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1 Molecule Sets

The four molecule sets used in this work are detailed as follows.

N- and P- bracelets. A set of artificial neutral molecules or “bracelets” (name, structure and

parameters adopted from Ref. 1) with planar and regular polygonal geometry were constructed

with the aromatic carbon (“ca” atom type in the generalized Amber force field (GAFF)2) with the

Lennard Jones parameters,σ = 3.39967Å andε = 0.086 kcal/mol. Two adjacent beads/atoms

were connected by a bond of length 1.4 Å. We used the distributed charge scheme from Ref. 1,

e.g., for a n-beaded bracelet one bead was charged+1 (P-bracelet) or−1 (N-bracelet) whereas the

othern−1 beads were assigned equal charge such that overall molecule was neutral. Six charge
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inverted clones (pairs of P- and N-bracelets) were constructed withn ranging from 3 (triangle) to

8 (octagon). We performed standard thermodynamic integration (TI) calculations (detailed in the

preceding section) in explicit TIP3P and TIP4P-Ew water to obtain the∆Gpol. For TIP5P-E the

polar solvation energy,∆Gpol were obtained from the total solvation energy,∆Gsolv, as provided in

Ref. 1. The non-polar part of the solvation energy is approximated as∆Gnp = γSASA (the effective

surface energy coefficientγ = 5 cal/mol/Å2, SASA is the solvent accessible surface area obtained

using the MSMS package,3 for simplicity the dispersive van-der Waals term was ignored in these

calculations) was subtracted from∆Gsolv values. The water model charge asymmetry parameters

Rz
OH used for CHA-GB are provided in the Main Text for all three water models used in this work.

Neutral Small Molecules. A set of 504 neutral small molecules to study hydration models were

compiled previously by Mobleyet. al.4 In the original work, these molecules were prepared using

the GAFF2 small molecule parameters as assigned by Antechamber. Merck-Frosst implementation

of AM1-BCC5,6 was used to assign the partial charges. The explicit (TIP3P)solvation free ener-

gies were computed using the Bennett acceptance ratio7 (BAR) in standard TIP3P water without

employing any restraint to avoid the conformational variability. To minimize possible uncertainties

due to inadequate conformational sampling of flexible molecules, here we restrict ourselves to a

smaller subset of 248 rigid molecules as discussed in the main text. Note that the time trajectories

for explicit (TIP3P) simulation were not provided in the original work, Ref. 4, and were hence ob-

tained from implicit molecular dynamics simulations.8 These implicit simulations were performed

on the same 504 small molecule set using a GB implementation (igb=5) of AMBER,9 without

the surface area term, which was, however, added by re-weighting, see Ref. 8 for details. Using

these time trajectories we computed the root mean square deviation (RMSD) of atomic positions of

these molecules in 10 ns time trajectories. 248 rigid molecules were chosen for which the RMSD’s

were below 0.3 Åwith respect to their initial conformations, see Figure 1. In order to compare

CHA-GB with GB and 3D-RISM10 we have used the rigid molecule subset, however the full set

of 504 molecules was used to compare with the SEA model11 and the experimental solvation free
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energies.4

Amino Acid Analogs This set is comprised of 48 structures. The coordinates, atomic partial

charges, and the explicit solvent (TIP3P) solvation free energies in TIP3P of 40 structures were

obtained from Ref. 12 – two conformations for each of 20 nonzwiterionic single residue amino acid

side chain dipeptides of the form N-acetyl-X-N-́methylamide, where X refers to one of the twenty

standard amino acids. Only the charged states of the titratable amino acids, ASP, LYS, GLU, and

ARG were considered in Ref. 12. We therefore added 8 additionalstructures corresponding to the

neutral states of these four amino acids. The same coordinates as that of the corresponding charged

structures were used. The atomic partial charges of the neutral ASP, GLU and LYS were obtained

from AMBER force field parameters, whereas partial charges ofneutral ARG were obtained from

Ref. 13. The polar part of the solvation free energies of these8 additional structures were computed

using standard TI in explicit (TIP3P) water, discussed later.

