Acylammonium Salts as Dienophiles in Diels-Alder-Lactonization Organocascades

Mikail E. Abbasov,[†] Brandi M. Hudson,[‡] Dean J. Tantillo[‡] and Daniel Romo[†]*

[†]Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012 [‡]Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616

Table of Contents

General procedures and abbreviation list	S2-S3
Preparation of compounds S3, S4, S7, S8, S11, S12, S14, S15, S17, S18	, 2a-f , and (±)-
2g	S4-S14
DAL optimization studies (Tables S1-S3)	S15-S18
Representative procedure for the enantioselective DAL process as described	bed for bicyclic
γ-lactone (–)- 3b	S19-S30
Representative procedure for the stereodivergent DAL process as describ	ped for bicyclic
γ-lactones (–)- 3k and (+)- 3k '	S31-S35
Synthetic applications of bicyclic γ-lactones (–)- 3d and (–)- 3h	S36-S37
Single crystal X-ray structures and selected crystallographic data for comp	pounds (–)- 3k ,
(-)-S21 and (+)-3c' (Figures S1-S3)	S38-S48
Details of computational studies of the acylammonium conformation and t	the Diels-Alder
reaction (Figures S4-S11)	S49-S130
¹ H and ¹³ C NMR spectra	S131-S164
Chiral HPLC traces for compounds 3a-k, 3a', (+)-3c', and (-)-3k' (Figures S12-
S14)	S165-S180
References	S181-S183

General procedures

All non-aqueous reactions were performed under a nitrogen atmosphere in ovendried glassware. Dichloromethane (CH₂Cl₂), tetrahydrofuran (THF), diethyl ether (Et₂O), acetonitrile (CH₃CN) and toluene (PhMe) were dried by passing through activated (solvent purification system). Diisopropylethylamine (EtN(′Pr)₂) alumina and triethylamine (Et₃N) were distilled from calcium hydride prior to use. Other solvents and reagents were used as received from commercially available sources. Deuterated solvents were purchased from Cambridge Isotopes and used as received. ¹H NMR spectra were measured at 500 MHz and referenced relative to residual chloroform (7.26 ppm) or benzene (7.16 ppm) and were reported in parts per million. Coupling constants (J) were reported in Hertz (Hz), with multiplicity reported following usual convention: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; dq, doublet of quartets; qd, quartet of doublets; td, triplet of doublets; tt, triplet of triplets; ddd, doublet of doublet of doublets; ddt, doublet of doublet of triplets; ddq, doublet of doublet of guartets; dddd, doublet of doublet of doublet of doublets; ddddt, doublet of doublet of doublet of triplets; ddquint, doublet of doublet of quintets; m, multiplet, br s, broad singlet. ¹³C NMR spectra were measured at 125 MHz and referenced relative to residual chloroform (77.23 ppm) or benzene (128.06 ppm) and were reported in parts per million (ppm). Flash column chromatography was performed with 60Å Silica Gel (230-400 mesh) as stationary phase on an automated flash chromatography system (EtOAc/hexanes as eluent unless indicated otherwise). Highresolution mass spectra (ESI) were obtained through the Laboratory for Biological Mass Spectrometry (Texas A&M University). Thin Layer Chromatography (TLC) was performed using glass-backed silica gel F254 (Silicycle, 250 µm thickness). Visualization of developed plates was performed by fluorescence quenching or by treating with Seebach's¹ staining solution. *Fourier* Transform Infrared (FTIR) spectra were recorded as thin films on NaCl plates. Optical rotations were recorded on a polarimeter at 589 nm employing a 25 mm cell. High Performance Liquid Chromatography (HPLC) was performed on a chromatographic system using various chiral columns (25 cm) as noted. X-ray diffraction was obtained by the X-ray Diffraction Laboratory at Texas A&M University. (R)-(-)-HBTM,² TMSQD³ and BzQN⁴ were

synthesized according to literature procedures. (S)-(–)-BTM and (R)-(+)-BTM were purchased from TCI chemicals and used as received. $(DHQ)_2PHAL$, (S)-(–)-Tetramisole and (–)-Tröger's base were purchased from Sigma-Aldrich and used as received. (R)-(+)-PPY* was purchased from Strem chemicals and used as received. All unsaturated acid chlorides were purchased from Sigma-Aldrich and used as received without further purification.

Abbreviation list

DBU	=	1,8-diazabicyclo[5.4.0]undec-7-ene
EtN(ⁱ Pr) ₂	=	<i>N</i> , <i>N</i> -diisopropylethylamine
Et₃N	=	triethylamine
DTBP	=	2,6-di- <i>tert</i> -butylpyridine
DIBAI-H	=	diisobutylaluminum hydride
TIPSOTf	=	triisopropylsilyl trifluoromethanesulfonate
TBHP	=	tert-butyl hydroperoxide
Rh ₂ (cap) ₄	=	dirhodium tetracaprolactamate
TsCl	=	4-toluenesulfonyl chloride
TASF	=	tris(dimethylamino)sulfonium difluorotrimethylsilicate
(<i>R</i>)-(–)-HBTM	=	(R)-(-)-homobenzotetramisole
(S)-(–)-BTM	=	(S)-(-)-benzotetramisole
TMSQD	=	O-trimethylsilyl quinidine
BzQN	=	O-benzoyl quinine
(DHQ) ₂ PHAL	=	Hydroquinine 1,4-phthalazinediyl diether
(R)-(+)-PPY*	=	(R)-(+)-4-pyrrolidinopyrindinyl (pentamethyl cyclopentadienyl) iron

Preparation of compounds S3, S4, S7, S8, S11, S12, S14, S15, S17, S18, 2a-f, and (±)-2g:

(*E*)-ethyl 4-oxopent-2-enoate (S3): (*E*)-ethyl 4-oxopent-2-enoate S3 was prepared by a modified reported procedure.⁵ To a solution of 1-(triphenylphosphoranylidene)-2propanone S1 (21.0 g, 65.9 mmol, 1.0 equiv.) and ethyl glycolate S2 (7.5 mL, 79.2 mmol, 1.2 equiv.) in anhydrous CH₂Cl₂ (220 mL) was added MnO₂ (57.5 g, 661.3 mmol, 10.0 equiv.) and vigorously stirred at ambient temperature (23 °C) for 30 h. The mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The residue was then diluted with cold Et₂O (100 mL), filtered through a plug of celite and washed with additional Et₂O (50 mL). The filtrate was concentrated by rotary evaporation and purified by an automated flash chromatography system (5 \rightarrow 20% EtOAc/hexanes) providing 7.68 g (82% yield) of ketoester S3 as a pale yellow liquid: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.38; ¹H NMR (500 MHz, CDCl₃): δ 6.99 (d, *J* = 16.1 Hz, 1H), 6.62 (dd, *J* = 16.1, 0.4 Hz, 1H), 4.24 (qd, *J* = 7.1, 0.4 Hz, 2H), 2.34 (s, 3H), 1.30 (td, *J* = 7.1, 0.5 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 197.7, 165.5, 140.0, 131.7, 61.5, 28.2, 14.2; IR (thin film): 2985, 1726, 1703, 1687 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₇H₁₀LiO₃ [M+Li]⁺: 149.0790, found: 149.0784.

(*E*)-ethyl 4-((triisopropylsilyl)oxy)penta-2,4-dienoate (S4): To a solution of ketoester S3 (2.25 g, 15.8 mmol, 1.0 equiv.) in anhydrous Et_2O (32 mL) at 0 °C was added Et_3N (4.4 mL, 31.6 mmol, 2.0 equiv.) dropwise. After stirring for 10 min, TIPSOTf (5.1 mL, 18.9 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was stirred for 2 h at 0 °C then quenched with a saturated aqueous solution of NaHCO₃ (30 mL). The aqueous layer was extracted with Et_2O (2 × 50 mL) and the combined organic extracts

were then washed with brine (50 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (0.5 \rightarrow 10% EtOAc/hexanes) providing 4.70 g (99% yield) of diene **S4** as a clear colorless liquid: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.73; ¹H NMR (500 MHz, CDCl₃): δ 7.07 (d, *J* = 15.2 Hz, 1H), 6.18 (d, *J* = 15.2 Hz, 1H), 4.62 (dd, J = 1.3, 0.5 Hz, 1H), 4.61 (dd, J = 1.2, 0.6 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.28–1.20 (m, 3H), 1.10 (d, *J* = 7.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 167.3, 154.0, 142.6, 119.2, 101.8, 60.6, 18.1 (6), 14.4, 12.9 (3); IR (thin film): 2946, 2869, 1719, 1638, 1593 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₆H₃₁O₃Si [M+H]⁺: 299.2037, found: 299.2054.

(*E*)-2-methyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-2-ol (2a): To a solution of diene S4 (5.20 g, 17.4 mmol, 1.0 equiv.) in anhydrous Et₂O (60 mL) at 0 °C was added MeMgBr (3.0 M solution in Et₂O, 13.4 mL, 40.2 mmol, 2.3 equiv.) was added over a period of 1 h. The reaction was stirred for 2 h at 23 °C then quenched with a saturated aqueous solution of NH₄Cl (30 mL). The aqueous layer was extracted with Et₂O (2 × 50 mL) and the combined organic extracts were then washed with brine (30 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (0.5 → 15% EtOAc/hexanes) providing 3.47 g (70% yield) of silyloxydiene alcohol **2a** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.35; ¹H NMR (500 MHz; CDCl₃): δ 6.18 (d, *J* = 15.4 Hz, 1H), 6.05 (d, *J* = 15.4 Hz, 1H), 4.31 (s, 1H), 4.28 (s, 1H), 1.34 (s, 6H), 1.26–1.21 (m, 3H), 1.10 (d, *J* = 7.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 155.1, 138.2, 124.8, 95.2, 70.8, 29.9 (2), 18.2 (6), 12.9 (3); IR (thin film): 3374, 2945, 2868, 1591 cm⁻¹; HRMS (ESI+) *m*/z calcd for C₁₆H₃₃O₂Si [M+H]⁺: 285.2250, found: 285.2242.

(E)-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol (2b): To a solution of diene S4 (4.70 g, 15.7 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (120 mL) at -78 °C was added DIBAI-H (1.0 M solution in CH₂Cl₂, 47.0 mL, 3.0 equiv.) dropwise. The reaction was stirred for 2 h then carefully guenched in sequence with H₂O (1.9 mL), 15% agueous NaOH (1.9 mL), and H₂O (4.7 mL). The dry ice/acetone bath was removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord. Subsequently, anhydrous MqSO₄ was added and the reaction mixture was vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) providing 3.78 g (94% yield) of silyloxydiene alcohol 2b as a pale yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.32; ¹H NMR (500 MHz, CDCl₃): δ 6.19 (dt, J = 15.2, 5.4 Hz, 1H), 6.09 (dt, J = 15.2, 1.4 Hz, 1H), 4.31 (d, J = 0.5 Hz, 1H), 4.27 (d, J = 0.4 Hz, 1H), 4.24 (d, J = 5.2 Hz, 2H), 1.27–1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 154.8, 129.2, 129.0, 95.1, 63.1, 18.2 (6), 12.9 (3); IR (thin film): 3318, 2945, 2868, 1662, 1591 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₄H₂₉O₂Si [M+H]⁺: 257.1937, found: 257.1926.

Methyl (E)-3-methyl-4-oxopent-2-enoate (S7): To a solution of 2,3-butanedione **S5** (2.6 mL, 30.0 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (150 mL) was added methyl (triphenylphosphoranylidene)acetate **S6** (10.0 g, 30.0 mmol, 1.0 equiv.) and stirred at ambient temperature (23 °C) for 30 h. The mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The residue was then diluted with cold Et_2O (80 mL), filtered through a plug of celite and washed with additional Et_2O (40 mL). The filtrate was concentrated by rotary evaporation and purified by an automated flash chromatography system (5 \rightarrow 20% EtOAc/hexanes) providing

2.34 g (55% yield) of ketoester **S7** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.45; ¹H NMR (500 MHz, CDCl₃): δ 6.56 (q, *J* = 1.5 Hz, 1H), 3.77 (s, 3H), 2.36 (s, 3H), 2.19 (d, *J* = 1.5 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 199.9, 166.7, 150.9, 126.1, 51.9, 26.3, 13.2; IR (thin film): 2955,1728, 1687, 1642 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₇H₁₀LiO₃ [M+Li]⁺: 149.0790, found: 149.0797.

