination byproduct in 30 mg that was carried on to the next step.

4-(3-(4-(Azido(cyclopentyl)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile (30 mg, 0.07 mmol) was dissolved in degassed EtOH (0.5 mL) and Pd/C (2.7 mg) added in one portion.Reaction was placed under a balloon of H₂ gas and allowed to stir for 4 h at ambient temperature. The reaction was filtered over Celite and rinsed with MeOH. The filtrate was concentrated to afford an oil. RP-HPLC preparative purification afforded the desired product as a TFA salt. The mixture was treated with a StratoSpheres SPE MP-carbonate resin cartridge to give title compound as a free base in 20 mg (2%). Chiral Separation: Semi-preparative purifications were carried out via stacked injections on a Waters Investigator SFC using a 10 x 250 mm Chiral Technologies CHIRALPAK ID column heated to 40 °C. The eluent was 50% MeOH (0.1%) DEA) in CO₂ at a flow rate of 15 mL/minute. Backpressure was maintained at 100 bar. The *first* eluting peak (**19S**), retention time = 3.97 min. was inferred as the *S* stereoisomer based upon the absolute configuration observed in the electron density map of the X-ray structure of the **MIV-6**R-Menin complex. The *second* eluting peak (**19R**), retention time = 5.38 min. was inferred as the *R* stereoisomer based upon the absolute configuration observed in the electron density map of the the electron density map of the X-ray structure of the **MIV-6**R-Menin complex.

¹H NMR (600 MHz, CDCl₃) δ 7.54 (2H, d, *J* = 6.0 Hz), 7.43 (2H, d, *J* = 7.2 Hz), 7.31 (2H, t, *J*=7.2 Hz), 7.22 (1H, t, *J* = 7.2 Hz), 6.91 (2H, d, *J* = 6.0 Hz), 4.02 (2H, t, *J* = 8.4 Hz), 3.05-2.96 (2H, m), 2.62 (1H, m), 2.47 (2H, br s), 1.96-1.89 (4H, m), 1.73 (1H, m), 1.62-1.40 (9H, m), 1.29-1.24 (2H, m), 1.13-1.05 (2H, m); ¹³C NMR (150.9 MHz, CDCl₃) δ (ppm): 162.4, 144.5, 134.1, 127.6, 127.5, 126.1, 119.42, 115.3, 103.9, 66.9, 61.3, 55.2, 54.7, 54.6, 46.4, 45.6, 27.6, 27.1, 26.7, 26.6, 26.5, 25.9, 25.6; HRMS (ES+, M+H) calc. for C₂₈H₃₀N₂O₂: 418.858, found: 418.2857

Scheme 5. Synthesis of hydroxymethyl piperidine 22.

(1-benzylpiperidin-4-yl)(cyclopentyl)(pyridin-2-yl)methanol, 27.

2-Bromopyridine (873 mg, 5.54 mmol), was dissolved in THF (30 mL), and cooled to -78 °C. To this solution was added *n*-butlyllithium (2.2 mL, 2.5 M in hexanes, 5.53 mmol) dropwise with stirring. Stirring was continued for 20 min. (1-Benzylpiperidin-4-yl)(cyclopentyl)methanone (500 mg, 1.84 mmol) dissolved in THF (2.0 mL), was added dropwise to stirring solution of pyridin-2-yllithium at -78 °C. The mixture was stirred for 20 min. and then slowly warmed to room temperature. Reaction was stirred for 2 h, then quenched with sat. aqueous NH_4Cl . The mixture was extracted with EtOAc, and the organic layers combined and washed with sat. aqueous NaCl and dried over Na₂SO₄. Concentration in vacuo provided the crude product, which was purified by flash column chromatography (9:1 CH₂Cl₂/MeOH) to provide the desired product as a white solid in 599 mg (93%): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.51 (1H, d, J = 4.7 Hz), 7.66 (1H, t, J = 8.1 Hz), 7.30-7.17 (7H, m), 5.66 (1H, br s), 3.45 (2H, d, J = 2.0 Hz), 2.90 (2H, m), 2.62 (1H, quintet, J = 8.5 Hz), 1.97-1.61 (8H, m), 1.47 (4H, m), 1.14 (2H, m), 0.69 (1H, m); ¹³C NMR (125.8 MHz, CDCl₃) δ (ppm): 162.1, 146.9, 138.5, 136.3, 129.3, 128.2, 127.0, 121.9, 121.2, 78.3, 63.5, 54.5, 54.3, 46.0, 45.8, 27.9, 27.1, 26.6, 26.5, 26.2, 25.7; HRMS (ES+, M+H) calcd for $C_{23}H_{31}N_2O$: 351.2436, found: 351.2433