Protein set 19 small proteins were randomly selected from a larger data set of representative pro-

teins structures from Feig et al.14 with PDB IDs 1az6, 1bh4, 1bku, 1brv, 1byy, 1cmr, 1dfs, 1dmc,

1eds, 1fct, 1fmh, 1fwo, 1g26, 1ha9, 1hzn, 1paa, 1qfd, 1qk7, and 1scy. Chain “A” or “model 1” (as

referred to in the original work) has been chosen when appropriate. We used the H++ server15 to

assign partial charges and the protonation states of ionizable amino acids. Using specific values

of pH in H++ we transformed the structures such that overall molecule was neutral. The random

selection resulted in a fairly representative sampling of various structural classes. The structural

composition of the proteins is as follows: 6 mostlyα helical, 4 mostlyβ sheet, 4 roughly equal

mix of α/β , and 5 mostly disordered. The size of most of these proteins is about 30 amino acids.

2 Simulation Protocol

Standard thermodynamic integration(TI) protocol for neutral molecules adopted from Ref.16 was

used to obtain the explicit solvent (TIP3P, TIP4P-Ew) solvation free energies. Amber 1217 simu-
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Figure 1: The distribution ofrmsd of conformational change during 10 ns molecular dynamics
simulation in TIP3P using initial conformation as reference. The trajectories were obtained from
Ref. 4. Red bars correspond to the selected 248 rigid set of small molecule,rmsd < 0.3Å

lation package was employed. The details of the TIP5P-E solvation free energies are provided in

the section on molecule sets, above. The polar contributionwas computed as the difference of the

charging energy of the molecular cavity in the aqueous phaseand the gas phase.18 The TI integrals

were approximated using a five point Gaussian weighted sum. All simulations were performed us-

ing the Langevin thermostat with a collision frequency of 2 ps−1 and a time step of 2 fs. Hydrogen

bonds were constrained with SHAKE19 using a geometrical tolerance of 10−6 Å. For the aqueous

phase, the molecules were placed in a truncated octahedral box such that the minimum distance be-

tween the solute atoms and the box edge was 12 Å. The non-bonded interaction cutoff was 10.0 Å,

and long-range electrostatic interactions were calculated using periodic boundary conditionsvia.

the particle mesh Ewald (PME) summation.20,21 Positional restraints of 50 kcal/mol/ Å2 on all

atoms were employed to hold the solute in the desired conformation. The system was gradually

heated at constant volume for 50 ps followed by a 1 ns equilibration at constant pressure of 1 atm

and pressure relaxation time of 2 ps. The last 1 ns of a 2 ns constant volume simulation was used

for the free energy calculations.
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3 Parameter Optimization

3.1 The Training and Test Sets

The model parameters (9 intrinsic atomic radii andτ for CHA-GB, 9 intrinsic atomic radii for GB)

were optimized using a training set designed using molecules from the rigid small molecule set and

the set of amino acid analogs. This training set consisted ofa total of 148 molecules, specifically,

124 molecules were chosen from the rigid set and 24 moleculesfrom the amino acid analogs. The

molecules in the training set were chosen such that the atom types and the polar solvation energy

of each of the two molecule classes, the small molecules and the amino acid analogs, are equally

represented as that of the rest of the molecules in the respective sets. A test set was designed using

the rest of the molecules from the two sets. The training set and test set are provided at the end, in

Table 8 and Table 9, respectively.

3.2 Optimization protocol

We optimize the model parameters using an objective function rmse(rigid molecules)+rmse(amino

acid analogs) such that the two molecule classes are equallyrepresented during optimization. We

use a heuristic nonlinear optimization technique namely the Nelder-Mead simplex algorithm, that

uses initial guess values of the parameters. With termination criteria of 10−3 for the parameter

set and convergence criteria of 10−4 for the objective function, several parameter sets randomly

selected within a physical range were used as initial guess,Table 1.

