### *E. coli* "late" Acylations of lipid A precursor (Kdo<sub>2</sub>-lipid IV<sub>A</sub>)



**Supplementary Figure S1:** *E. coli* "late" Acylations of lipid A precursor (Kdo<sub>2</sub>-lipid IV<sub>A</sub>). Biosynthetic pathway from tetra acyl lipid A to hexa acyl lipid A as suggested by various studies, i.e., by Clementz et al., **1996**. *J. Biol. Chem.* 271:12095–12102. Briefly, in *E. coli*, late acyltransferase enzymes LpxL and LpxM sequentially add the fifth and sixth fatty acids, respectively, to precursor lipid IV<sub>A</sub> (tetra-acyl lipid A) after glycosylation with two 3-deoxy-Dmanno-octulosonic acid (Kdo) sugars. In *E. coli*, laurate transferase, encoded by *lpxL* (formerly *htrB*), acylates (Kdo)<sub>2</sub>-lipid IV<sub>A</sub>, adding a lauric acid (12:0) to 3-hydroxymyristic acid [14:0(3-OH)] at the 2' position of the distal glucosamine. *E. coli* myristate transferase, encoded by *lpxM* (formerly *msbB*), uses the penta-acylated lipid A structure as a substrate, adding a myristic acid (14:0) onto 3-hydroxymyristic acid [14:0(3-OH)], which is located at the 3' position of the distal glucosamine.

# Supplementary Table S1: Primer Table

| Target |              |                      | Length |
|--------|--------------|----------------------|--------|
| Gene   | Primer/Probe | Sequence             | (bp)   |
| rrsA   | Forward      | CGTGGCTTCCGGAGCTAAC  | 60     |
|        | Reverse      | TTTAACCTTGCGGCCGTACT |        |
|        | Probe        | CGTTAAGTCGACCGCCT    |        |
| lpxL * | Forward      | TGCGCGGCAGTTTGG      | 53     |
|        | Reverse      | TCGTTCGGGCGATAAACG   |        |
|        | Probe        | TGCAGGAACCGGGTAT     |        |

\* *lpxL* formerly known as *htrB* 

#### Supplementary Figure S2 Α W 3110, wild-type, 37 °C MPLA<sub>5</sub> 4x 14:0(3-OH) MPLA<sub>6</sub> 12:0 4x 14:0(3-OH) 1505.8 12:0, 14:0 1716.0 -H<sub>2</sub>O MPLA<sub>4</sub> MPLA<sub>3</sub> Intensity 1487.9 DPLA<sub>6</sub> 1243.8 1017.7 1796.1 1261.8 1035.7 1279.7 1471.8 1688.0 +Na 744. 1534.0 1053.7 1202.7 1914.9 W 3110, wild-type, 42 °C в MPLA<sub>6</sub> MPLA<sub>5</sub> 4x 14:0(3-OH) 4x 14:0(3-OH) 12:0, 14:0 12:0 1716.1 1505.8 MPLA<sub>4</sub> Intensity -H<sub>2</sub>O MPLA<sub>3</sub> 1487.9 1261.8 1017.8 1243.8 1279.8 1534.0 1744.1 1688.1 1472.0 1035.7 DPLA<sub>6</sub> 1323.6 2000 1200 m/z 1600

**Supplementary Figure S2:** Negative-ion MALDI-MS spectra from *E. coli* wild-type strain W3110. MALDI-MS of lipid A isolated from *E. coli* wild-type strain W3110 grown A) at 37°C and B) at 42°C. Lipid A mass peaks are annotated with the assigned composition of fatty acids. As expected, the major lipid A species was observed at m/z 1716.0 and m/z 1716.1 at 37 and 42°C that correspond to the typical wild-type mono-phoshoryl hexa-acyl lipid A (MPLA<sub>6</sub>) containing four primary 3-hydroxymyristic acids, one secondary myristic acid, and one secondary lauric acid, [4x 14:0(3-OH), 14:0, 12:0]. Other components of the heterogeneous lipid A mixture were observed at m/z 1505.8, corresponding to penta-acyl MPLA<sub>5</sub>, as well as tetra-acyl MPLA<sub>4</sub> at m/z 1279.7, consisting of one lauric and three or four 3-hydroxymyristic acids, respectively.