Methyl (E)-3-methyl-4-((triisopropylsilyl)oxy)penta-2.4-dienoate (S8): To a solution of ketoester S7 (2.34 g, 16.5 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (60 mL) at 0 °C was added Et₃N (5.7 mL, 41.2 mmol, 2.5 equiv.) dropwise. After stirring for 10 min, TIPSOTf (5.3 mL, 19.8 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was stirred for 2 h at 0 °C then guenched with a saturated agueous solution of NaHCO₃ (30 mL). The aqueous layer was extracted with Et₂O (2 \times 50 mL) and the combined organic extracts were then washed with brine (50 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (0.5 \rightarrow 10% EtOAc/hexanes) providing 3.79 g (77% yield) of diene S8 as a yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.76$; ¹H NMR (500 MHz, CDCl₃): δ 6.39 (d, J = 0.6 Hz, 1H), 4.80 (d, J = 1.9 Hz, 1H), 4.56 (d, J = 1.9 Hz, 1H), 3.71 (s, 3H), 2.28 (d, J = 1.2 Hz, 3H), 1.28-1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H).¹³C NMR (125 MHz; CDCl₃): δ 168.1, 156.6, 149.8, 115.8, 96.2, 51.2, 18.2 (6), 14.6, 12.9 (3); IR (thin film): 2947, 2869, 1722, 1629, 1597 cm⁻¹; HRMS (ESI+) m/z calcd for C₁₆H₃₁O₃Si [M+H]⁺: 299.2042, found: 299.2029.

(E)-3-methyl-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-ol (2c): To a solution of diene **S8** (7.5 g, 25.1 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (180 mL) at -78 °C was added DIBAI-H (1.0 M solution in CH₂Cl₂, 72.0 mL, 3.0 equiv.) dropwise. The reaction was stirred for 2 h at -78 °C then carefully guenched in sequence with H_2O (2.9 mL), 15% aqueous NaOH (2.9 mL), and H₂O (7.2 mL). The dry ice/acetone bath was removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord. Subsequently, anhydrous MgSO₄ was added and the reaction mixture was vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) providing 4.88 g (75% yield) of silvloxydiene alcohol 2c as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.30$; ¹H NMR (500 MHz, C_6D_6): δ 6.44 (tt, J = 6.48, 0.55 Hz, 1H), 4.45 (d, J = 1.2 Hz, 1H), 4.36 (d, J = 0.9 Hz, 1H), 4.06 (d, J = 6.3 Hz, 2H), 1.62 (d, J = 0.9 Hz, 3H), 1.23-1.18 (m, 3H), 1.14 (d, J = 6.2 Hz, 18H); ¹³C NMR (125 MHz; C₆D₆): δ 157.7, 132.6, 128.1, 91.1, 59.8, 18.4 (6), 13.5, 13.2 (3); IR (thin film): 3320, 2945, 2868, 1593 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₅H₃₁O₂Si [M+H]⁺: 271.2093, found: 271.2092.

(*E*)-2,4-dimethyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-2-ol (2d): To a solution of diene S8 (1.0 g, 3.2 mmol, 1.0 equiv.) in anhydrous Et_2O (10 mL) at 0 °C was added MeMgBr (3.0 M solution in Et_2O , 2.5 mL, 7.4 mmol, 2.3 equiv.) over a period of 1 h. The reaction was stirred for 2 h at 23 °C then quenched with a saturated aqueous solution of NH₄Cl (5 mL). The aqueous layer was extracted with Et_2O (2 × 10 mL) and the combined organic extracts were then washed with brine (5 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (0.5 \rightarrow 15%

EtOAc/hexanes) providing 0.65 g (69% yield) of silyloxydiene alcohol **2d** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.48; ¹H-NMR (500 MHz; CDCl₃): δ 6.25 (s, 1H), 4.47 (s, 1H), 4.29 (s, 1H), 2.02 (s, 3H), 1.40 (s, 6H), 1.27-1.20 (m, 3H), 1.09 (d, *J* = 7.5 Hz, 18H).; ¹³C NMR (125 MHz; CDCl₃): δ 158.0, 134.6, 132.8, 91.2, 71.2, 31.4 (2), 18.2 (6), 14.0, 12.9 (3); IR (thin film): 3406, 2945, 2868, 1664, 1593 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₇H₃₅O₂Si [M+H]⁺: 299.2406, found: 299.2420.

Ethyl (Z)-3-methyl-4-oxooct-2-enoate (S11): To a solution of 2,3-heptanedione **S9** (16.8 mL, 120.0 mmol, 1.2 equiv.) in anhydrous CH₂Cl₂ (250 mL) was added ethyl (triphenylphosphoranylidene)acetate **S10** (35.0 g, 100.0 mmol, 1.0 equiv.) and stirred at ambient temperature (23 °C) for 30 h. The mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The residue was then diluted with cold Et₂O (200 mL), filtered through a plug of celite and washed with additional Et₂O (50 mL). The filtrate was concentrated by rotary evaporation and purified by an automated flash chromatography system (5 \rightarrow 15% EtOAc/hexanes) providing 10.15 g (51% yield) of ketoester **S11** as a pale yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.59; ¹H NMR (500 MHz, CDCl₃): δ 6.52 (q, *J* = 1.5 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.68 (t, *J* = 7.4 Hz, 2H), 2.20 (d, *J* = 1.5 Hz, 3H), 1.62-1.56 (m, 2H), 1.36-1.28 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 202.6, 166.4, 150.8, 125.3, 60.8, 38.1, 26.4, 22.4, 14.3, 14.0, 13.5; IR (thin film): 2961, 2936, 1725, 1687 cm⁻¹; HRMS (ESI+) *m*/z calcd for C₁₁H₁₈LiO₃ [M+Li]⁺: 205.1416, found: 205.1424.

Ethyl (2Z,4Z)-3-methyl-4-((triisopropylsilyl)oxy)octa-2,4-dienoate (S12): To a solution of ketoester S11 (3.51 g, 17.7 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (60 mL) at 0 °C was added Et₃N (3.7 mL, 26.6 mmol, 1.5 equiv.) dropwise. After stirring for 10 min, TIPSOTf (5.7 mL, 21.2 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was stirred for 2 h at 0 °C. The mixture was then allowed to warm up to ambient temperature (23 °C) on its own accord and stirred for 22 h. The reaction was quenched with a saturated aqueous solution of NaHCO₃ (30 mL). The aqueous layer was extracted with Et₂O (2 \times 50 mL) and the combined organic extracts were then washed with brine (50 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (5 \rightarrow 25% CH₂Cl₂/hexanes) providing 1.75 g (28% yield) of diene **S12** as a pale yellow oil: TLC (CH₂Cl₂:hexanes, 1:4 v/v): R_f = 0.41; ¹H NMR (500 MHz, CDCl₃): δ 6.11 (d, J = 0.5 Hz, 1H), 5.18 (t, J = 7.2 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 2.27 (d, J = 0.8 Hz, 3H), 2.15 (q, J = 7.4 Hz, 2H), 1.40 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H), 1.21-1.14 (m, 3H), 1.09 (d, J = 1.9 Hz, 18H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz; CDCl₃): δ 167.7, 152.1, 151.3, 115.8, 114.8, 59.7, 28.7, 22.7, 18.1 (6), 15.4, 14.5, 14.1, 13.9 (3); IR (thin film): 2960, 2869, 1716, 1623 cm⁻¹; HRMS (MALDI+) m/z calcd for C₂₀H₃₉O₃Si $[M+H]^+$: 355.2668, found: 355.2644.

(2Z,4Z)-3-methyl-4-((triisopropylsilyl)oxy)octa-2,4-dien-1-ol (2e): To a solution of diene S12 (1.1 g, 3.1 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (25 mL) at -78 °C was added DIBAI-H (1.0 M solution in CH_2Cl_2 , 9.3 mL, 3.0 equiv.) dropwise. The reaction was stirred for 2 h at -78 °C then carefully quenched in sequence with H_2O (0.37 mL), 15% aqueous NaOH (0.37 mL), and H_2O (0.93 mL). The dry ice/acetone bath was

removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord. Subsequently, anhydrous MgSO₄ was added and the reaction mixture was vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) providing 0.80 g (84% yield) of silyloxydiene alcohol **2e** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 *v/v*): R_f = 0.36; ¹H NMR (500 MHz, CDCl₃): δ 5.95 (td, *J* = 6.8, 0.8 Hz, 1H), 4.84 (t, *J* = 7.1 Hz, 1H), 4.26 (d, *J* = 6.8 Hz, 2H), 2.11 (q, *J* = 7.4 Hz, 2H), 1.79 (d, *J* = 1.1 Hz, 3H), 1.38 (dq, *J* = 14.9, 7.4 Hz, 2H), 1.21-1.16 (m, 3H), 1.10 (d, *J* = 6.8 Hz, 18H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 151.3, 135.8, 124.5, 110.9, 59.9, 28.4, 23.0, 18.2 (6), 14.3, 14.2, 14.0 (3); IR (thin film): 3332, 2959, 2868, 1626 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₈H₃₇O₂Si [M+H]⁺: 313.2563, found: 313.2571.

Methyl (E)-2,2-dimethyl-5-oxohex-3-enoate (S14): To a solution of 1-(triphenyl-phosphoranylidene)-2-propanone **S1** (4.32 g, 13.6 mmol, 1.3 equiv.) in anhydrous PhMe (35 mL) was added methyl 2,2-dimethyl-3-oxopropanoate **S13** (1.36 g, 10.5 mmol, 1.0 equiv.), which was freshly prepared from methyl 2,2-dimethyl-3-hydroxypropionate⁶ and used immediately without purification, and the mixture was refluxed (115-120 °C) for 24 h. The mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The residue was then diluted with cold Et₂O (25 mL), filtered through a plug of celite and washed with additional Et₂O (10 mL). The filtrate was concentrated by rotary evaporation and purified by an automated flash chromatography system (5 \rightarrow 20% EtOAc/hexanes) providing 1.52 g (86% yield) of ketoester **S14** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.26; ¹H NMR (500 MHz, CDCl₃): δ 6.92 (d, *J* = 16.3 Hz, 1H), 6.05 (d, *J* = 16.3 Hz, 1H), 3.68 (s, 3H), 2.25 (s, 3H), 1.34 (s, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 198.7, 175.4, 150.4, 128.8, 52.6, 44.8, 27.3, 24.6 (2); IR (thin film): 2983, 2954, 1734, 1702, 1681, 1626 cm⁻¹; HRMS (ESI+) *m*/z calcd for C₉H₁₄LiO₃ [M+Li]⁺: 177.1103, found: 177.1108.

(*E*)-2,2-dimethyl-5-((triisopropylsilyl)oxy)hexa-3,5-dien-1-ol (2f): To a solution of ketoester **S14** (1.52 g, 8.9 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (45 mL) at 0 °C was added Et_3N (1.5 mL, 10.7 mmol, 1.2 equiv.) dropwise. After stirring for 10 min, TIPSOTf (2.6 mL, 9.6 mmol, 1.1 equiv.) was added over a period of 30 min. The reaction was stirred for 2 h at 0 °C then quenched with a saturated aqueous solution of NaHCO₃ (20 mL). The aqueous layer was extracted with Et_2O (2 × 50 mL) and the combined organic extracts were then washed with brine (50 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation to afford crude diene **S15** as a pale yellow oil. The crude material was of sufficient purity to be carried on directly to the next step (Note: purification of this compound led to extensive loss of material on SiO₂).

To a solution of crude diene S15 in anhydrous THF (64 mL) at 0 °C was added LiAIH₄ (2.0 M solution in THF, 4.5 mL, 1.1 equiv.) dropwise. The reaction was stirred for 30 min at 0 °C then allowed to warm up to ambient temperature (23 °C) and stirred for 30 min. The reaction was then cooled to 0 °C and carefully guenched in sequence with 0.36 mL H₂O, 0.36 mL 15% aqueous NaOH, and 0.90 mL H₂O. The ice bath was removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord. Subsequently, anhydrous MqSO₄ was added and the reaction mixture was vigorously stirred for 30 min, filtered through a pad of celite and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) providing 1.83 g (69% yield over 2 steps) of silvloxydiene alcohol **2f** as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.29; ¹H NMR (500 MHz, CDCl₃): δ 6.00 (d, J = 15.6 Hz, 1H), 5.89 (dd, J = 15.6, 0.8 Hz, 1H), 4.29 (s, 1H), 4.25 (s, 1H), 3.35 (s, 2H), 1.27-1.19 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H), 1.05 (s, 6H); ¹³C NMR (125 MHz; CDCl₃): δ 155.2, 137.5, 127.0, 94.5, 71.7, 38.4, 23.9 (2), 18.2 (6), 12.9 (3); IR (thin film): 3377, 2948, 2870, 1593 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₇H₃₅O₂Si [M+H]⁺: 299.2406, found: 299.2413.