Robustness and Validation The optimum parameter set pertains to the converged set withthe

lowest objective function. 10 independent optimizations led to the converged objective function

of 1.58 kcal/mol for CHA-GB, with thermse of the full 248 small molecules set and the full

set of 48 amino acid analogs, 0.90 kcal/mol and 0.93 kcal/mol respectively. However for GB

the converged objective function value was 2.82 kcal/mol with thermse of the two molecule sets

being 1.35 and 1.40 kcal/mol, respectively. For more refined estimate of∆Gpol, we obtained our
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Table 1: Initial Parameters used for the optimization of parameters for CHA-GB and GB: random
numbers from a uniform distribution were drawn from the lower bound (Min) and upper bound
(Max) for various parameters. The intrinsic radii are in Å

Initial parameter values used in the optimization
Model ρ(C) ρ(H) ρ(N) ρ(O) ρ(S) ρ(F) ρ(Cl) ρ(Br ) ρ(I ) τ

CHA-GB Min 1.2 0.3 1.2 1.2 1.7 1.2 1.5 1.7 2.0 1
Max 1.7 0.8 1.7 1.7 2.2 1.7 2.0 2.2 2.5 2

GB Min 1.5 1.0 1.2 1.2 1.7 1.0 1.1 1.3 1.5 N/A
Max 2.0 1.5 1.7 1.7 2.2 1.5 1.6 1.8 2.0 N/A
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Figure 2: The converged value of the objective function (OF), rmse(small molecules)+rmse(amino
acid analogs) for each of the 100 random optimization runs. The OF is plotted against the parame-
ter distance metricdi0 = ||r i− r∗||2, wherer i is the converged parameter set for the ith optimization
run andr∗ is the optimum parameter set used in this work for CHA-GB (in red) and GB (in black).

final set of parameters from 100 random optimizations. The final value of the objective function

for CHA-GB was 1.47 kcal/mol whereas for GB it was 2.48. Note that the final outcome of the

optimizations with 10 runs was similar to that obtained with100 runs. Models’ performance on the

training set and the test set compares well, see Table 2. Comparison of the converged parameter

sets of all 100 optimizations with the respective convergedobjective function, Figure 2 reveal

that the parameter set for CHA-GB is more robust than that of the GB. The resulting parameter

sets and the objective functions of these optimizations form a tight clusteri.e. close to the global

optimum, whereas for GB the optimized parameters vary significantly from one optimization run

to another. Note that the parameter sets were multi-dimensional and hence we used the distance

6



metric (a measure of disparity between these parameter sets) namely,di = ||r i − r∗||2, wherer i

is a parameter set for theith optimization run andr∗ is the optimum parameter set. In Figure 3a

we compare the performance of GB and CHA-GB for all 248 small molecules and 48 amino

acid analogs against the explicit (TIP3P)∆Gpol. For the 248 rigid small molecules, we further

analyzed the accuracy of∆Gpol estimated via CHA-GB and GB for different degrees of molecular

polarity, as quantified by explicit (TIP3P)∆Gpol; small (∆Gpol > −3.0 kcal/mol), intermediate

(−3.0 kcal/mol> ∆Gpol > −6.0 kcal/mol) and large (∆Gpol < −6.0 kcal/mol), see Figure 4. We

find that CHA-GB consistently provides a more accurate estimate over GB in each∆Gpol range.

Table 2: Performance of the GB and CHA-GB in Training and Test sets

Method
Training Set Test Set

Small Mols Amino Acid Analogs Small Mols Amino Acid Analogs

GB
rmse 1.22 1.26 1.25 1.26
〈error〉 -0.50 0.13 -0.55 0.34

r2 0.85 0.997 0.87 0.998

CHA-GB
rmse 0.83 0.64 0.92 0.96
〈error〉 -0.39 -0.03 -0.36 0.22

r2 0.95 0.999 0.90 0.998

Improved radii transferability is due to introduced CHA. To further investigate the impor-

tance of CHA in the improvements offered by the CHA-GB model, weagain performed a set of

100 optimizations for GB, but now with the new dielectric boundary definition, see Main Text, that

we have so far used exclusively in CHA-GB. Namely, we used a probe of radiusρw−Rs = 0.88 Åto

define the solute/solvent boundary over which the “R6” surface integration is performed to obtain

the effective Born radii. The use of the new surface in GB makesthe model formally equivalent to

CHA-GB with the water model asymmetry “switched off”,Rz
OH = 0. After the radii optimization

against the same training set as before, the model yields 1.01 kcal/molrmse error in ∆Gpol for

the rigid molecule set and 1.27 kcal/mol error for the set of amino acid analogs. Recall that the

corresponding CHA-GB errors are 0.88 and 0.81 kcal/mol, which means that the modified surface

definition just by itself can not bring about the uniformrmse accuracy of better than 1 kcal/mol

seen in CHA-GB.
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Figure 3:The polar solvation free energies,∆Gpol of GB (left panel) and CHA-GB (right panel) against the
reference TIP3P simulation4 for the two molecule sets, neutral small molecules (top panels) and amino acid
analogs (bottom panel) using the optimum radii sets obtained with Figure 3a justthe 248 rigid molecules
from the neutral small molecule set in the training set and Figure 3b the trainingset with flexible molecules
included

Outliers Although CHA-GB shows a noticeable improvement in accuracy over the canonical

GB, we find one prominent outlier in the rigid molecule set, andtwo in the full set of 504

molecules. Namely dimethyl-sulfate and methyl-methanesulfonate, each show about 5 kcal/mol

deviation from the reference explicit∆Gpol. A possible explanation could be that both molecules

contain a highly charged Sulphur (S) atom (with partial atomic charge 1.6-1.8 e), which misrepre-

sent the solvent polarization (the sign of CHA) of the atoms inthe neighborhood. The CHA-scaling

factor in the proposed CHA-GB modeli.e. η , uses a simple exponential interpolation to account

for the contribution of neighboring charges to determine the sign of effective solvent polarization

for a particular atom. This rather simplistic approximation apparently fails to reproduce a proper

sign dependence of this polarization for the immediate neighbors of these highly charged S-atoms

which, in turn causes wrong CHA-contribution for their neighbors, finally leading to erroneous

estimates of∆Gpol.
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Figure 4:CHA-GB provides consistent improvement in∆Gpol accuracy for molecules of different degrees
of polarity. Shown is the root-mean-square error (rmse) of CHA-GB (blue bars) and GB (red bars) for
the 248 rigid neutral small molecules against the TIP3P polar solvation energies (∆Gpol). The three bars
correspond to the three ranges of∆Gpol; ∆Gpol >−3.0 kcal/mol,−3.0 kcal/mol> ∆Gpol >−6.0 kcal/mol
and∆Gpol <−6.0 kcal/mol.

4 3D RISM: additional accuracy metrics

The single point 3D-RISM∆Gpol (TIP3P) were computed using the 3D-RISM implementation22

in AMBER17 and corrected10 using two parameters,a1 and a2, which was obtained by fitting

against the explicit∆Gpol,

∆Gcorr
pol = ∆G3DRISM/GF

pol +a1ρV +a2, (1)

Here,∆G3DRISM/GF
pol , is the computed 3D-RISM∆Gpol with Kovalenko-Hirata closure23 assuming

Gaussian fluctuation of the solvent,V is the computed partial molar volume andρ = 0.0333A−3

is the solvent number density. The corrected polar solvation energy,∆Gcorr
pol were obtained using

optimizations performed using Nelder-Mead simplex algorithm. The same training set that was

used for the rigid molecules and the amino acid analogs, Table 8 and the same objective func-

tion rmse(small molecules) +rmse(amino acid analogs) was used. These optimizations led to

a1 =−0.0118 kcal/mol anda2 = 0.6419 kcal/mol. The performance of 3D-RISM against the ex-

plicit (TIP3P) ∆Gpol is shown in Figure 5 and Table 3. For the charge inverted “bracelets” the

optimum values ofa1 = 0.759 kcal/mol anda2 = 0.1991 kcal/mol were obtained by fitting with
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the corresponding explicit∆Gpol values in TIP4P-Ew water.
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Figure 5: The polar solvation free energies,∆Gpol using 3D-RISM (corrected by two fitting parameters
a1 = 0.0118 kcal/mol anda2 = 0.6419 kcal/mol, see Main Text) against the explicit (TIP3P)∆Gpol of the
rigid neutral molecule set (left) and the amino acid analogs (right)