Pentaacyl lipid A



DPLA₅ m/z 1614.0, n=1 expected pentaacyl lipid A species (observed at 30, 37, and 42 °C)



*E. coli – lpxL*- mutant lipid A structures

Hexaacyl lipid A





*MPLA*<sub>5</sub> *m*/z 1561.8, n=0 predominantly observed at 42 °C

Hexaacyl lipid A



predominantly observed at 37 °C

predominantly observed at 42 °C

### Supplementary Figure S3 - continued

**Tetraacyl lipid A** 



**DPLA**<sub>4</sub> *m*/*z* 1403.8, n=1

Tetraacyl lipid A species (observed at 30, 37, and 42 °C)

### **Supplementary Figure S3:**

Overview of observed lipid A species from *E. coli lpxL* mutant strain grown at different temperatures (at 30°C, at 37°C, and at 42°C). *E. coli lpxL* mutant strain MLK217 is lacking a lauric acid in its structure (12:0 fatty acid,  $\Delta M$ = -182 Da) and accordingly *lpxL* mutant strain showed the expected pentaacyl lipid A species (marked in green) consisting of four 3-hydroxymyristic acids [4x 14:0(3OH)] and one myristic acids [14:0] in secondary 3'-O position (distal glucosamine) under all temperature growth conditions.

At 37°C the predominant pentaacyl species consisted of four 3hydroxymyristic acids [4x 14:0(3OH)] and one palmitoleic acid [16:1] in secondary 2'-O position (distal glucosamine), marked in pink. In contrast, at 42°C, the lipid A profile changed to a pentaacyl species consisting of four 3-hydroxymyristic acids [4x 14:0(3OH)] and one palmitic acid [16:0] in secondary 2-O position (proximal glucosamine). Similarly, corresponding hexaacyl species were observed at 37°C with the following fatty acid composition, specifically [4x 14:0(3OH), 14:0, 16:1] with the palmitoleic acid [16:1] in secondary 2'-O position (distal glucosamine).

At 42°C a hexaacyl lipid A species was observed with a fatty acid composition of [4x 14:0(3OH), 14:0, 16:0] with the palmitic acid [16:0] in secondary 2-O position (proximal glucosamine). The tetraacyl lipid A species consisting of four 3-hydroxymyristic acids [4x 14:0(3OH)] was observed under all temperature conditions.



**Supplementary Figure S4-A:** Negative-ion MALDI-MS profiles of lipid As following a time-course study. MALDI-LIT MS of lipid A isolated from *E. coli lpxL* mutant strain MLK217 grown at 30°C for A1) 6 hours, A2) 14 hours, A3) 18 hours, and A4) 24 hours. *E. coli lpxL* mutant strain MLK217 is lacking a lauric acid in its structure (12:0 fatty acid,  $\Delta$ M= -182 Da). Lipid A mass peaks are annotated with the assigned composition of fatty acids. Major lipid A species observed were the tetraacyl species consisting of four 3-hydroxymyristic acids [4x 14:0(3OH)] (at *m/z* 1323.8), and the expected pentaacyl species consisting of four 3-hydroxymyristic acids [4x 14:0(3OH)] and one myristic acids [14:0] in secondary 3'-O position (at *m/z* 1533.9). A less abundant hexaacyl species was observed at *m/z* 1769.9 corresponding to a fatty acid composition of [4x 14:0(3OH), 14:0, 16:1] with the palmitoleic acid [16:1] in secondary 2'-O position. During the time-course lipid A acylation patterns and acyl group compositions do vary slightly but not significantly.



**Supplementary Figure S4-B:** Negative-ion MALDI-MS of lipid A following a time-course study. MALDI- MS of lipid A isolated from *E. coli lpxL* mutant strain MLK217 grown at 37°C for B1) 4 hours, B2) 6 hours, B3) 14 hours, and B4) 24 hours. *E. coli lpxL* mutant strain MLK217 is lacking a lauric acid in its structure (12:0 fatty acid,  $\Delta M$ = -182 Da). Lipid A mass peaks are annotated with the assigned composition of fatty acids. Besides the tetraacyl species at *m*/*z* 1323.8 [4x 14:0(3OH)], and the expected pentaacyl species at *m*/*z* 1533.9 [4x 14:0(3OH), 14:0] with 14:0 in secondary 3'-O position, major lipid A species were observed at *m*/*z* 1559.8 [4x 14:0(3OH), 16:1] and at *m*/*z* 1769.9 [4x 14:0(3OH), 14:0, 16:1], both of the latter structures featuring the palmitoleic acid [16:1] in secondary 2'-O position (distal glucosamine). Lipid A acylation patterns and acyl group compositions do not significantly vary during the time-course.