3-acetylcyclohex-2-en-1-one (S17): 3-acetylcyclohex-2-en-1-one S17 was prepared by a modified reported procedure.⁷ To a solution of 1-acetyl-1-cyclohexene **S16** (5.2) mL, 40.3 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (150 mL) was added in sequence K₂CO₃ (2.78 g, 20.2 mmol, 0.5 equiv.), Rh₂(cap)₄ (42 mg, 0.064 mmol, 0.0016 equiv.) and TBHP (5.0-6.0 M solution in decane, 40.0 mL, 201.5 mmol, 5.0 equiv.). The reaction mixture was exposed to air and vigorously stirred at ambient temperature (23 °C) for 2 h. The mixture was filtered through a short pad of SiO₂ and the filtrate was concentrated using rotary evaporation. Purification by an automated flash chromatography system (5 \rightarrow 20% EtOAc/hexanes) afforded 2.42 g (44% yield) of diketone **S17** as a yellow oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.20; ¹H NMR (500 MHz, CDCl₃): δ 6.55 (t, J = 1.7 Hz, 1H), 2.49 (td, J = 6.0, 1.7 Hz, 2H), 2.44 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 2.01 (dt, J = 13.1, 6.4 Hz, 2H); ¹³C NMR (125 MHz; CDCl₃): δ 201.5, 200.2, 154.7, 132.5, 38.0, 26.2, 23.4, 22.0; IR (thin film): 2955, 1681 cm⁻¹; HRMS (ESI+) m/z calcd for C₈H₁₀LiO₂ [M+Li]⁺: 145.0841, found: 145.0838.

3-(1-((triisopropylsilyI)oxy)vinyI)cyclohex-2-en-1-one (S18): To a solution of diketone **S17** (3.28 g, 23.7 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (100 mL) at 0 °C was added $EtN(^{i}Pr)_2$ (9.1 mL, 52.2 mmol, 2.2 equiv.) dropwise. After stirring for 10 min, TIPSOTF (7.7 mL, 28.5 mmol, 1.2 equiv.) was added over a period of 30 min. The reaction was stirred for 2 h at 0 °C. The mixture was then allowed to warm up to ambient temperature (23 °C) on its own accord and stirred for 22 h. The reaction was quenched with a saturated aqueous solution of NaHCO₃ (50 mL). The aqueous layer was extracted with Et_2O (2 × 50 mL) and the combined organic extracts were then washed with brine (50 mL). The organic layer was then dried over anhydrous MgSO₄,

filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (5 \rightarrow 15% EtOAc/hexanes) providing 4.94 g (71% yield) of diene **S18** as a yellow oil: TLC (EtOAc:hexanes, 1:9 *v/v*): R_f = 0.49; ¹H NMR (500 MHz, CDCl₃): δ 6.44 (s, 1H), 4.83 (dd, *J* = 2.1, 0.5 Hz, 1H), 4.61 (dd, *J* = 2.1, 0.5 Hz, 1H), 2.48 (td, *J* = 6.1, 1.3 Hz, 2H), 2.40 (t, *J* = 6.7 Hz, 2H), 2.06-2.01 (m, 2H), 1.28-1.23 (m, 3H), 1.09 (d, *J* = 7.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 200.9, 155.2, 155.1, 124.6, 96.9, 37.7, 25.6, 22.7, 18.2 (6), 12.9 (3); IR (thin film): 2945, 2867, 1669 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₇H₃₁O₂Si [M+H]⁺: 295.2093, found: 295.2116.

3-(1-((triisopropylsilyl)oxy)vinyl)cyclohex-2-en-1-ol ((±)-2g): To a solution of diene **S18** (3.11 g, 10.6 mmol, 1.0 equiv.) in absolute EtOH (105 mL) and anhydrous CH₂Cl₂ (105 mL) at 0 °C was added CeCl₃•7H₂O (4.33 g, 11.6 mmol, 1.1 equiv.) in one portion. After stirring for 20 min, NaBH₄ (1.0 g, 26.4 mmol, 2.5 equiv.) was added portionwise over a period of 30 min. The reaction was stirred for 30 min at 0 °C then guenched with a saturated aqueous solution of NaHCO₃ (20 mL). The aqueous layer was extracted with CH_2CI_2 (2 × 80 mL) and the combined organic extracts were then washed with brine (20 mL). The organic layer was then dried over anhydrous MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by an automated flash chromatography system (5 \rightarrow 15% EtOAc/hexanes) providing 2.75 g (88% yield) of silyloxydiene alcohol (±)-2g as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.46; ¹H NMR (500 MHz, CDCl₃): δ 6.30-6.30 (m, 1H), 4.41 (dt, J = 1.6, 0.5 Hz, 1H), 4.33-4.30 (m, 1H), 4.28 (d, J = 1.6 Hz, 1H), 2.22-2.15 (m, 1H), 2.13-2.07 (m, 1H), 1.91-1.86 (m, 1H), 1.83-1.76 (m, 1H), 1.65-1.51 (m, 2H), 1.28-1.20 (m, 3H), 1.10 (d, J = 6.7 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 156.2, 136.3, 126.8, 91.1, 66.5, 31.9, 25.1, 19.5, 18.3 (6), 13.0 (3); IR (thin film): 3333, 2943, 2867, 1662, 1593 cm⁻¹; HRMS (ESI+) m/z calcd for C₁₇H₃₃O₂Si [M+H]⁺: 297.2250, found: 297.2264.

DAL optimization studies (Tables S1-S3):

NOTE: The relative and absolute configuration of *trans*-fused bicyclic γ -lactone (+)-**3c'** was unambiguously assigned by X-ray analysis using anomalous dispersion (see **Figure S3**, page 46). Based on this structure, detailed 2D NMR analysis, and computational studies (see **Figure S6**, page 125) which predict the *endo* transition state as the lowest energy pathway, we propose the relative and absolute configurations of bicyclic γ -lactones **3a** and **3a**' as shown in **Table 1a**.

Catalyst screening studies for the enantioselective DAL process (Table S1): Into a dried, 2-mL clear-glass vial (12×32 mm) equipped with a magnetic stir bar was added silyloxydiene alcohol 2a (28 mg, 0.10 mmol, 1.0 equiv.), catalyst (0.020 mmol, 20 mol%), 2,6-lutidine (35 µL, 0.30 mmol, 3.0 equiv.) and anhydrous CH₂Cl₂ (1.0 mL, to make final concentration of silvloxydiene alcohol 0.1 M) at ambient temperature (23 °C). With vigorous stirring, ethyl fumaroyl chloride **1a** (16 µL, 0.12 mmol, 1.2 equiv.) was added dropwise. After stirring for 18 h at ambient temperature (23 °C), the reaction mixture was concentrated by rotary evaporation and purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford an inseparable 1.5:1 mixture of endo/exo diastereomers (as judged by ¹H NMR) of bicyclic γ -lactones **3a** and **3a**' as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): R_f = 0.47. (HPLC data is provided for the 1.5:1 mixture of endo/exo diastereomers) Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes: PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 10.3 min, $t_{minor} = 10.9$ min; $t_{minor} = 12.7$ min, $t_{maior} = 19.4$ min. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-3c'. (NMR data is provided for the 1.5:1 mixture of *endo/exo* diastereomers) ¹H NMR (500 MHz; CDCl₃): δ 4.78 (s, 1.0H), 4.67 (dd, J = 3.3, 2.3 Hz, 1.5H), 4.22-4.06 (m, 5.1H), 3.45 (dd, J = 7.6, 2.3 Hz, 1.5H), 3.25-3.22 (m, 2.4H), 2.96-2.93 (m, 1.6H), 2.90-2.85 (m, 0.9H), 2.43 (d, J = 16.8 Hz, 1.5H),2.34 (ddt, J = 17.4, 6.5, 2.5 Hz, 1.5H), 2.17-2.08 (m, 2.9H), 1.43 (s, 3.1H), 1.42 (s, 3.3H), 1.32 (s, 4.6H), 1.29 (s, 4.4H), 1.24-1.19 (m, 7.4H), 1.13-1.07 (m, 7.7H), 1.03-1.00 (m, 45.3H). ¹³C NMR (125 MHz; CDCl₃): δ 176.4, 174.2, 172.9, 172.1, 152.8, 150.9,

101.2, 99.3, 86.2, 84.7, 61.17, 61.16, 46.9, 42.7, 41.5, 40.3, 38.3, 30.5, 30.1, 28.0, 27.6, 27.5, 24.3, 21.0, 17.9 (12), 14.16, 14.08, 12.57 (3), 12.48 (3); IR (thin film): 2945, 2868, 1778, 1769, 1739, 1732, 1666, 1645 cm⁻¹; HRMS (ESI+) *m*/*z* calcd for $C_{22}H_{39}O_5Si$ [M+H]⁺: 411.2567, found: 411.2576.

Table S1. Catalyst screening studies for the enantioselective DAL process.

[¶]Determined by ¹H NMR analysis of the crude reaction mixture. [§] Determined by chiral HPLC analysis. [‡] Enantiomeric excess of the major **3a** (*endo*) diastereomer. ^Ø Isolated yield of the 1.5:1 diastereomeric mixture. [†] Ethyl fumaroyl chloride **1a** in CH₂Cl₂ (0.3 mL) was added over a period of 5 h by syringe pump addition.

Base screening studies for the enantioselective DAL process (Table S2): Into a dried, 2-mL clear-glass vial (12×32 mm) equipped with a magnetic stir bar was added silyloxydiene alcohol **2b** (26 mg, 0.10 mmol, 1.0 equiv.), (*S*)-(–)-BTM (5.0 mg, 0.020

mmol, 20 mol%), *base* (0.30 mmol, 3.0 equiv.) and anhydrous CH_2Cl_2 (1.0 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient temperature (23 °C). With vigorous stirring, acryloyl chloride **1b** (10 µL, 0.12 mmol, 1.2 equiv.) was added dropwise. After stirring for 18 h at ambient temperature (23 °C), the reaction mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The crude mixture was analyzed by ¹H NMR (500 MHz) and purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford bicyclic γ -lactone (–)-**3b**. All spectral data matched that reported on pages S19-S20.

	TIPSO	TIPSO			
0 		(S)-(–)-BTM (20 r	mol%)	[]_,,н	
	CI OH C	base (3.0 equiv.) CH ₂ Cl ₂ (0.1 M), 23 °C, 18 h		H ¹ 0	
1b	2b			(–)- 3b	
entry	base	dr (endo/exo) [¶]	ee (%) ^{§,‡}	conversion (%) ^{†,¶}	
1	_	n.d.	n.d.	<5	
2	K ₂ CO ₃	n.d.	n.d.	<5	
3	Et ₃ N	2.4 : 1	60	>95 (60)	
4	EtN([/] Pr) ₂	2.4 : 1	65	>95 (55)	
5	DBU	2.1:1	11	>95 (30)	
6	pyridine	3.2 : 1	85	>95 (46)	
7	2,6-lutidine	1:1	99	>95 (68)	
8	2,6-di-tert-butylpyridine	>19 : 1	99	>95 (43)	
9	K ₃ PO ₄ /2,6-lutidine (20 mol%)	>19 : 1	99	>95 (64)	
10	2-phenylbenzimidazole	1.7 : 1	84	>95	
11	2-phenylquinoline	12 : 1	96	>95	
12	benzo[<i>h</i>]quinoline	2.8 : 1	96	>95	
13	acridine	2.8 : 1	99	>95	
14	1,10-phenanthroline	4.4 : 1	97	>95	
15	8-(tosylamino)quinoline	6.5 : 1	96	>95	
16	2,6-diphenylpyridine	n.d.	n.d.	<5	

Table S2. Base screening studies for the enantioselective DAL process.

[¶]Determined by ¹H NMR analysis of the crude reaction mixture. [§]Determined by chiral HPLC analysis. [‡]Enantiomeric excess of the major (–)-**3b** (*endo*) diastereomer. [†]Yields in parentheses refer to isolated yields. *n.d.* = not determined.