4-(3-(4-(cyclopentyl(hydroxy)(pyridin-2-yl)methyl)piperidin-1yl)propoxy)benzenesulfonamide, 20 (MIV-7).

In a Parr vessel, (1-benzylpiperidin-4-yl)(cyclopentyl)(pyridin-2-yl)methanol (500 mg, 1.84 mmol) was dissolved in EtOH (10 mL). The solution was degassed by bubbling Argon through the solution for 10 min. Pd(OH)₂ was then added and the vessel was quickly inserted into the Parr Shaker apparatus. The system was purged with H₂ three times, and H₂ pressure was then set to 70 psi. The vessel was heated to 50 °C, and shaken for 12-24 h. When the reaction progress was complete by LCMS, the mixture was filtered through a celited pad and washed with EtOH. The filtrate was concentrated *in vacuo* to yield the crude product, which was carried forward to the next step.

Cyclopentyl(piperidin-4-yl)(pyridin-2-yl)methanol (30 mg, 0.12 mmol) was dissolved in DMF (1.0 mL). 4-(3-chloropropoxy)benzenesulfonamide (29 mg, 0.12 mmol) and K₂CO₃ (32 mg, 0.23 mmol) were added and reaction was wamred to 50 °C. Stirring was continued overnight. The reaction mixture was quenched with aqueous NH₄Cl. The mixture was extracted with EtOAc, and the organic layers combined and washed with sat. aqueous NaCl and dried over Na₂SO₄. Concentration *in vacuo* provided the crude product, which was purified by RP-HPLC to provide the desired product as a white solid in 23 mg (42%): ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.45 (1H, d, *J* = 4.7 Hz), 7.80 (2H, d, *J* = 8.4 Hz), 7.65 (1H, t, *J* = 7.8 Hz), 7.27 (1H, d, *J* = 7.8 Hz), 7.17 (1H, t, *J* = 6.1 Hz), 6.90 (2H, d, *J* = 7.8 Hz), 5.66 (1H, br s), 5.06 (2H, br s), 3.98 (2H, t, *J* = 6.4 Hz), 2.98 (1H, d, *J* = 10.2 Hz), 2.91 (1H, d, *J* = 10.2 Hz), 2.58 (1H, m), 2.44 (2H, m), 1.96-1.69 (8H, m), 1.60-1.42 (6H, m), 1.12 (2H, m), 0.69 (1H, m); ¹³C NMR (125.8 MHz, CDCl₃) δ (ppm): 162.4, 161.8, 147.0, 136.5, 133.8, 128.6, 122.0, 121.2, 114.8, 78.3, 66.9,

55.2, 54.5, 54.4, 45.8, 45.7, 27.6, 27.1, 26.6, 26.5, 26.4, 26.1, 25.7; HRMS (ES+, M+H) calc. for C₂₅H₃₆N₃O₄S: 474.2427, found: 474.2430

5. ¹H and ¹³C NMR spectra

0 N က 4 - ທ ဖ È ~ ω _ ດ 2 F

mdd

4 ¹H NMR Spectrum (400 MHz, CDCl₃)

