## SUPPORTING INFORMATION

## <sup>64</sup>Cu-Labeled of Inhibitors of Prostate Specific Membrane Antigen for PET Imaging of Prostate Cancer

Sangeeta Ray Banerjee<sup>1</sup>, Mrudula Pullambhatla<sup>1</sup>, Catherine A. Foss<sup>1</sup>, Sridhar Nimmagadda<sup>1</sup>, Riccardo Ferdani<sup>2</sup>, Carolyn J. Anderson<sup>2</sup>, Ronnie C. Mease<sup>1</sup>, Martin G. Pomper<sup>1</sup>

Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231

Corresponding Author: Martin G. Pomper, M.D., Ph.D.

Johns Hopkins Medical Institutions

1550 Orleans Street, 492 CRB II

Baltimore, MD 21231

410-955-2789 (T)

443-817-0990 (F)

Email:mpomper@jhmi.edu

Co-corresponding Author: Sangeeta Ray Banerjee, Ph.D.

Johns Hopkins Medical Institutions

1550 Orleans Street, 4M07 CRB II,

Baltimore, MD 21287

Phone: 410-955-8697

Fax: 410-614-3147

Email:sray9@jhmi.edu

## **TABLE OF CONTENTS**

| 1  | Figure S1. Structure of ZJ43                             | S3   |
|----|----------------------------------------------------------|------|
| 2. | Figure S2. In vivo blocking study of [64Cu]6B using ZJ43 | S3   |
| 3. | Spectral and HPLC data                                   | S4-6 |

Figure S1. Structure of ZJ43

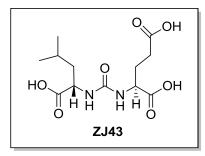
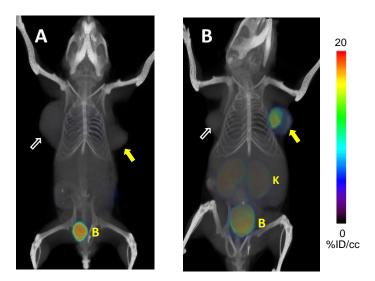
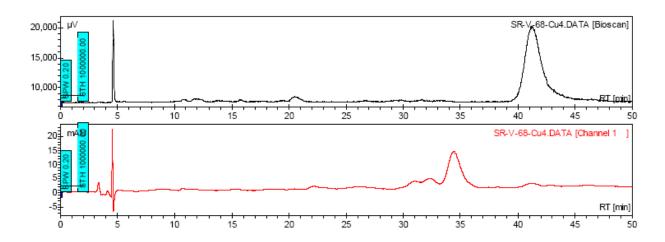
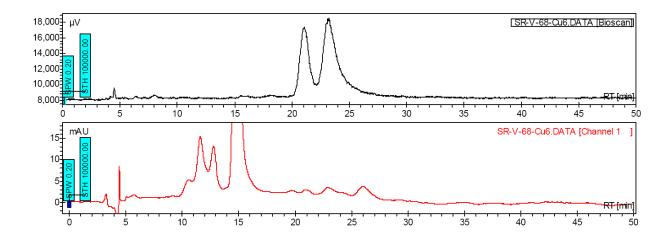
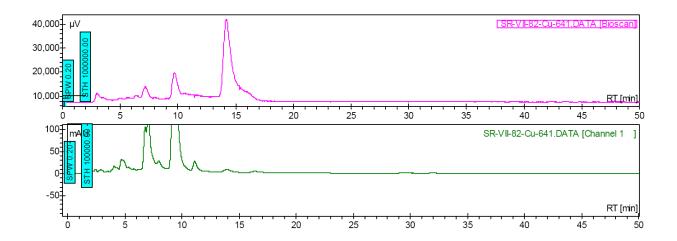




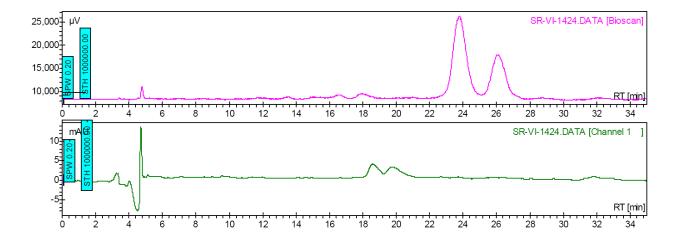

Figure S2.



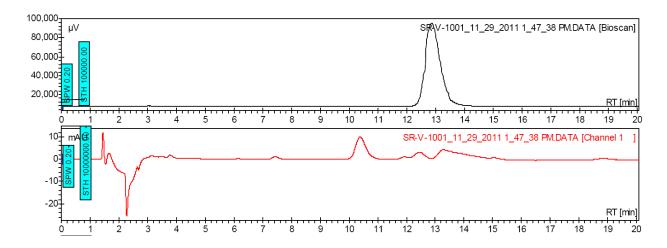

**Figure S2.** PET-CT images of PSMA+ PIP and PSMA- flu tumor-bearing male SCID mice using ~200  $\mu$ Ci of [ $^{64}$ Cu]**6B** per mouse. Images obtained with (left, A) and without (right, B) blockade of PSMA using the potent, selective PSMA inhibitor, ZJ43, as the blocking agent (50 mg/kg). Reduction of radiopharmaceutical uptake in both the tumor and kidneys (another PSMA+ site) upon co-treatment with ZJ43 provides a further check on PSMA-specific binding. Images were acquired after 30 min post injection. All images are normalized.


**Figure S3**. Preparative HPLC chromatograms for [ $^{64}$ Cu]**3**; radio-HPLC peak (top) and uv peak at 34 min is for unchelated **3** at  $\lambda$ = 220 nm (bottom).




**Figure S4**. Preparative HPLC chromatograms for [ $^{64}$ Cu]**4**; radio-HPLC peak (top) and uv peak at 15 min for unchelated **4**;  $\lambda = 220$  nm (bottom), expanded to show purity of the radiolabeled product.




**Figure S5**. Preparative HPLC chromatograms for  $[^{64}\text{Cu}]$ 5; radio-HPLC peak (top) and uv peak at 10 min for unchelated 5,  $\lambda = 220$  nM (bottom), expanded to show purity of the radiolabeled product.



**Figure S6**. Preparative HPLC chromatograms for [ $^{64}$ Cu]**6**; radio-HPLC peak (top) and uv peak at 18-21 min for unchelated **6**,  $\lambda = 220$  nM (bottom).



**Figure S6**. Preparative HPLC chromatograms for [ $^{64}$ Cu]**7**; radio-HPLC peak (top) and uv peak at 10.4 min for unchelated **7**,  $\lambda = 220$  nM (bottom).