Solvent screening studies for the enantioselective DAL process (Table S3): Into a dried, 2-mL clear-glass vial (12×32 mm) equipped with a magnetic stir bar was added silyloxydiene alcohol **2b** (26 mg, 0.10 mmol, 1.0 equiv.), (*S*)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-di-*tert*-butylpyridine (0.30 mmol, 3.0 equiv.) and anhydrous *solvent* (1.0 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient temperature (23 °C). With vigorous stirring, acryloyl chloride **1b** (10 µL, 0.12 mmol, 1.2 equiv.) was added dropwise. After stirring for 18 h at ambient temperature (23 °C), the reaction mixture was filtered through a short pad of celite and the filtrate was concentrated using rotary evaporation. The crude mixture of bicyclic γ -lactone (–)-**3b** was analyzed by ¹H NMR (500 MHz) and chiral HPLC. All spectral data matched that reported on pages S19-S20.

Table S3. Solvent screening studies for the enantioselective DAL process.

	TIPSO +	CH CH CH CH CH CH CH CH CH CH		
entry	solvent	relative polarity [¶]	dr (endo/exo) ^Ø	ee (%) ^{‡,§}
1	PhMe ^{†,€}	0.099	8.3 : 1	92
2	PhH ^{†,€}	0.111	11.7 : 1	92
3	Et₂O ^{†,€}	0.117	2.8 : 1	48
4	1,4-dioxane [†]	0.164	n.d.	n.d.
5	THF [†]	0.207	n.d.	n.d.
6	EtOAc [†]	0.228	n.d.	n.d.
7	DME ^{†,€}	0.231	>19 : 1	78
8	CHCl ₃	0.259	>19 : 1	97
9	CH ₂ Cl ₂	0.309	>19 : 1	99
10	DCE	0.327	>19 : 1	93
11	acetone [†]	0.355	n.d.	n.d.
12	DMF	0.386	3.7 : 1	36
13	$DMSO^\Delta$	0.444	n.d.	n.d.
14	MeCN	0.460	2.1 : 1	67

[¶] The values for relative polarity are normalized from measurements of solvent shifts of absorption spectra and were extracted from Christian Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Publishers, 3rd ed., 2003. ^Ø Determined by ¹H NMR analysis of the crude reaction mixture. [‡]Determined by chiral HPLC analysis. [§] Enantiomeric excess of the major (–)-**3b** (*endo*) diastereomer. [†]Instantaneous formation of precipirate (insoluble acylammonium salt) upon addition of acid chloride. [€]Reaction mixture became homogeneous over a period of 18 h. ^ΔInstantaneous exothermic reaction upon addition of acid chloride. *n.d.* = not determined.

Representative procedure for the enantioselective DAL process as described for bicyclic γ -lactone (–)-3b:

NOTE: The relative and absolute configuration of *trans*-fused bicyclic γ -lactone (+)-**3c'** was unambiguously assigned by X-ray analysis using anomalous dispersion (see **Figure S3**, page 46). Based on this structure, detailed 2D NMR analysis, and computational studies (see **Figure S6**, page 125) which predict the *endo* transition state as the lowest energy pathway, we propose the relative and absolute configurations of bicyclic lactones **3b–j** as shown in **Scheme 1**.

(3aS,7aR)-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzofuran-1(3H)-on ((-)-3b): To an oven-dried, 25-mL round-bottomed flask equipped with a magnetic stir bar was added silyloxydiene alcohol 2b (144 mg, 0.56 mmol, 1.0 equiv.), (S)-(-)-BTM (28 mg, 0.11 mmol, 20 mol%), 2,6-lutidine (13 μL, 0.11 mmol, 20 mol%), K₃PO₄ (0.36 g, 1.68 mmol, 3.0 equiv.) and anhydrous CH₂Cl₂ (4.0 mL, to make final concentration of silvloxydiene alcohol 0.1 M) at ambient temperature (23 °C). With vigorous stirring, acryloyl chloride **1b** (68 µL, 0.84 mmol, 1.5 equiv.) in CH₂Cl₂ (1.6 mL) was added over a period of 5 h by syringe pump addition. After stirring for an additional 13 h, the reaction mixture was filtered through a pad of celite and concentrated by rotary evaporation. Purification by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) afforded a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3b** (107 mg, 62%) yield, 94% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.34$; $\left[\alpha\right]_{D}^{17.7} =$ -52.31 (c = 1.30, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes: ${}^{\prime}$ PrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 15.9 min, t_{minor} = 17.9 min; 94% ee. Absolute stereochemistry was assigned by analogy to bicyclic y-lactone

(+)-**3c'**. ¹H NMR (500 MHz; CDCl₃): δ 4.77-4.77 (m, 1H), 4.33 (dd, *J* = 8.8, 5.9 Hz, 1H), 3.99 (dd, *J* = 8.8, 2.0 Hz, 1H), 3.17-3.13 (m, 1H), 2.75 (dt, *J* = 7.6, 4.0 Hz, 1H), 2.22-2.14 (m, 2H), 2.03-1.97 (m, 1H), 1.87-1.80 (m, 1H), 1.15-1.11 (m, 3H), 1.06 (dd, *J* = 7.1, 2.9 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 178.6, 153.8, 102.2, 73.2, 37.7, 35.6, 26.2, 20.7, 18.0 (6), 12.7 (3); IR (thin film): 2944, 2867, 1775, 1665 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₇H₃₀LiO₃Si [M+Li]⁺: 317.2124, found: 317. 2119.

Ethyl (3aS,4S,7aS)-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((–)-3c): Prepared according to the representative procedure using silyloxydiene alcohol 2b (1.44 g, 5.6 mmol, 1.0 equiv.), (S)-(–)-BTM (283 mg, 1.1 mmol, 20 mol%), 2,6-lutidine (0.13 mL, 1.1 mmol, 20 mol%), K₃PO₄ (3.6 g, 16.8 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (40 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.97 mL, 7.3 mmol, dissolved in 16 mL CH₂Cl₂, 1.3 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ-lactone (–)-3c (1.46 g, 68% yield, 99% ee) and ester **S19** (0.41 g, 19% yield) shown below.

(-)-**3c**: clear colorless oil; TLC (EtOAc:hexanes, 1:9 *v/v*): $R_f = 0.49$; $[\alpha]_D^{22.1} = -81.33$ (*c* = 3.00, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, $\lambda = 210$ nm: $t_{minor} = 15.4$ min, $t_{major} = 18.1$ min; 99% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-**3c'**. ¹H NMR (500 MHz; CDCl₃): δ 4.73 (t, *J* = 2.5 Hz, 1H), 4.37 (dd, *J* = 8.8, 5.6 Hz, 1H), 4.22-4.09 (m, 2H), 4.03 (d, *J* = 8.8 Hz, 1H), 3.30-3.26 (m, 2H), 3.20 (dd, *J* = 7.3, 2.3 Hz, 1H), 2.49 (dd, *J* = 17.7, 1.4 Hz, 1H), 2.39 (ddt, *J* = 17.7, 6.9, 2.4 Hz, 1H), 1.25 (t,

J = 7.1 Hz, 3H), 1.16-1.09 (m, 3H), 1.04 (d, J = 6.4 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 177.2, 172.9, 151.3, 101.7, 73.3, 61.3, 39.4, 37.8, 34.1, 27.9, 17.9 (6), 14.1, 12.6 (3); IR (thin film): 2945, 2867, 1773, 1732, 1668 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₀H₃₄NaO₅Si [M+Na]⁺: 405.2068, found: 405.2088.

^{TIPSO} CO₂Et CO₂Et CO₂Et CO₂Et Ethyl ((*E*)-4-((triisopropylsilyl)oxy)penta-2,4-dien-1-yl) fumarate (S19): pale yellow oil; TLC (EtOAc:hexanes, 1:9 v/v): $R_f =$ 0.78. ¹H NMR (500 MHz; CDCl₃): δ 6.92-6.80 (m, 2H), 6.16-6.08 (m, 2H), 4.77 (d, *J* = 4.8 Hz, 2H), 4.37 (s, 1H), 4.32 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.27-1.20 (m, 3H), 1.10 (d, *J* = 7.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 165.1, 164.8, 154.3, 134.1, 133.5, 132.3, 123.1, 96.3, 65.1, 61.5, 18.2 (6), 14.3, 12.9 (3); IR (thin film): 2946, 2869, 1727, 1594 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₀H₃₄LiO₅Si [M+Li]⁺: 389.2336, found: 389.2332.

Use of a lower catalyst loading for the DAL (10 mol%) as described for bicyclic ylactone (-)-3c: This reaction was performed according to the procedure described above for (-)-3c with the exception that a lower catalyst loading (10 vs. 20 mol%), a lower "shuttle" base loading (10 vs. 20 mol%) and a longer addition time (10 vs. 5 h) were employed. Silyloxydiene alcohol 2b (100 mg, 0.39 mmol, 1.0 equiv.), (S)-(-)-BTM (10 mg, 0.039 mmol, 10 mol%), 2,6-lutidine (4.5 μL, 0.039 mmol, 10 mol%), K₃PO₄ (248 mg, 1.2 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (3.0 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride **1a** (68 µL, 0.51 mmol, dissolved in 0.9 mL CH₂Cl₂, 1.3 equiv.). The solution of ethyl fumaroyl chloride **1a** was added by syringe pump over 10 h and the reaction was allowed to stir for 8 h at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3c** (59 mg, 40%) yield, 98% ee) and ester S19 (34 mg, 23% yield). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes: PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 15.3 min, t_{maior} = 18.2 min; 98% ee. All spectral data matched that reported above.

(3aR,7aR)-4-methyl-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzofuran-1(3H)-one ((-)-3d): Prepared according to the representative procedure using silyloxydiene alcohol 2c (4.0 g, 14.8 mmol, 1.0 equiv.), (S)-(-)-BTM (747 mg, 2.9 mmol, 20 mol%), 2,6-lutidine (0.34 mL, 2.9 mmol, 20 mol%), K₃PO₄ (9.4 g, 44.4 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (130 mL, to make final concentration of silvloxydiene alcohol 0.1 M) and acryloyl chloride 1b (1.8 mL, 22.2 mmol, dissolved in 18 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ lactone (-)-3d (4.03 g, 84% yield, 99% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.37$; $\left[\alpha\right]_{D}^{20.3} = -87.50$ (c = 1.60, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel AS-H column: hexanes: PrOH = 99:01, flow rate 1.0 mL/min, λ = 210 nm: t_{maior} = 10.3 min, t_{minor} = 11.5 min; 99% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-**3c'**. ¹H NMR (500 MHz; CDCl₃): δ 4.32 (dd, J = 9.0, 6.5 Hz, 1H), 4.14 (dd, J = 9.0, 3.1 Hz, 1H), 3.04-3.01 (m, 1H), 2.77 (dt, J = 7.7, 15.0 Hz, 1H), 2.24-2.17 (m, 1H), 2.13-2.08 (m, 1H), 2.07-2.01 (m, 1H), 1.86-1.79 (m, 1H), 1.66 (s, 3H), 1.14-1.09 (m, 3H), 1.06 (dd, J = 6.6, 2.1 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 178.9, 146.8, 107.7, 71.2, 40.6, 38.5, 27.0, 21.2, 18.1 (6), 14.2, 13.3 (3); IR (thin film): 2944, 2867, 1775, 1677 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₈H₃₂NaO₃Si [M+Na]⁺: 347.2018, found: 347.2024.