5 ¹H NMR Spectrum (400 MHz, CDCl₃)

7 ¹H NMR Spectrum (400 MHz, CDCl₃)

¹H NMR Spectrum (400 MHz, CDCl₃)

bb

12

- ທ ဖ Ŀ ω ດ 9

M W W

mdd

0

N

က

4

~

F -

20 (MIV-7) 0 NH₂ 1H NMR Spectrum (500 MHz, CDCI₃) -z ____OH

23a 1H NMR Spectrum (400 MHz, CDCI₃) 0=

mdd 0 2 က 4 - ທ 9 ω ດ $\overline{\Omega}$ 23b ¹H NMR Spectrum (400 MHz, CDCl₃) 9 F

0=

2 (MIV-2) 13C NMR Spectrum (100 MHz, CDCl3)

¹³C NMR Spectrum (100 MHz, CDCl₃)

/ Ý Ý

¹³C NMR Spectrum (100 MHz, CDCl₃)

ومديرة أوادا بالإندارة والمرافعة وأعدارا والمراجع ومواجع والمرجبة ومجلية

mdd

ant stated a state in the state of a state of a state of a state of the state of th

CN P

¹³C NMR Spectrum (100 MHz, CDCl₃)

C. State

mdd

CN ¹³C NMR Spectrum (125 MHz, CDCl₃) é

ļ

Р Ч

والمعالمة المحافظ المعالمة المحافظ والمحافظ و

the second

HO N 11 (MIV-3) 13C NMR Spectrum (100 MHz, CDCI₃)

Р

CN CN CN CN Ч Ч

12 ¹³C NMR Spectrum (100 MHz, CDCI₅)

mdd

on A 13 (MIV-4) ¹³C NMR Spectrum (100 MHz, CDCl₃)

≝∕

́ Ŷ

فخلته بالغافيته بتالمقب فكتوبال وراجا يقرضك فكنفت أراغد أيريته والمتعاط والمتعالية والمتعالية والمتعالية والمنافعة والم لير وليانيني الترابية endanti se se de la contra de la La contra de la contr

CN 6 ę́

14 ¹³C NMR Spectrum (100 MHz, CDC₃)

16 (MIV-5) 13 C NMR Spectrum (125 MHz, CDCl₃)

¹³C NMR Spectrum (125 MHz, CDCl₃)

, CN 19 (MIV-6) ¹³C NMR Spectrum (150 MHz, CDCl₃) H₂N

¹³C NMR Spectrum (100 MHz, CDCl₃)

ō	
$\langle \rangle$	arum
	23a MR Spec
	ž

r visit de la construcción de la c	- Udd
na n	- 0
	- 8
	- 4
	- 09
	- 8
an shirts a share and a shirt shirts and	- <mark>9</mark>
	120
	140
s den je verske steret en stere	- 160
na godina na sa	- 180
	5 00
	220 -

13C NMR Spectrum (100 MHz, CDCI₃) 0=

mdd

13C NMR Spectrum (100 MHz, CDCI₃) Ч,

فالتطيب بالمحتواة بالمتعادينا يزيد بعضائه والمتها فالمتحد المكرمة والملافئ

6. Chiral SFC Traces

4-(3-(4-(cyclopentyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 11

(MIV-3):

Semi-preparative purification:

Second Eluting Peak:

4-(3-(4-((3-fluorophenyl)(hydroxy)(pyridin-2-yl)methyl)piperidin-1-yl)propoxy)benzonitrile, 18.

Semi-preparative purification:

Racemic Analytical Chiral SFCMS:

First Eluting Peak:

Second Eluting Peak:

4-(3-(4-(cyclopentyl(hydroxy)(phenyl)methyl)piperidin-1-yl)propoxy)benzonitrile, 19 (MIV-6).

Semi-preparative purification:

Racemic Analytical Chiral SFCMS:

First Eluting Peak:

Second Eluting Peak:

