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Given two STs that form an SLV, we assume a random variable, H, represents the number
of base pairs that differ between the two STs. We are interested in the probability that an
SLV at locus i with h differences is due to mutation only, that is, Pr(h|SLVi;M), where the
event M={differences due only to mutation}. M c is the complement of M , i.e. the event of
recombination(s) as well as mutations.

1 The model for differences due to mutation only

Firstly, the Pr(h|SLVi;M) was estimated according to Bayesian theory,

Pr(h|SLVi;M) ∝ Pr(h|M)× Pr(SLVi|h;M), (1)

where Pr(SLVi|h;M) represents the likelihood function and Pr(h|M) is the prior distribution
of the number of nucleotide differences for the mutation only model.

Assume we have a mutation rate θi and recombination rate ρi at locus i. Denote θ =∑7
i=1 θi and ρ =

∑7
i=1 ρi. We set wi=θi/θ, so wi is the probability that if a mutation occurs

it occurs at locus i. We estimate the wis through estimating θis by the average number of
base-pair differences between all alleles at locus i. Then we model the probability of an SLV
at locus i given h base-pair differences, and that the SLV is caused only by mutation, as

Pr(SLVi|h;M) = (wi)
h. (2)

This comes from the need that given M , there have been h mutations, and for it to be an
SLV all mutations must occur at the same locus (locus i).

Finally, from coalescent theory we model that the probability of h mutations, given that
there have only been mutations prior to the common ancestor of the pair of isolates, is
geometric with parameter λ = θ/(1 + ρ+ θ). Thus we model

Pr(h|M) ∝ Geometric(1− λ), (3)

and make the simplifying assumption that θ ≈ ρ and θ, ρ >> 1, thus, we have λ ≈ 0.5. We
use this value of λ in our analysis, but also considered how robust the results were to varying
λ < 0.5 (as it appears that if anything ρ > θ). Supplementary Table 1 and Supplementary
Table 2 show that the choice of λ does not have a large effect on the results, with different
choices of λ giving larger estimates for the relative rate of recombination to mutation.

We repeated our analysis under the assumption of equal mutation rate at each locus, and
got very similar results for both C. jejuni and C. coli.

2 The recombination related model

The first step is to draw two alleles in that locus randomly based on the frequency of these
alleles in one locus in PubMLST. The second step is to compare this pair of alleles and record
the number of differences. This step was repeated for 1,000,000 iterations to obtain a stable
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empirical probability distribution for observing h differences due to recombination for this
locus: Pr(h|M c).

A naive approach to estimating the probability of observing h nucleotide differences being
introduced by events that include recombination would be:

Pr(h|M c) =
nh

nd

(4)

in which h represents the number of nucleotide differences; nh represents the item count
of h differences (how many times h differences appears), nd represents the number of all

differences nd =
a∑

h=1

nh, where a is the maximum observed number of differences between

any pair of alleles for the locus under consideration. However this is not robust, and the
reason is that there are some values (say 30 to 45) of h for which nh = 0, i.e. pairs of alleles
with 30 to 45 differences are never observed in the sample. Using Equation 4 would then
estimate the probability of recombination producing such a number of differences as 0; and if
we observe h differences in our SLVs data, our model would have to assign this to mutations.
A simple way around this is to introduce a Dirichlet prior on Pr(h|M c), which gives the
posterior estimates:

Pr(h|M c) =
1 + nh

a+ nd

. (5)

3 Mixture model

For this part, we will consider a fixed locus i; and estimate the probability that an SLV
was the result of mutation only for that locus (pi). It was assumed that there are data h1,
h2, h3,..., hndata

, where ndata is the number of pairs of distinct STs with SLVs in PubMLST
dataset, and hj (j = 1, 2, ..., ndata) represents the number of nucleotide differences of the jth
SLV.