Ethyl (3aS,4S,7aR)-7-methyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((–)-3e): Prepared according to the representative procedure using silvloxydiene alcohol 2c (50 mg, 0.19 mmol, 1.0 equiv.), (S)-(-)-BTM (9.3 mg, 0.037 mmol, 20 mol%), 2,6-lutidine (4.3 μL, 0.037 mmol, 20 mol%), K₃PO₄ (98 mg, 0.46 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (1.0 mL, to make final concentration of silvloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (37 uL, 0.28 mmol, dissolved in 0.9 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3e** (67 mg, 92% yield, 99% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:4 v/v): $R_f = 0.62$; $\left[\alpha\right]_{D}^{20.2} = -78.86$ (c = 3.50, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:'PrOH = 98:02, flow rate 0.4 mL/min, λ = 210 nm: t_{major} = 20.0 min, t_{minor} = 21.3 min; 99% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-3c'. ¹H NMR (500 MHz; CDCl₃): δ 4.33 (dd, J = 9.1, 6.0 Hz, 1H), 4.23-4.20 (m, 1H), 4.20-4.08 (m, 2H), 3.24 (ddd, J = 7.5, 3.2, 1.2 Hz, 1H), 3.22-3.20 (m, 1H), 3.19-3.16 (m, 1H), 2.51 (ddg, J = 17.1, 2.4, 1.2 Hz, 1H), 2.43 (ddquint, J = 17.1, 6.5, 2.3 Hz, 1H), 1.63 (t, J = 0.9 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.16-1.10 (m, 3H), 1.05 (dd, J = 6.9, 3.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 177.5, 172.8, 144.2, 107.4, 71.0, 61.3, 40.0, 39.2, 38.0, 28.5, 18.0 (6), 14.1, 13.9, 13.2 (3); IR (thin film): 2945, 2868, 1777, 1732, 1679 cm⁻¹; HRMS (ESI+) m/z calcd for C₂₁H₃₇O₅Si [M+H]⁺: 397.2410, found: 397.2432.

(3aS.4S.7aR)-1.1.7-trimethyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-Ethyl hexahydroisobenzofuran-4-carboxylate ((–)-3f): Prepared according to the representative procedure using silvloxydiene alcohol 2d (30 mg, 0.10 mmol, 1.0 equiv.), (S)-(-)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 µL, 0.020 mmol, 20 mol%), K₃PO₄ (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (0.7 mL, to make final concentration of silvloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (20 µL, 0.15 mmol, dissolved in 0.3 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3f** (25 mg, 74% yield, 98% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.35$; $[\alpha]_p^{18.4} = -25.60$ (c = 2.50, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes: PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{maior} = 11.6 min, t_{minor} = 13.6 min; 98% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-3c'. ¹H NMR (500 MHz; CDCl₃): δ 4.17 (q, J = 7.1 Hz, 2H), 3.37 (ddd, J = 9.1, 6.3, 0.9 Hz, 1H), 3.10 (q, J = 5.9 Hz, 1H), 2.92 (d, J = 9.5 Hz, 1H), 2.50 (ddd, J = 16.4, 5.6, 1.2 Hz, 1H), 2.30 (ddt, J = 16.4, 5.4, 1.8 Hz, 1H), 1.65 (s, 3H), 1.52 (s, 3H), 1.34 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.15-1.10 (m, 3H), 1.08 (d, J = 6.8 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 176.5, 172.9, 145.5, 107.1, 87.5, 61.3, 49.3, 42.0, 40.5, 30.4, 30.3, 25.3, 18.1 (6), 17.0, 14.3, 13.3 (3); IR (thin film): 2945, 2868, 1768, 1735, 1671 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₃H₄₁O₅Si [M+H]⁺: 425.2723, found: 425.2705.

(3aR,4R,7aS)-1,1,7-trimethyl-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-Ethvl hexahydroisobenzofuran-4-carboxylate ((+)-3f): Prepared according to the representative procedure using silvloxydiene alcohol 2d (554 mg, 1.86 mmol, 1.0 equiv.), (R)-(+)-BTM (94 mg, 0.37 mmol, 20 mol%), 2,6-lutidine (43 μL, 0.37 mmol, 20 mol%), K₃PO₄ (1.20 g, 5.57 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (13 mL, to make final concentration of silvloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride 1a (0.37 mL, 2.78 mmol, dissolved in 5.5 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (+)-**3f** (558 mg, 71% yield, 96% ee) as a clear colorless oil: $\left[\alpha\right]_{0}^{19.0}$ = +27.83 (*c* = 2.30, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes: PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 11.4 min, t_{major} = 13.5 min; 96% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-**3c'**. All spectral data matched that reported above.

CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3g** (197 mg, 55% yield, 95% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.43$; $[\alpha]_D^{20.5} = -64.57$ (c = 7.00, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:¹PrOH = 98:02, flow rate 0.5 mL/min, $\lambda = 210$ nm: t_{minor} = 16.0 min, t_{major} = 17.0 min; 95% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-**3c'**. ¹H NMR (500 MHz; CDCl₃): δ 4.33 (dd, J = 8.8, 6.7 Hz, 1H), 4.09 (dd, J = 8.8, 4.7 Hz, 1H), 2.99 (q, J = 5.8 Hz, 1H), 2.39 (t, J = 6.8 Hz, 1H), 2.33-2.30 (m, 1H), 2.29-2.27 (m, 1H), 1.85-1.80 (m, 1H), 1.63 (s, 3H), 1.13-1.09 (m, 6H), 1.05 (dd, J = 6.7, 2.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 178.3, 144.9, 106.4, 71.5, 44.6, 39.8, 35.2, 26.9, 19.2, 18.1 (6), 13.9, 13.2 (3); IR (thin film): 2945, 2868, 1772, 1678 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₉H₃₅O₃Si [M+H]⁺: 339.2355, found: 339.2382.

(3aS,7aR)-4,7a-dimethyl-5-((triisopropylsilyl)oxy)-3a,6,7,7a-tetrahydroisobenzofuran-1(3*H*)-one ((–)-3h): Prepared by a modified representative procedure. To an oven-dried, 50-mL round-bottomed flask equipped with a magnetic stir bar was added (*S*)-(–)-BTM (87 mg, 0.34 mmol, 20 mol%), 2,6-lutidine (40 μ L, 0.34 mmol, 20 mol%), K₃PO₄ (1.10 g, 5.16 mmol, 3.0 equiv.) and anhydrous CH₂Cl₂ (10 mL, to make final concentration of silyloxydiene alcohol 0.07 M) at ambient temperature (23 °C). With vigorous stirring, silyloxydiene alcohol 2c (464 mg, 1.72 mmol, 1.0 equiv.) in CH₂Cl₂ (3.5 mL) and methacryloyl chloride 1d (0.25 mL, 2.58 mmol, 1.5 equiv.) in CH₂Cl₂ (3.5 mL) were simultaneously added over a period of 8 h using two separate syringe pumps. After stirring for an additional 10 h, the reaction mixture was filtered through a pad of celite and concentrated by rotary evaporation. Purification by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) afforded a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (–)-**3h** (266 mg, 46% yield, 91% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.45$; $[\alpha]_D^{20.4} = -60.00$ (c = 0.40, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel AS-H column: hexanes:¹PrOH = 98:02, flow rate 0.5 mL/min, $\lambda = 210$ nm: $t_{major} = 11.8$ min, $t_{minor} = 14.0$ min; 91% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-**3c**². ¹H NMR (500 MHz; CDCl₃): δ 4.45 (dd, J = 8.9, 7.3 Hz, 1H), 3.97 (dd, J = 8.9, 6.2 Hz, 1H), 2.63 (t, J = 6.7 Hz, 1H), 2.17-2.13 (m, 2H), 1.94 (ddd, J = 13.2, 7.3, 5.9 Hz, 1H), 1.64 (s, 3H), 1.63-1.59 (m, 1H), 1.25 (s, 3H), 1.15-1.11 (m, 3H), 1.08 (d, J = 6.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 181.7, 145.6, 107.7, 70.6, 47.8, 41.1, 28.6, 26.7, 21.5, 18.1 (6), 17.8, 13.3 (3); IR (thin film): 2944, 2867, 1776, 1680 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₁₉H₃₄NaO₃Si [M+Na]⁺: 361.2175, found: 361.2181.

Ethyl (3aS,4S,5S,7aS)-7-methyl-3-oxo-5-propyl-6-((triisopropylsilyl)oxy)-1,3,3a,4, 5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-3i): Prepared according to the representative procedure using silyloxydiene alcohol **2e** (740 mg, 2.37 mmol, 1.0 equiv.), (*S*)-(–)-BTM (120 mg, 0.47 mmol, 20 mol%), 2,6-lutidine (55 μL, 0.47 mmol, 20 mol%), K₃PO₄ (1.50 g, 7.11 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (17 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride **1a** (0.47 mL, 3.56 mmol, dissolved in 6.0 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ-lactone (+)-**3i** (496 mg, 48% yield, 99% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 *v/v*): R_f = 0.44; $[\alpha]_D^{19.0}$ = +61.33 (*c* = 1.50, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel AD-H column: hexanes:[/]PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 11.4 min, t_{minor} = 12.7 min; 99% ee. The relative stereochemistry of bicyclic γ-lactone (+)-**3i** was assigned based on detailed 2D NMR analysis following γ-lactone ring opening with 4-bromobenzylamine as described for amide (–)-**S20** (page S29). Absolute stereochemistry was assigned by analogy to bicyclic γ-lactone (+)-**3c**[']. ¹H NMR (500 MHz; CDCl₃): δ 4.39 (dd, *J* = 7.9, 6.1 Hz, 1H), 4.29-4.17 (m, 2H), 3.90 (dd, *J* = 10.9, 8.0 Hz, 1H), 2.85 (dd, *J* = 11.5, 6.3 Hz, 1H), 2.80-2.74 (m, 1H), 2.69 (dd, *J* = 13.6, 11.5 Hz, 1H), 2.53 (t, *J* = 6.2 Hz, 1H), 1.65-1.57 (m, 5H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.28-1.25 (m, 1H), 1.19-1.13 (m, 4H), 1.10 (d, *J* = 5.7 Hz, 18H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 174.6, 170.9, 148.2, 109.0, 70.6, 61.1, 44.0, 43.9, 43.6, 41.2, 32.9, 22.0, 18.2 (6), 14.8, 14.2, 13.8, 13.1 (3); IR (thin film): 2946, 2869, 1794, 1736, 1658 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₄H₄₃O₅Si [M+H]⁺: 439.2880, found: 439.2882.

Use of a lower catalyst loading for the DAL (5 mol%) as described for bicyclic γ -lactone (+)-3i: This reaction was performed according to the procedure described above for (+)-3i with the exception that a lower catalyst loading (5 vs. 20 mol%), a lower "shuttle" base loading (5 vs. 20 mol%) and a longer addition time (15 vs. 5 h) were employed. Silyloxydiene alcohol **2e** (31 mg, 0.10 mmol, 1.0 equiv.), (*S*)-(–)-BTM (1.3 mg, 0.0050 mmol, 5 mol%), 2,6-lutidine (0.6 μ L, 0.0050 mmol, 5 mol%), K₃PO₄ (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (0.7 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride **1a** (20 μ L, 0.15 mmol, dissolved in 0.3 mL CH₂Cl₂, 1.5 equiv.). The solution of ethyl fumaroyl chloride **1a** was added by syringe pump over 15 h and the reaction was allowed to stir for 3 h at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic γ -lactone (+)-**3i** (16 mg, 37% yield, 97% ee) as a clear colorless oil. Enantiomeric excess was determined by chiral

HPLC analysis in comparison with authentic racemic material using a Chiralcel AD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 11.4 min, t_{minor} = 12.8 min; 97% *ee*. All spectral data matched that reported above.

Ethyl (1S,2S,5S,6S)-6-((4-bromobenzyl)carbamoyl)-5-(hydroxymethyl)-4-methyl-2propyl-3-((triisopropylsilyl)oxy)cyclohex-3-ene-1-carboxylate ((-)-S20): Into an oven-dried, 10-mL round-bottomed flask containing a solution of bicyclic γ -lactone (+)-3i (120 mg, 0.27 mmol, 1.0 equiv.) in THF (2.7 mL, to make final concentration of bicyclic y-lactone 0.1 M), was added dropwise 4-bromobenzylamine (0.14 mL, 1.1 mmol, 4.0 equiv.). The reaction was allowed to stir at ambient temperature (23 °C) for 30 h. Upon completion (as judged by TLC), the reaction was concentrated by rotary evaporation and purified by an automated flash chromatography system (20 \rightarrow 50%) EtOAc/hexanes) to afford amide (-)-S20 (86 mg, 51% yield) as a pale yellow solid: m.p. 126-130 °C; TLC (EtOAc:hexanes, 1:2 v/v): $R_f = 0.55$; $[\alpha]_D^{18.1} = -14.10$ (*c* = 8.60, CHCl₃). ¹H NMR (500 MHz; CDCl₃): δ 7.42 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.70 (t, J = 5.8 Hz, 1H), 4.43 (dd, J = 15.0, 6.1 Hz, 1H), 4.31 (dd, J = 15.0, 5.6 Hz, 1H), 4.10-4.00 (m, 2H), 3.70 (dd, J = 11.1, 4.6 Hz, 1H), 3.63 (dd, J = 11.2, 2.5 Hz, 1H), 3.15 (dd, J = 12.4, 4.5 Hz, 1H), 2.98 (dd, J = 12.3, 8.6 Hz, 1H), 2.49-2.45 (m, 2H), 1.60 (s, 3H), 1.44-1.37 (m, 2H), 1.27-1.13 (m, 8H), 1.11 (t, J = 6.3 Hz, 18H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 175.4, 173.7, 150.8, 137.7, 131.7 (2), 129.6 (2), 121.2, 107.3, 62.6, 60.6, 45.7, 44.9, 43.1, 42.0, 40.9, 34.2, 21.6, 18.2 (6), 14.9, 14.1, 14.0, 13.6 (3); IR (thin film): 3424, 3288, 2945, 2868, 1731, 1676, 1632, 1556 cm⁻¹; HRMS (ESI+) m/z calcd for C₃₁H₅₁BrNO₅Si $[M+H]^+$: 624.2720, found: 624.2693.