**Supplementary Figure S4-C:** Negative-ion MALDI-MS of lipid A following a timecourse study. MALDI-MS of lipid A isolated from *E. coli lpxL* mutant strain MLK217 grown at 42°C for C1) 4 hours, C2) 6 hours, C3) 14 hours, and C4) 24 hours. *E. coli lpxL* mutant strain MLK217 is lacking a lauric acid in its structure (12:0 fatty acid,  $\Delta M$ = -182 Da). Lipid A mass peaks are annotated with the assigned composition of fatty acids. Besides the tetraacyl species at *m/z* 1323.8 [4x 14:0(3OH)], and the expected pentaacyl species at *m/z* 1533.9 [4x 14:0(3OH), 14:0] with 14:0 in secondary 3'-O position, major lipid A species were observed at *m/z* 1561.8 [4x 14:0(3OH), 16:0] and at *m/z* 1772.0 [4x 14:0(3OH), 14:0, 16:0], both of the latter structures featuring the palmitic acid [16:0] in secondary 2-O position (proximal glucosamine). Lipid A acylation patterns and acyl group compositions do not significantly vary during the time-course.



**Supplementary Figure S5:** Additional negative-ion MALDI-MS<sup>n</sup> spectra of pentaacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 37°C. MS<sup>n</sup> spectra of penta-acyl lipid A species at *m/z* 1559.8 [4x 14:0(3-OH), 16:1] with the palmitoleic acid [16:1] in 2'-O-position (on the distal glucosamine); also see Fig. 5 (main manuscript). (A) MS<sup>5</sup> of *m/z* 817.4 (selected from MS<sup>4</sup> 1071.6, selected from MS<sup>3</sup> 1315.6, selected from MS<sup>2</sup> 1559.8); (B) MS<sup>4</sup> of *m/z* 988.4 (selected from MS<sup>3</sup> 1315.6, selected from MS<sup>2</sup> 1559.8); and (C) MS<sup>5</sup> of *m/z* 744.5 (selected from MS<sup>4</sup> 988.4, selected from MS<sup>3</sup> 1315.6, selected from MS<sup>3</sup> 1315.6, selected from MS<sup>2</sup> 1559.8); and (C) MS<sup>5</sup> of *m/z* 744.5 (selected from MS<sup>4</sup> 988.4, selected from MS<sup>3</sup> 1315.6, selected from MS<sup>3</sup> 1315.6, selected from MS<sup>2</sup> 1559.8).





### Supplementary Figure S6 - continued



### Supplementary Figure S6:

Additional negative-ion MALDI-MS<sup>n</sup> spectra of pentaacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 42°C. MS<sup>n</sup> spectra of pentaacyl lipid A species at *m/z* 1561.9 [4x 14:0(3-OH), 16:0] with the palmitic acid [16:0] in 2-O-position (on the proximal glucosamine); also see Fig. 6 (main manuscript). (A) MS<sup>4</sup> of *m/z* 1061.6 (selected from MS<sup>3</sup> 1317.8, selected from MS<sup>2</sup> 1561.9); (B) MS<sup>5</sup> of *m/z* 817.4 (selected from MS<sup>4</sup> 1061.6, selected from MS<sup>3</sup> 1317.8, selected from MS<sup>3</sup> 1317.8, selected from MS<sup>2</sup> 1561.9); (C) MS<sup>5</sup> of *m/z* 835.5 (selected from MS<sup>4</sup> 1061.6, selected from MS<sup>2</sup> 1561.9); (E) MS<sup>4</sup> of *m/z* 794.5 (selected from MS<sup>3</sup> 1038.5, selected from MS<sup>2</sup> 1561.9). The abbreviation 'McL' indicates a McLafferty rearrangement.