The distribution for h for an SLV is

f(H) =

{
Pr(H|SLVi,M), if z = 1

Pr(H|SLVi,M c), if z = 0
(6)

in which Pr(H|SLVi,M) is the model for solely mutation, and Pr(H|SLVi,M c) is the
recombination related model. The latent variable Z is introduced as the indicator to tell
whether the data hj comes from either of these two models. For example, when zj = 1, hj
comes from the mutation model; whereas when zj = 0, hj comes from the recombination
model. Thus the probability of zj = 1 is the proportion of SLVs caused solely by mutation
(pi), and

f(hj, zj|SLVi) = pi × Pr(hj|SLVi,M) + (1− pi)× Pr(hj|SLVi,M c). (7)
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We can estimate pi under this model by maximum likelihood using the EM Algorithm.
The expectation-maximization (EM) algorithm is an approach for finding maximum-like-
lihood estimates by iterative computation, when the statistical model depends on unobserved
latent variable (Dempster et al., 1977). It includes two steps: expectation step (E-step) and
maximization step (M-step). In the E-step, the expectation of log likelihood was calculated, in
the M-step, the expectation was maximized. 100 iterations were run to get stable parameter
estimates, although the parameters converged after 50 iterations.

From the EM algorithm, we get:

p̂i,new =
E(M |pi,old)

n
, (8)

in which

E(M |pi,old) =
n∑

j=1

Pr(zj = 1|pi,old). (9)

4 The model for an event being mutation rather than

recombination

SLVs can be caused by multiple events. Let K be the number of events separating the two
branches in the evolutionary tree of each locus. Coalescent theory gives that the number of
events (mutation/recombination) between two randomly chosen isolates follows a geometric
distribution with parameter 1/(1 + ρ+ θ):

Pr(k) =

(
ρ+ θ

1 + ρ+ θ

)k (
1

1 + ρ+ θ

)
(10)

The probability of an SLV at locus i given K = k is

Pr(SLVi|k) =

(
ρi + θi
ρ+ θ

)k

.

Thus,

Pr(k|SLVi) ∝ Pr(SLVi|k)× Pr(k) (11)

∝

(
ρi + θi
ρ+ θ

)k (
ρ+ θ

1 + ρ+ θ

)k

(12)

∝

(
ρi + θi

1 + ρ+ θ

)k

, (13)

in which, Pr(SLVi|k) means the probability that SLVs at locus i are caused by k events.
Assuming θ + ρ >> 1 and ρi is roughly proportional to θi we then have the approximation

Pr(K = k|SLVi) ∝ ωk
i . (14)
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As Pr(k|SLVi) is a probability mass function we obtain

Pr(k|SLVi) = (1− ωi)× (ωi)
k−1, for i = 1, 2, . . .. (15)

Now, pi has been defined as the probability of an SLV involves only mutation and no
recombination at locus i, while xi is defined as the actual probability that an event for
generating new alleles that led to SLVs is mutation rather than recombination at locus i.
The relationship between pi and xi is thus

pi =
∞∑
k=1

(1− ωi)× (ωi)
k−1xki , (16)

where the sum is over the number of events, and we need all events to be mutations. Thus
we get that xi = pi/(1 − ωi + pi × ωi). Then (1 − xi)/xi represents the relative rate of
recombination to mutation.

Using the same model we obtain an estimate of the number of mutation events at an
SLV at locus i. From Equation 15 we have the expected number of events is E(K|SLVi) =
1/(1− ωi), and a proportion xi of all such events are mutations. Thus the expected number
of mutation events is xi/(1− ωi). The proportion of nucleotide differences of an SLV due to
recombination is calculated by 1− xi/(d− d× ωi), d is the average number of differences in
all SLVs at locus i.

5 The comparison with Feil et al.’s method

A simplified version of Feil et al.’s (2000) method that assumed that all differences of one nu-
cleotide were caused by mutation, but larger nucleotide differences were due to recombination
was also applied.

Results (Supplementary Figure 1) show, for the simplified version of Feil et al.’s method,
the ratio of recombination to mutation were overestimated, compared to our results. As Feil
et al.’s full method has the potential to underestimate mutation even more, their estimation
of the ratio of recombination to mutation will be apparently higher than our estimates.

References

Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38.

Feil, E., Smith, J., Enright, M., and Spratt, B. (2000). Estimating recombinational pa-
rameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics,
154(4):1439.

4