Ethyl (4aS,8S,8aS)-4,4-dimethyl-1-oxo-6-((triisopropylsilyl)oxy)-3,4,4a,7,8,8a-hexa hydro-1*H*-isochromene-8-carboxylate ((+)-3j): Prepared according to the representative procedure using silvloxydiene alcohol 2f (30 mg, 0.10 mmol, 1.0 equiv.), (S)-(-)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (2.3 μL, 0.020 mmol, 20 mol%), K₃PO₄ (64 mg, 0.30 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (0.7 mL, to make final concentration of silvloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride **1a** (20 µL, 0.15 mmol, dissolved in 0.3 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) to afford a single diastereomer (as judged by ¹H NMR) of bicyclic δ -lactone (+)-3j (23 mg, 54% yield, 92% ee) as a clear colorless oil: TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.35$; $[\alpha]_{p}^{18.6} = +21.05$ (c = 0.57, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:'PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 10.7 min, t_{major} = 12.5 min; 92% ee. Absolute stereochemistry was assigned by analogy to bicyclic γ -lactone (+)-3c'. ¹H NMR (500 MHz; CDCl₃): δ 4.79-4.78 (m, 1H), 4.17-4.04 (m, 2H), 3.94 (d, J = 10.9 Hz, 1H), 3.80 (dd, J = 10.9, 1.5 Hz, 1H), 3.49 (dt, J = 4.8, 2.4 Hz, 1H), 3.32 (dd, J = 7.1, 3.1 Hz, 1H),2.49-2.44 (m, 2H), 2.31 (ddt, J = 17.5, 6.2, 3.0 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.12-1.07 (m, 3H), 1.02 (d, J = 6.7 Hz, 18H), 0.90 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 172.9, 172.2, 152.2, 100.4, 75.8, 61.0, 40.1, 39.4, 38.4, 33.2, 27.7, 24.3, 22.6, 18.0 (6), 14.2, 12.6 (3); IR (thin film): 2945, 2868, 1730, 1661 cm⁻¹; HRMS (ESI+) m/z calcd for C₂₃H₄₁O₅Si [M+H]⁺: 425.2723, found: 425.2725.

Representative procedure for the stereodivergent DAL process as described for bicyclic γ -lactones (–)-3k and (+)-3k':

Ethyl (2aS,2a¹*R*,3S,8aS)-2-oxo-5-((triisopropylsilyl)oxy)-2a,2a¹,3,4,6,7,8,8a-octahydro-2*H*-naphtho[1,8-*bc*]furan-3-carboxylate ((–)-3k) and ethyl (2aS,2a¹*R*,3S, 8a*R*)-2-oxo-5-((triisopropylsilyl)oxy)-2a,2a¹,3,4,6,7,8,8a-octahydro-2*H*-naphtho[1,8 -*bc*]furan-3-carboxylate ((–)-3k'): Prepared according to the representative procedure using silyloxydiene alcohol (±)-2g (250 mg, 0.84 mmol, 1.0 equiv.), (*S*)-(–)-BTM (43 mg, 0.17 mmol, 20 mol%), 2,6-lutidine (20 μL, 0.17 mmol, 20 mol%), K₃PO₄ (535 mg, 2.52 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (6.5 mL, to make final concentration of silyloxydiene alcohol 0.1 M) and ethyl fumaroyl chloride **1a** (0.17 mL, 1.26 mmol, dissolved in 1.9 mL CH₂Cl₂, 1.5 equiv.) at ambient temperature (23 °C). Upon completion (as judged by TLC), the reaction mixture was purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford a single *endo* diastereomer (as judged by ¹H NMR) of bicyclic γ-lactone (–)-**3k** (179 mg, 50% yield, 99% *ee*) and a single *endo* diastereomer (as judged by ¹H NMR) of bicyclic γ-lactone (–)-**3k'** (124 mg, 35% yield, 99% *ee*).

(-)-**3k**: colorless solid; m.p. 58-61 °C (recrystallized from hexanes); TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.30$; $[\alpha]_D^{19.2} = -31.30$ (c = 2.30, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel AS-H column: hexanes:^{*i*}PrOH = 97:03, flow rate 0.5 mL/min, λ = 210 nm: $t_{major} = 21.1$ min, $t_{minor} = 28.6$ min; 99% *ee*. Absolute stereochemistry was assigned based on X-ray analysis using anomalous dispersion (see **Figure S1**, page S38). ¹H NMR (500 MHz; CDCl₃): δ 4.56 (q, J = 3.3 Hz, 1H), 4.18-4.05 (m, 2H), 3.23-

3.19 (m, 2H), 3.03-3.01 (m, 1H), 2.92-2.89 (m, 1H), 2.52-2.50 (m, 2H), 2.15-2.12 (m, 1H), 1.71-1.64 (m, 1H), 1.58-1.54 (m, 1H), 1.48-1.35 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.14-1.08 (m, 3H), 1.03 (d, J = 6.6 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 177.6, 173.2, 142.9, 109.6, 79.5, 61.3, 43.0, 38.4, 36.6, 27.9, 27.6, 24.4, 20.7, 18.0 (6), 14.2, 13.3 (3); IR (thin film): 2944, 2867, 1778, 1733, 1677 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₃H₃₉O₅Si [M+H]⁺: 423.2567, found: 423.2558.

(-)-**3k**': clear colorless oil; TLC (EtOAc:hexanes, 1:9 v/v): $R_f = 0.42$; $[\alpha]_D^{19.0} = -13.33$ (c = 0.60, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:¹PrOH = 95:05, flow rate 0.5 mL/min, $\lambda = 210$ nm: $t_{minor} = 17.4$ min, $t_{major} = 25.7$ min; 99% *ee*. Absolute stereochemistry was assigned by derivatization as described below. ¹H NMR (500 MHz; CDCl₃): δ 4.27-4.15 (m, 2H), 3.86 (td, J = 11.2, 3.4 Hz, 1H), 2.93-2.86 (m, 2H), 2.75 (ddd, J = 14.0, 5.1, 1.5 Hz, 1H), 2.56-2.50 (m, 1H), 2.47 (dd, J = 11.0, 6.8 Hz, 1H), 2.26 (dq, J = 11.4, 3.5 Hz, 1H), 2.18 (dd, J = 15.6, 3.2 Hz, 1H), 1.98-1.93 (m, 1H), 1.74-1.69 (m, 1H), 1.65 (td, J = 12.0, 4.0 Hz, 1H), 1.49-1.39 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.12-1.08 (m, 3H), 1.06 (d, J = 4.5 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 175.7, 172.6, 140.0, 110.9, 83.9, 61.4, 47.7, 40.9, 38.8, 33.2, 30.4, 24.8, 24.5, 18.0 (6), 14.2, 13.1 (3); IR (thin film): 2945, 2868, 1787, 1737, 1697 cm⁻¹; HRMS (ESI+) *m*/z calcd for C₂₃H₃₉O₅Si [M+H]⁺: 423.2567, found: 423.2571.

Ethyl (1*S*,2*S*,8*R*,8a*R*)-1-((4-bromobenzyl)carbamoyl)-8-hydroxy-4-((triisopropylsilyl)oxy)-1,2,3,5,6,7,8,8a-octahydronaphthalene-2-carboxylate ((–)-S21): Into an oven-dried, 5-mL round-bottomed flask containing a solution of tricyclic γ -lactone (–)-**3k**' (57 mg, 0.14 mmol, 1.0 equiv.) in THF (1.4 mL, to make final concentration of tricyclic γ lactone 0.1 M), was added dropwise 4-bromobenzylamine (68 μ L, 0.54 mmol, 4.0 equiv.). The reaction was allowed to stir at ambient temperature (23 °C) for 36 h. Upon

completion (as judged by TLC), the reaction was concentrated by rotary evaporation and purified by an automated flash chromatography system (20 \rightarrow 50%) EtOAc/hexanes) to afford bicyclic amide (-)-S21 (60.1 mg, 73% yield) as a white solid: m.p. 143-147 °C (recrystallized from Et₂O); TLC (EtOAc:hexanes, 1:2 v/v): R_f = 0.40; $\left[\alpha\right]_{a}^{18.5}$ = -42.00 (c = 6.00, CHCl₃). Absolute stereochemistry was assigned based on Xray analysis using anomalous dispersion (see Figure S2, page S42). ¹H NMR (500 MHz; CDCl₃): δ 7.42 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.44 (t, J = 5.7 Hz, 1H), 4.51 (dd, J = 15.0, 6.3 Hz, 1H), 4.23 (dd, J = 15.0, 5.2 Hz, 1H), 4.12 (g, J = 7.1 Hz, 2H), 3.67 (td, J = 9.9, 4.4 Hz, 1H), 3.53 (br s, 1H), 3.13 (td, J = 11.0, 5.7 Hz, 1H), 2.85 (d, J = 12.8 Hz, 1H), 2.71 (dd, J = 11.1, 5.4 Hz, 1H), 2.41 (dd, J = 16.3, 5.7 Hz, 1H),2.34 (dd, J = 9.6, 5.3 Hz, 1H), 2.26-2.21 (m, 1H), 2.02-1.98 (m, 1H), 1.73-1.69 (m, 1H), 1.42-1.31 (m, 2H), 1.29-1.25 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.12-1.08 (m, 3H), 1.05 (d, J = 4.3 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 177.0, 174.9, 140.6, 137.2, 131.7 (2), 129.7 (2), 121.4, 115.3, 71.3, 61.0, 48.5, 45.6, 43.3, 39.4, 35.6, 33.5, 27.2, 24.9, 18.1 (6), 14.2, 13.2 (3); IR (thin film): 3286, 2942, 2867, 1732, 1714, 1680, 1644, 1557 cm^{-1} ; HRMS (ESI+) *m/z* calcd for C₃₀H₄₇BrNO₅Si [M+H]⁺: 608.2407, found: 608.2386.

Ethyl (3aS,4S,7aS)-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((–)-3c) and ethyl (3aS,4S,7aR)-3-oxo-6-((triisopropylsilyl)oxy)-1,3,3a,4,5,7a-hexahydroisobenzofuran-4-carboxylate ((+)-3c'): To an oven-dried, 250-mL round-bottomed flask equipped with a magnetic stir bar was added silyloxydiene alcohol **2b** (2.12 g, 8.22 mmol, 1.0 equiv.), (S)-(–)-BTM (416 mg, 1.64 mmol, 20 mol%), 2,6-lutidine (2.9 mL, 24.6 mmol, 3.0 equiv.) and anhydrous CH₂Cl₂ (70 mL, to make final concentration of silyloxydiene alcohol 0.1 M) at ambient temperature (23 °C). With vigorous stirring, ethyl fumaroyl chloride **1a** (1.31 mL, 9.86 mmol, 1.5 equiv.) in CH₂Cl₂ (12 mL) was added over a period of 5 h by syringe pump addition. After stirring for an additional 13 h, the reaction mixture was filtered through a short pad of SiO₂ and the filtrate was concentrated by rotary evaporation. Purification by an automated flash chromatography (5 \rightarrow 20% EtOAc/hexanes) afforded bicyclic γ lactones (–)-**3c** (1.16 g, 37% yield, 99% *ee*) and (+)-**3c'** (1.10 g, 35% yield, 99% *ee*). (–)-**3c**: All spectral data matched that reported on pages S20-S21.