#### B MS<sup>6</sup>: 1772.2 ► 1543.9 ► 1299.8 ► 1043.5 ► 817.4



D MS<sup>6</sup>: 1772.2 ► 1020.5 ► 794.4



### Supplementary Figure S7 - continued



#### Ε MS<sup>6</sup>: 1772.2 ► 1543.9 ► 1299.8 ► 1073.8 ► 817.4

### Supplementary Figure S7:

Negative-ion MALDI- MS<sup>n</sup> spectrum of hexaacyl lipid A at *m/z* 1772.2 from *E. coli* mutant strain MLK217 (*lpxL*) grown at 42°C. MS<sup>n</sup> spectra of hexaacyl lipid A species at *m/z* 1772.2 [4x 14:0(3-OH), 14:0, 16:0] with the palmitic acid [16:0] in 2-O-position (on the proximal glucosamine) are shown in Figure 7. Additional fragmentation details are shown here with (A) MS<sup>5</sup> of m/z 1043.5 (selected from MS<sup>4</sup> of m/z 1299.8, selected from MS<sup>3</sup> 1543.9, selected from MS<sup>2</sup> 1772.2); (B) MS<sup>6</sup> of *m*/*z* 817.4 (selected from MS<sup>5</sup> of *m*/*z* 1043.5, selected from MS<sup>4</sup> of m/z 1299.8, selected from MS<sup>3</sup> 1543.9, selected from MS<sup>2</sup> 1772.2); (C) MS3 of m/z 1020.5 (selected from MS2 1772.2); (D MS4 of m/z 794.4 (selected from MS<sup>3</sup> m/z 1020.5, selected from MS<sup>2</sup> 1772.2); and (E) MS<sup>6</sup> of m/z 817.4 (selected from MS<sup>5</sup> of *m*/z 1073.8, selected from MS<sup>4</sup> of *m*/z 1299.8, selected from MS<sup>3</sup> 1543.9, selected from MS<sup>2</sup> 1772.2). The abbreviation 'McL' indicates a McLafferty rearrangement.



### Supplementary Figure S8:

Negative-ion MALDI-MS<sup>n</sup> spectra of pentaacyl lipid A at *m/z* 1533.9 from *E. coli* mutant strain MLK217 (*lpxL*) grown at 42°C lacking a lauric acid in its structure (12:0 fatty acid,  $\Delta$ M= -182 Da) [corresponding fragmentation patterns are obtained from *E. coli* mutant strain MLK217 (*lpxL*) grown at lower temperature (i.e., 30° and 37°C)]. MS<sup>n</sup> spectra of penta-acyl lipid A species at *m/z* 1533.9 [4x 14:0(3-OH), 14:0] with the myristic acid [14:0] in 2'-O-position (on the distal glucosamine). (A) MS<sup>2</sup> of *m/z* 1533.9; (B) MS<sup>3</sup> of *m/z* 1305.7 (selected from MS<sup>2</sup> 1533.9); (C) MS<sup>4</sup> of *m/z* 1061.5 (selected from MS<sup>3</sup> 1305.7, selected from MS<sup>2</sup> 1533.9); (D) MS<sup>5</sup> of *m/z* 835.4 (selected from MS<sup>4</sup> 1061.5, selected from MS<sup>2</sup> 1533.9); (F) MS<sup>4</sup> of *m/z* 1061.5 (selected from MS<sup>3</sup> 1289.6, selected from MS<sup>3</sup> 1289.6, selected from MS<sup>2</sup> 1533.9). The abbreviation 'McL' indicates a McLafferty rearrangement.

# Supplementary Figure S8 - continued







**Supplementary Figure S9-A:** Negative-ion MALDI-MS<sup>n</sup> spectra of pentaacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 37°C. MS<sup>n</sup> spectra of pentaacyl lipid A species at *m/z* 1541.8 anhydro-[4x 14:0(3-OH), 16:1] with the palmitoleic acid [16:1] in 2'-O-position (on the distal glucosamine); lipid A species with *m/z* [1559.8 – H<sub>2</sub>O]. (A1) MS<sup>2</sup> of *m/z* 1541.8; (A2) MS<sup>3</sup> of *m/z* 1297.6; (A3) MS<sup>4</sup> of *m/z* 1071.5; (A4) MS<sup>4</sup> of *m/z* 970.4.