Table 3: Accuracy of∆Gpol computed using 3D-RISM relative to the reference explicit (TIP3P)
simulation4,12 for the rigid neutral molecule set and the amino acid analogs

Small Mols. Amino Acids
rmse 0.50 5.28
〈error 〉 -0.05 0.65
〈|error |〉 0.36 2.95

corr. coef. (r2) 0.98 0.95
% |error |> 2kBT 2.4% 43.8%
RMS of worst 5% 2.95 15.58

5 Parameter re-optimization for flexible molecules

To minimize possible uncertainties due to inadequate conformational sampling of flexible molecules,

in the Main Text we have restricted ourselves to a subset of 248 rigid molecules. However, includ-

ing the flexible molecules to train the model parameters doesnot affect our overall conclusions. To

this end, we re-optimize the models’ parameters by using a new, larger training set. It contains the

same 24 molecules of the amino acid analogs in Table 8. To these, we now add 124 molecules in-

cluding both rigid and flexible kind from the small molecule set were chosen while keeping equal
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representation of solvation free energy and atom types between the training set and the test set.

We note that the new set now has one extra atom type namely Phosphorus (P) which was miss-

ing among the 248 rigid molecules. The parameter optimizations were performed using the same

protocol (same objective function and validation) as in thecase of the rigid molecules detailed in

the Main Text. The optimum radii set is provided in the Table 4. Note that the radii values of

this set are similar to the one found earlier, see Main Text. The optimum value ofτ = 1.3. The

performance of the GB and CHA-GB models in Figure 3b and Table 5, shows similar agreement

as that of the earlier optimization both for GB and CHA-GB.

Table 4: Intrinsic radii sets simultaneously re-optimizedfor GB and CHA-GB for all 504 molecules
from the neutral molecule set (including the flexible ones) and the same 48 amino acid analogs used
in the Main Text.

Radii Set( Å)
C H N O S P F Cl Br I

CHA-GB 1.60 0.52 1.58 1.36 1.72 1.63 1.22 1.63 1.84 2.14
GB 1.85 1.30 1.40 1.49 1.46 1.20 0.82 1.87 1.47 1.31

Table 5: Accuracy in∆Gpol computed using GB and CHA-GB against the reference explicit
(TIP3P) simulation4,12 for all 504 molecules from the neutral molecule set and 48 amino acid
analogs

Small Mols Amino Acid Analogs
GB CHA-GB GB CHA-GB

rmse 1.34 0.89 1.31 0.89
〈error 〉 -0.43 -0.34 0.15 0.20
〈|error |〉 0.98 0.62 1.00 0.67

corr. coef. (r2) 0.82 0.92 0.997 0.998
% |error |> 2kBT 28.4% 12.7% 27.1% 18.8%
RMS of worst 5% 3.86 2.70 3.85 2.29
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6 Optimizing the non-polar part of solvation energy and com-

parison with experiment
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Figure 6: The solvation free energies,∆Gsolv using CHA-GB, red crosses and explicit (TIP3P)
alchemical estimates, blue open circles4 against the reference experimental values.4

We optimize∆Gnp against experimental solvation free energy under the approximation that the

total solvation energy,∆Gsolv = ∆Gpol +∆Gnp. The∆Gpol values, Figure 3b, are taken from our

previously optimized∆Gpol using the optimum radii set from Table 4. The optimization protocol

is adopted from Ref. 24. The non-polar component of the solvation energy can be decomposed

into cavity (∆Gcav) and van der Waals dispersion (∆Gvdw) terms.25

∆Gnp = ∆Gcav +∆Gvdw (2)

i.e.,

∆Gnp = γ ·SASA−∑
i

16
3

πdwεiwσ6
iw

µi

(Ri +ρw −Rs)
3 (3)

Hereγ is the effective surface tension coefficient andSASA is the solvent accessible surface area
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Table 6: Lennard-Jones Parameters Used for Computation of∆Gnp for GB and CHA-GB; for GB
optimumγ = 0.0104 kcal/mol/Å2 and for CHA-GBγ = 0.0178 kcal/mol/Å2