(+)-**3c**⁷: colorless solid; m.p. 62.1-64.7 °C (recrystallized from CH₂Cl₂); TLC (EtOAc:hexanes, 1:4 v/v): R_f = 0.58; $[\alpha]_D^{21.8}$ = +66.67 (*c* = 3.00, CHCl₃). Enantiomeric excess was determined by chiral HPLC analysis in comparison with authentic racemic material using a Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 22.1 min, t_{major} = 26.1 min; 99% ee. Absolute stereochemistry was assigned based on X-ray analysis using anomalous dispersion (see **Figure S3**, page S46). ¹H NMR (500 MHz; CDCl₃): δ 4.92 (d, *J* = 1.3 Hz, 1H), 4.40 (dd, *J* = 8.0, 6.6 Hz, 1H), 4.28-4.20 (m, 2H), 3.84 (dd, *J* = 11.3, 8.0 Hz, 1H), 2.93 (ddddt, *J* = 13.2, 11.5, 6.6, 3.3, 1.7 Hz, 1H), 2.81 (ddd, *J* = 11.6, 10.6, 7.1 Hz, 1H), 2.58 (dd, *J* = 13.3, 11.7 Hz, 1H), 2.52 (dddd, *J* = 17.6, 7.1, 2.0, 1.2 Hz, 1H), 2.44 (dddd, *J* = 17.7, 10.5, 3.3, 1.9 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.19-1.12 (m, 3H), 1.06 (d, *J* = 6.9 Hz, 18H); ¹³C NMR (125 MHz; CDCl₃): δ 173.9, 172.9, 152.8, 99.5, 71.5, 61.4, 45.1, 40.1, 39.5, 34.4, 18.0 (6), 14.2, 12.6 (3); IR (thin film): 2945, 2868, 1792, 1737, 1650 cm⁻¹; HRMS (ESI+) *m/z* calcd for C₂₀H₃₄LiO₅Si [M+Li]⁺: 389.2336, found: 389.2334.

Use of TsCl for *in situ* activation of carboxylic acid (1e) for the stereodivergent DAL process as described for bicyclic γ -lactones (–)-3c and (+)-3c':

To a solution of *mono*-ethyl fumarate **1e** (18.7 mg, 0.13 mmol, 1.3 equiv.) and TsCl (23.8 mg, 0.125 mmol, 1.25 equiv.) in anhydrous CH_2Cl_2 (0.5 mL, to make final concentration of mixed tosyl anhydride **S22** 0.25 M) was added 2,6-lutidine (18 µL, 0.15 mmol, 1.5 equiv.). The mixture was stirred for 45 min at ambient temperature (23 °C) and then drawn into the syringe. The solution of **S22** was then transferred *via* syringe pump into a second flask containing silyloxydiene alcohol **2b** (25.6 mg, 0.10 mmol, 1.0 equiv.), (*S*)-(–)-BTM (5.0 mg, 0.020 mmol, 20 mol%), 2,6-lutidine (18 µL, 0.15 mmol, 1.5 equiv) and anhydrous CH_2Cl_2 (0.5 mL) over 5 h. The reaction was stirred for an additional 13 h at ambient temperature (23 °C), concentrated by rotary evaporation, and then directly purified by an automated flash chromatography (5 → 20% EtOAc/hexanes) to afford bicyclic γ -lactones (–)-**3c** (10.8 mg, 28% yield, 99% *ee*) and (+)-**3c'** (10.2 mg, 26% yield, 99% *ee*). All spectral data matched that reported above.

Synthetic applications of bicyclic γ -lactones (–)-3d and (–)-3h:

(3aR,7aR)-4,4-dimethyltetrahydroisobenzofuran-1,5(3H,4H)-dione ((-)-4): Into an oven-dried, 5-mL round-bottomed flask containing a solution of bicyclic y-lactone (-)-3d (50 mg, 0.17 mmol, 1.0 equiv.) and MeI (0.11 mL, 1.77 mmol, 10.0 equiv.) in THF (0.20 mL, to make final concentration of bicyclic γ -lactone 0.9 M), was added TASF (73 mg, 0.26 mmol, 1.5 equiv.) in one portion at -78 °C. The dry ice/acetone bath was removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord and the reaction was allowed to stir for 30 h. Upon completion (as judged by TLC), the mixture was filtered through a short pad of celite, concentrated by rotary evaporation and purified by an automated flash chromatography system (20 \rightarrow 50%) EtOAc/hexanes) to afford α,α -dimethyl ketone (-)-4 (24 mg, 75% yield) as a clear colorless oil: TLC (EtOAc:hexanes, 1:1 v/v): $R_f = 0.31$; $[\alpha]_D^{19.0} = -10.67$ (*c* = 0.75, CHCl₃). ¹H NMR (500 MHz; CDCl₃): δ 4.37 (dd, J = 9.7, 7.7 Hz, 1H), 4.04 (dd, J = 9.7, 7.9 Hz, 1H), 2.99 (q, J = 7.9 Hz, 1H), 2.81 (q, J = 7.9 Hz, 1H), 2.61-2.54 (m, 1H), 2.42-2.32 (m, 2H), 2.18-2.10 (m, 1H), 1.24 (s, 3H), 1.05 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 213.1, 178.5, 68.8, 47.2, 44.9, 37.0, 35.8, 26.5, 23.4, 21.2; IR (thin film): 2971, 1771, 1710 cm⁻ ¹; HRMS (ESI+) m/z calcd for C₁₀H₁₅O₃ [M+H]⁺: 183.1021, found: 183.1027.

(R)-4,7a-dimethyl-7,7a-dihydroisobenzofuran-1,5(3H,6H)-dione ((-)-5): Into an ovendried, 25-mL round-bottomed flask containing a solution of bicyclic γ -lactone (–)-**3h** (130 mg, 0.38 mmol, 1.0 equiv.) in CH₂Cl₂ (4.7 mL, to make initial concentration of bicyclic ylactone 0.08 M), was added PhSeCI (88 mg, 0.46 mmol, 1.2 equiv.) in CH₂Cl₂ (3.0 mL, to make final concentration of bicyclic γ-lactone 0.05 M) dropwise at -78 °C. After stirring for 15 min, H_2O_2 (35% wt. % in H_2O , 52 μ L, 3.8 mmol, 10.0 equiv.) was added dropwise. The dry ice/acetone bath was removed and the mixture was allowed to warm up to ambient temperature (23 °C) on its own accord over 45 min. Upon completion (as judged by TLC), the mixture was filtered through a short pad of celite, concentrated by rotary evaporation and purified by an automated flash chromatography system (10 \rightarrow 40% EtOAc/hexanes) to afford enone γ -lactone (-)-5 (31 mg, 46% yield) as a white crystalline semisolid: TLC (EtOAc:hexanes, 1:2 v/v): $R_f = 0.29$; $[\alpha]_{p}^{18.9} = -11.11$ (c = 0.36, CHCl₃). ¹H NMR (500 MHz; CDCl₃): δ 4.99 (q, *J* = 1.1 Hz, 2H), 2.66-2.53 (m, 2H), 2.22 (ddd, J = 13.3, 5.2, 2.2 Hz, 1H), 2.09 (td, J = 13.4, 6.0 Hz, 1H), 1.74 (t, J = 1.1 Hz, 3H),1.51 (s, 3H); ¹³C NMR (125 MHz; CDCl₃): δ 196.7, 178.4, 154.7, 129.0, 67.4, 41.5, 32.6, 29.7, 21.4, 10.9; IR (thin film): 2924, 1778, 1668 cm⁻¹; HRMS (ESI+) m/z calcd for C₁₀H₁₁O₃ [M–H]⁺: 179.0708, found: 179.0711.

Single crystal X-ray structures and selected crystallographic data for compounds (–)-3k, (–)-S21 and (+)-3c' (Figures S1-S3):

Figure S1. Single crystal X-ray structure (ORTEP) of tricyclic γ -lactone (–)-3k. The crystals were grown from a concentrated solution of tricyclic γ -lactone (–)-3k in hexanes (2.0 mL), using a slow evaporation method (probability ellipsoids are shown at the 50% level). X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 972245.

Alert level B:

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575. Calculated sin(theta_max)/wavelength = 0.5614. <u>Author Response</u>: Data was collected on a Bruker GADDS instrument with Cu-source and MWPC (multiwire proportional counter) detector. Under these experimental conditions the maximum angle that can be collected is 120 degrees two-theta.

Identification code	b2		
Empirical formula	C ₂₃ H ₃₈ O ₅ Si		
Formula weight	nula weight 422.62		
Temperature	110(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.6924(6) Å	α = 90°	
	b = 8.9976(6) Å	β = 90°	
	c = 29.0972(18) Å	γ = 90°	
Volume	2275.7(3) Å ³		
Ζ	4		
Density (calculated)	1.234 Mg/m ³		
Absorption coefficient	1.157 mm⁻¹		
F(000)	920		
Crystal size	$0.13 \times 0.07 \times 0.03$ mm	3	
Theta range for data collection	3.04 to 59.95°		
Index ranges	$-9 \le h \le 9, -9 \le k \le 10,$	–32 ≤ ≤ 31	
Reflections collected	18633		
Independent reflections	3357 [R(int) = 0.0615]		
Completeness to theta = 59.95°	99.8%		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.9661 and 0.8641		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	3357 / 0 / 269		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I)]	$R_1 = 0.0299$, $wR_2 = 0.07$	708	
R indices (all data)	R ₁ = 0.0322, wR ₂ = 0.0715		
Absolute structure parameter	0.00(2)		
Largest diff. peak and hole	0.167 and -0.240 e.Å $^{\text{-3}}$		

Table 1. Crystal data and structure refinement for DRB_MA_130730_G_B2.

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for DRB_MA_130730_G_B2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	x	У	Z	U(eq)	
Si(20)	4673(1)	4355(1)	5769(1)	12(1)	
O(16)	9567(2)	-615(2)	6467(1)	17(1)	
O(19)	5729(1)	4434(2)	6248(1)	14(1)	
O(5)	9365(2)	4100(1)	7441(1)	18(1)	
O(15)	7446(2)	105(2)	6084(1)	24(1)	
O(6)	10899(2)	4472(2)	6835(1)	25(1)	
C(14)	8607(2)	404(2)	6285(1)	15(1)	
C(1)	9985(2)	3702(2)	7033(1)	17(1)	
C(10)	6605(2)	3117(2)	6893(1)	13(1)	
C(7)	9199(2)	1964(2)	6372(1)	14(1)	
C(9)	6780(2)	3508(2)	6454(1)	12(1)	
C(27)	3109(2)	5732(2)	5901(1)	16(1)	
C(2)	9344(2)	2199(2)	6891(1)	14(1)	
C(22)	7020(3)	6156(2)	5350(1)	21(1)	
C(3)	7806(2)	2194(2)	7141(1)	13(1)	
C(4)	8292(2)	2929(2)	7595(1)	17(1)	
C(29)	1694(2)	5606(2)	5586(1)	22(1)	
C(8)	8143(2)	3128(2)	6158(1)	15(1)	
C(11)	5281(2)	3646(2)	7186(1)	17(1)	
C(25)	3485(3)	1700(2)	6151(1)	23(1)	
C(18)	7855(3)	-2535(2)	6774(1)	27(1)	
C(17)	9061(3)	-2154(2)	6424(1)	21(1)	
C(21)	5919(2)	4863(2)	5261(1)	16(1)	
C(12)	5896(2)	4514(2)	7598(1)	22(1)	
C(26)	4707(3)	1402(2)	5368(1)	23(1)	
C(24)	3803(2)	2455(2)	5686(1)	18(1)	

C(28)	3667(3)	7343(2)	5916(1)	21(1)
C(13)	7021(3)	3593(2)	7878(1)	22(1)
C(23)	4979(3)	5129(3)	4820(1)	24(1)

Figure S2. Single crystal X-ray structure (ORTEP) of bicyclic amide (–)-S21. The crystals were grown from a concentrated solution of bicyclic amide (–)-**S21** in Et₂O (2.0 mL), using a slow evaporation method (probability ellipsoids are shown at the 50% level). X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 972248.

Alert level B:

Crystal system given = triclinic. PLAT019_ALERT_1_B Check _diffrn_measured_ fraction_theta_full/_max = 0.927. <u>Author Response</u>: Physical limitations of the GADDS X-ray diffractometer and triclinic system.

PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.4 Ratio. <u>Author</u> <u>Response</u>: Possible disorder in the terminal groups. The disorder was not modeled.