Low abundant isoform mixture of lipid A species with fatty acid compositions such as [4x 14:0(3-OH), 14:0, 14:1] [4x 14:0(3-OH), 12:0, 16:1]



**Supplementary Figure S9-B:** Negative-ion MALDI-MS<sup>n</sup> spectra of hexaacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 37°C. MS<sup>n</sup> spectra of hexaacyl lipid A species at *m*/*z* 1741.8 that appears to be a mixture of different lipid A species, i.e., [4x 14:0(3-OH), 14:0, 14:1], and [4x 14:0(3-OH), 12:0, 16:1] with the unsaturated acyl group [16:1 and 14:1, respectively] in 2'-O-position (on the distal glucosamine). These lipid A species were detected at low levels (Fig. 2B). (B1) MS<sup>2</sup> of *m*/*z* 1741.9; (B2) MS<sup>3</sup> of *m*/*z* 1541.7; (B3) MS<sup>4</sup> of *m*/*z* 1297.6; (B4) MS<sup>3</sup> of *m*/*z* 1497.7.



**Supplementary Figure S9-C:** Negative-ion MALDI-MS<sup>n</sup> spectra of tetraacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 37°C. MS<sup>n</sup> spectra of tetraacyl lipid A species at *m*/*z* 1333.7 [3x 14:0(3-OH), 16:1] with the palmitoleic acid [16:1] in 2'-O-position (on the distal glucosamine). (C1) MS<sup>2</sup> of *m*/*z* 1333.7; the asterisk \* indicates the minor fragment ion *m*/*z* 1079.4 which in panel (C4) is selected for further MS<sup>3</sup> fragmentation. (C2) MS<sup>3</sup> of *m*/*z* 1089.4; (C3) MS<sup>4</sup> of *m*/*z* 835.3; (C4) MS<sup>3</sup> of *m*/*z* 1079.4.



**Supplementary Figure S9-D:** Negative-ion MALDI-MS<sup>n</sup> spectra of tetraacyl lipid A from *E. coli* mutant strain MLK217 (*lpxL*) grown at 42°C. MS<sup>n</sup> spectra of tetraacyl lipid A species at m/z 1335.7 [3x 14:0(3-OH), 16:0] with the palmitic acid [16:0] in 2-O-position (on the proximal glucosamine). (D1) MS<sup>2</sup> of m/z 1335.6; (D2) MS<sup>3</sup> of m/z 1091.5; (D3) MS<sup>4</sup> of m/z 835.4; (D4) MS<sup>3</sup> of m/z 1079.4.

### Supplementary Table S2: Fragmentation Pathways of *lpxL*- lipid A with different acyl substitution patterns

| lipid A at <i>m/z</i>  | Substitutions               | <sup>0,4</sup> A <sub>2</sub> fragment loss * | MS <sup>n</sup> fragment ion,<br><i>m/z</i> | <sup>0,2</sup> A <sub>2</sub> fragment<br>loss |
|------------------------|-----------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|
| 1559.9 (lpxL-, 37 °C ) | 16:1 in 2'-O ; 2-O-H (free) | - 327 Da                                      | 490 <sup>z</sup>                            | - 285 Da                                       |
| 1561.9 (lpxL-, 42 °C ) | 2'-O-H (free); 2-O- 16:0    | - 309 Da #                                    | 508 <sup>z</sup>                            | - 523 Da 🤟                                     |
| 1769.9 (lpxL-, 37 °C ) | 16:1 in 2'-O ; 2-O-H (free) | - 327 Da                                      | 490                                         | - 285 Da                                       |
| 1771.9 (lpxL-, 42 °C ) | 2'-O-H (free); 2-O- 16:0    | - 309 Da #                                    | 508                                         | - 523 Da <sup>w</sup>                          |
| 1553.9 (lpxL-, 30 °C ) | 2'-O-H (free); 2-O-H (free) | - 327 Da                                      | 508                                         | - 285 Da                                       |

<sup>\* 0,4</sup>A<sub>2</sub> fragmentation is observed after initial loss of fatty acid in proximal 3- position of the glucosamine

<sup>#</sup> fatty acid in secondary 2-O position was eliminated first and subsequently the acyl group in primary 2- position carries a double bond,  $\Delta^2$ -14:1 (after eliminating 16:0 off proximal 2-O position)

<sup>z</sup> fragment ion as shown in Figure 8A and 8B

<sup>W</sup> 0.2Å<sub>2</sub> fragmentation includes combined loss of secondary 16:0 (in 2-O-position ) bound to hydroxy group of hydroxymyristic acid in 2-position, also see Figure 6.