σi(Å) εi(kcal/mol) µi

GB CHA-GB
H 2.64953 0.0157 -0.0361 0.0192
C 3.39967 0.1094 0.1744 0.1296
O 2.9592 0.2100 -0.0460 0.1098
N 3.25 0.1700 0.1856 0.5433
S 3.56359 0.2500 -0.0172 0.3554
P 3.74177 0.2000 -0.2767 -0.2218
F 3.11815 0.061 -0.3751 0.0012
Cl 3.47094 0.265 0.1229 0.2464
Br 3.95559 0.320 0.0517 0.3007
I 4.18722 0.40 -0.0986 0.2722

Table 7: Accuracy in∆Gsolv computed using GB and CHA-GB compared to experimental values4

TIP3P GB CHA-GB
rmse 1.26 1.45 1.22
〈error 〉 0.68 0.04 0.02
〈|error |〉 1.03 1.09 0.91

corr. coef. (r2) 0.89 0.79 0.84
% |error |> 2kBT 40% 34% 30%
RMS of worst 5% 2.95 3.71 3.46

of a solute computed using the MSMS package3 with the standard 1.4 Å water probe radius. In

principle25 γ can be different, specific to the atom type of a solute. However in this work we use

a global(same for all atom types) value ofγ similar to Ref. 24.dw = 0.033428 Å−3 is the number

density of water at standard conditions.εiw andσiw are computed using,

σiw =
1
2
(σi +σw) (4)

εiw =
√

εiεw

whereσw = 3.1507 Å andεw = 0.152 kcal/mol are the Lennard-Jones (LJ) parameters for oxygen
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in TIP3P water andσi,εi are the LJ parameters for the atom typei, standard GAFF2 values were

used in this work.

The values of globalγ andµi were optimized using a training set comprised of the same 124

small molecules used earlier for the optimization of parameter sets provided in Table 4. Nelder-

Mead simplex algorithm with 100 random initial seeds was used for this optimization. The final

value of parameters(γ,µi’s) were the ones pertaining to the lowest value of the objective function

(rmse against the experimental∆Gsolv). The optimized parameters are provided in Table 6. and the

performance of the two models are shown in Figure 6 and Table 7. Note that theµi’s for certain

atom types are negative, which leads to positive values of the dispersive terms in Eq. (3). This is

unphysical because in Eq. (3) the dispersive terms are separated from the repulsive cavity term.

The issue was discussed in Ref. 24; it is suggestive of inconsistencies involved in Eq. (3) itself.

14



Table 8: Training set

The part of training set with the rigid neutral small molecule set.
111trichloroethane thiophenol 35dimethylpyridine cyclohexanol
112trichloro122trifluoroethane trichloroethene 3acetylpyridine dimethylamine
1234tetrachlorobenzene Z12dichloroethene 3cyanophenol dimethylether
1245tetrachlorobenzene 123trimethylbenzene 3methylbutanoicacid dinbutylether
124trichlorobenzene 124trimethylbenzene 3methylpyridine dinpropylether
135trichlorobenzene 12ethanediol 4acetylpyridine Ebut2enal
14dichlorobenzene 135trimethylbenzene 4cyanophenol ethanamide
2bromo2methylpropane 13dimethylnaphthalene 4methylacetophenone ethane
2chloropyridine 14dioxane 4methylbenzaldehyde methylcyanoacetate
2chlorotoluene 1methylnaphthalene 4methylpyridine methylcyclohexane
2iodophenol 1methylpyrrole acenaphthene mxylene
2methylthiophene 1naphthol acetaldehyde Nacetylpyrrolidine
3chloroaniline 22dimethylpropane aceticacid naphthalene
4bromophenol 23dimethylnaphthalene acetonitrile nbutane
4chloroaniline 23dimethylphenol acetophenone nbutylacetate
4chlorophenol 26dimethylphenol alphamethylstyrene nitromethane
benzylbromide 26dimethylpyridine ammonia Nmethylacetamide
bromotrifluoromethane 2methoxyethanol aniline Nmethylmorpholine
chlorodifluoromethane 2methylbut2ene anthracene Nmethylpiperazine
chloroethane 2methylbut2ene azetidine NNdimethylformamide
chlorofluoromethane 2methylpropan2ol benzaldehyde NNdimethylpnitrobenzamide
diiodomethane 2methylpropane benzamide npentylacetate
dimethyldisulfide 2methylpropene benzene npropylbutyrate
dinpropylsulfide 2methylpyrazine benzonitrile piperidine
E12dichloroethene 2methylpyridine but1yne propan2ol
iodobenzene 2naphthol buta13diene pyrrole
methanethiol 2naphthylamine butan2ol pyrrolidine
methyltrifluoroacetate 33dimethylpentane cis12dimethylcyclohexane quinoline
pdibromobenzene 34dimethylphenol cyanobenzene styrene
tetrachloroethene 34dimethylpyridine cyclohepta135triene triacetylglycerol
tetrafluoromethane 35dimethylphenol cyclohexane trimethoxymethane
The part of training set from the set of amino acid analogs
gly2-abt phe2-abt tyr2-abt glh2-abt
ala2-abt trp2-abt asn2-abt ash2-abt
val2-abt met2-abt gln2-abt arg2-abt
leu2-abt ser2-abt hsd2-abt lys2-abt
ile2-abt thr2-abt arn2-abt asp2-abt
pro2-abt cys2-abt lyn2-abt glu2-abt
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Table 9: Test Set

Part of the test set with the rigid small neutral molecules
11dichloroethane 3cyanopyridine ethanol methyltrimethylacetate
11dichloroethene 3formylpyridine ethene morpholine
11difluoroethane 3hydroxybenzaldehyde ethylamine npropylformate
1235tetrachlorobenzene 3methyl1hindole ethylbutanoate npropylpropanoate
123trichlorobenzene 4bromotoluene ethylhexanoate ocresol
12dichlorobenzene 4chloro3methylphenol ethylpentanoate otoluidine
13dichlorobenzene 4cyanopyridine ethylpropanoate oxylene
14dimethylnaphthalene 4fluorophenol fluorene pcresol
14dimethylpiperazine 4formylpyridine fluorobenzene pentanoicacid
1iodopropane 4hydroxybenzaldehyde fluoromethane phenanthrene
1methylcyclohexene 4methyl1himidazole imidazole phenol
1methylimidazole bromobenzene indane piperazine
1naphthylamine bromoethane iodoethane propane
22dimethylpentane chlorobenzene isobutylacetate propanenitrile
23dimethylpyridine chloroethylene isopropylacetate propanoicacid
24dimethylphenol chloromethane isopropylformate propanone
24dimethylpyridine cyclohexanone mcresol propene
25dimethylphenol cyclohexylamine methane propionaldehyde
25dimethylpyridine cyclopentane methylamine propyne
25dimethyltetrahydrofuran cyclopentanol methylbenzoate ptoluidine
26dimethylaniline cyclopentanone methylbutanoate pxylene
26dimethylnaphthalene cyclopentene methylchloroacetate pyrene
2bromopropane cyclopropane methylcyclohexanecarboxylate pyridine
2chloro2methylpropane dibromomethane methylcyclopentane tetrachloromethane
2chloroaniline dichloromethane methylcyclopropanecarboxylatetetrahydrofuran
2chlorophenol diethylamine methylcyclopropylketone tetrahydropyran
2chloropropane diethylmalonate methylmethanesulfonate thiophene
2fluorophenol diethylsulfide methylpentanoate toluene
2iodopropane diisopropylether methylpmethoxybenzoate trans14dimethylcyclohexane
3chlorophenol dimethylsulfone methylpropanoate tribromomethane
3chloropyridine ethanethiol methyltbutylether trichloromethane
Part of the test set from the amino acid analogs
gly-abt phe-abt tyr-abt glh-abt
ala-abt trp-abt asn-abt ash-abt
val-abt met-abt gln-abt arg-abt
leu-abt ser-abt hsd-abt lys-abt
ile-abt thr-abt arn-abt asp-abt
pro-abt cys-abt lyn-abt glu-abt

13 24 1
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