PLAT242_ALERT_2_B Low Ueq as Compared to Neighbors for ... Si1_4 Check. <u>Author</u> <u>Response</u>: Possible disorder in the Si terminal groups. The disorder was not modeled.

PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds ... 0.0194 Ang. <u>Author</u> <u>Response</u>: Diffuse scattering due to disorder lowers the precision of the C-C bond length determination.

Identification code	dr89		
Empirical formula	C ₃₀ H ₄₆ Br N O ₅ Si		
Formula weight	608.68		
Temperature	110(2) K		
Crystal system	Triclinic		
Space group	P1		
Unit cell dimensions	a = 13.4034(9) Å	$\alpha = 89.539(5)^{\circ}$	
	b = 13.4037(9) Å	$\beta = 89.620(5)^{\circ}$	
	c = 17.8225(13) Å	$\gamma = 87.393(5)^{\circ}$	
Volume	3198.4(4) Å ³		
Ζ	4		
Density (calculated)	1.264 Mg/m ³		
Absorption coefficient	2.400 mm ⁻¹		
F(000)	1288.0		
Crystal size	$0.11\times0.1\times0.01~mm^3$		
Radiation	CuK α (λ = 1.54178)		
Theta range for data collection	4.958 to 128.74°		
Index ranges	–15 ≤ h ≤ 15, –15 ≤ k ≤	15, –20 ≤ l ≤ 20	
Reflections collected	55755		
Independent reflections	18937 [R(int) = 0.0831]		
Data / restraints / parameters	18937 / 2631 / 1372		
Goodness-of-fit on F ²	1.089		
Final R indices [I>2sigma(I)]	$R_1 = 0.0896, wR_2 = 0.27$	171	
R indices (all data)	R ₁ = 0.1063, wR ₂ = 0.2373		
Largest diff. peak and hole	0.84 and -0.73 e.Å ⁻³		

Table 1. Crystal data and structure refinement for DR89.

Table 2. Fractional atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for DR89. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	x	V	7	ll(ea)
	A	y		
Br1_3	10682(3)	15286(3)	10137.5(16)	81.8(9)
Si1_3	9768(4)	14978(4)	2986(3)	56.5(14)
O1_3	9221(7)	14314(6)	3624(4)	43(2)
O2_3	8532(9)	17264(7)	5792(6)	56(2)
O3_3	9470(9)	16079(9)	6369(7)	56(3)
O4_3	7289(8)	15692(8)	6721(6)	52(3)
O5_3	6011(8)	14206(10)	5963(6)	54(3)
N1_3	7793(10)	14158(8)	7106(5)	47(2)
C1_3	8766(10)	14473(9)	4301(6)	38(2)
C2_3	9095(10)	15341(10)	4752(6)	40(2)
C3_3	8383(9)	15607(8)	5397(6)	40(2)
C4_3	8190(8)	14644(8)	5820(5)	39(2)
C5_3	7630(7)	13926(8)	5334(6)	42(2)
C6_3	6489(7)	14178(10)	5245(7)	49(2)
C7_3	6045(9)	13404(12)	4750(8)	55(3)
C8_3	6539(9)	13318(12)	4003(8)	53(3)
C9_3	7673(9)	13055(10)	4074(7)	48(3)
C10_3	8092(8)	13839(8)	4559(6)	40(2)
C11_3	9086(12)	16206(10)	2802(8)	86(5)
C12_3	7970(13)	16218(17)	2957(14)	88(5)
C13_3	9268(18)	16626(16)	2046(11)	90(5)
C14_3	9813(13)	14210(11)	2111(7)	75(4)
C15_3	8822(14)	13897(16)	1847(12)	82(5)
C16_3	10498(16)	13237(14)	2269(11)	76(5)
C17_3	11044(10)	15212(12)	3317(9)	101(5)
C18_3	11520(14)	14410(20)	3861(14)	99(6)

C19_3	11774(13)	15440(20)	2663(13)	106(6)
C20_3	8853(10)	16338(9)	5910(7)	52(2)
C21_3	8929(13)	18013(11)	6287(9)	62(3)
C22_3	8415(16)	17993(17)	7043(9)	66(4)
C23_3	7695(10)	14872(8)	6569(6)	45(2)
C24_3	7414(9)	14304(12)	7852(6)	49(3)
C25_3	8225(10)	14564(13)	8400(6)	51(3)
C26_3	9024(11)	15094(13)	8193(7)	55(3)
C27_3	9749(12)	15362(14)	8706(6)	57(3)
C28_3	9645(11)	15075(15)	9459(7)	60(3)
C29_3	8875(12)	14467(16)	9660(7)	64(3)
C30_3	8190(11)	14213(14)	9146(7)	59(3)

Figure S3. Single crystal X-ray structure (ORTEP) of bicyclic γ -lactone (+)-3c'. The crystals were grown from a concentrated solution of bicyclic γ -lactone (+)-3c' in CH₂Cl₂ (2.0 mL), using a slow evaporation method (probability ellipsoids are shown at the 50% level). X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 972247.

Alert level B:

THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575. Calculated sin(theta_max)/wavelength = 0.5617. <u>Author Response</u>: Data was collected on a Bruker GADDS instrument with Cu-source and MWPC (multiwire proportional counter) detector. Under these experimental conditions the maximum angle that can be collected is 120 degrees two-theta.

Table 1. Crystal data and structure refinement for DRB_MA_130306_G_904F2.

Identification code	drb
Empirical formula	C ₂₀ H ₃₄ O ₅ Si
Formula weight	382.56
Temperature	110(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic

Space group	P2(1)		
Unit cell dimensions	a = 16.6474(7) Å	α = 90°	
	b = 34.4793(14) Å	$\beta = 95.850(2)^{\circ}$	
	c = 19.1312(8) Å	γ = 90°	
Volume	10923.9(8) Å ³		
Ζ	20		
Density (calculated)	1.163 Mg/m ³		
Absorption coefficient	1.155 mm ⁻¹		
F(000)	4160		
Crystal size	$0.28\times0.06\times0.05$ mm	1 ³	
Theta range for data collection	2.32 to 60.00°		
Index ranges	–18 ≤ h ≤ 18, –37 ≤ k ≤	35, –21 ≤ I ≤ 21	
Reflections collected	225412		
Independent reflections	31523 [R(int) = 0.0593]		
Completeness to theta = 60.00°	99.3%		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.9445 and 0.7380		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	31523 / 1 / 2412		
Goodness-of-fit on F ²	1.069		
Final R indices [I>2sigma(I)]	R ₁ = 0.0551, wR ₂ = 0.1	469	
R indices (all data)	R ₁ = 0.0610, wR ₂ = 0.1564		
Absolute structure (Hooft / Flack)			
parameter	-0.006(7) / 0.013(14)		
Extinction coefficient	0.00031(2)		
Largest diff. peak and hole	0.720 and -0.591 e.Å $^{\text{-3}}$		

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for DRB_MA_130306_G_904F2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

X	у	Z	U(eq)	
6042(1)	7578(1)	6596(1)	16(1)	
7243(1)	7429(1)	10228(1)	22(1)	
8590(1)	7377(1)	10271(1)	25(1)	
9775(1)	7420(1)	8850(1)	31(1)	
9083(1)	6861(1)	8811(1)	23(1)	
6727(1)	7326(1)	7110(1)	18(1)	
8323(2)	7436(1)	8634(2)	17(1)	
7926(2)	7322(1)	7896(2)	19(1)	
7020(2)	7388(1)	7795(2)	16(1)	
6558(2)	7482(1)	8303(2)	15(1)	
6959(2)	7552(1)	9028(2)	16(1)	
7734(2)	7319(1)	9152(2)	16(1)	
6557(2)	7434(1)	9677(2)	19(1)	
7942(2)	7376(1)	9925(2)	17(1)	
9146(2)	7246(1)	8778(2)	17(1)	
9836(2)	6646(1)	8958(2)	22(1)	
9644(2)	6225(1)	8786(2)	29(1)	
6146(2)	7366(1)	5698(2)	24(1)	
6983(2)	7195(1)	5615(2)	33(1)	
5908(2)	7651(1)	5103(2)	33(1)	
6291(2)	8109(1)	6643(2)	25(1)	
7199(2)	8182(1)	6627(2)	36(1)	
5966(2)	8328(1)	7261(2)	43(1)	
4999(2)	7481(1)	6854(2)	20(1)	
4865(2)	7044(1)	6963(2)	28(1)	
4340(2)	7644(1)	6315(2)	30(1)	
	x 6042(1) 7243(1) 8590(1) 9775(1) 9083(1) 6727(1) 8323(2) 7926(2) 7020(2) 6558(2) 6959(2) 7734(2) 6557(2) 7942(2) 9146(2) 9836(2) 9644(2) 6146(2) 6983(2) 5908(2) 6291(2) 7199(2) 5966(2) 4999(2) 4865(2) 4340(2)	xy6042(1)7578(1)7243(1)7429(1)8590(1)7377(1)9775(1)7420(1)9083(1)6861(1)6727(1)7326(1)8323(2)7436(1)7926(2)7322(1)7020(2)7388(1)6558(2)7482(1)6959(2)7552(1)7734(2)7319(1)6557(2)7434(1)7942(2)7376(1)9146(2)7246(1)9836(2)6646(1)9644(2)6225(1)6146(2)7366(1)6983(2)7195(1)5908(2)7651(1)6291(2)8182(1)5966(2)8328(1)4999(2)7481(1)4865(2)7044(1)	xyz6042(1)7578(1)6596(1)7243(1)7429(1)10228(1)8590(1)7377(1)10271(1)9775(1)7420(1)8850(1)9083(1)6861(1)8811(1)6727(1)7326(1)7110(1)8323(2)7436(1)8634(2)7926(2)7322(1)7896(2)7020(2)7388(1)7795(2)6558(2)7482(1)8303(2)6959(2)7552(1)9028(2)7734(2)7319(1)9152(2)6557(2)7434(1)9677(2)7942(2)7376(1)9925(2)9146(2)7246(1)8778(2)9836(2)6646(1)8958(2)9644(2)6225(1)8786(2)6146(2)736(1)5615(2)5908(2)7651(1)5103(2)6291(2)8109(1)6643(2)7199(2)8182(1)6627(2)5966(2)8328(1)7261(2)4340(2)7644(1)6315(2)	xyzU(eq)6042(1)7578(1)6596(1)16(1)7243(1)7429(1)10228(1)22(1)8590(1)7377(1)10271(1)25(1)9775(1)7420(1)8850(1)31(1)9083(1)6861(1)8811(1)23(1)6727(1)7326(1)7110(1)18(1)8323(2)7436(1)8634(2)17(1)7926(2)7322(1)7896(2)19(1)7020(2)7388(1)7795(2)16(1)6558(2)7482(1)8303(2)15(1)6959(2)7552(1)9028(2)16(1)7734(2)7319(1)9152(2)16(1)7942(2)7376(1)9925(2)17(1)9146(2)7246(1)8778(2)17(1)9644(2)6225(1)8786(2)22(1)9644(2)6225(1)5615(2)33(1)6983(2)7195(1)5615(2)33(1)6991(2)8109(1)6643(2)25(1)7199(2)8182(1)6627(2)36(1)5966(2)8328(1)7261(2)43(1)4999(2)7481(1)6854(2)20(1)4340(2)7644(1)6315(2)30(1)

Computational data

Gaussian09.^{8,9} General methods: All calculations were performed using Conformational analyses on reactants and transition state structures were performed using the Spartan10 software suite.¹⁰ Geometries were optimized at the uM06-2X/6-31G(d)^{11,12} level using "guess=(mix,always)" keywords to assure that diradical processes were not missed. The identities of all minima and transition state structures were verified by frequency analysis. Implicit solvent effects of dichloromethane were modeled using the SMD continuum model.¹³ Products of the reaction were located by decreasing and constraining the length of the shorter forming bond to ~1.55 Å in the transition state structure and optimizing the complex to a minimum, which resulted in the formation of the second bond, and therefore, the cyclohexene ring. NBO6.0¹⁴ was used with the keywords "E2PERT=0.1" and "STERIC=0.1" for the natural bond orbital analysis of sulfur---lone pair interactions. Structural drawings were produced using CYLView.¹⁵

Conformational search: The conformational searches of reactants and transition state structures for the Diels-Alder reactions were done using Spartan10. Conformer distribution at the ground state using Molecular Mechanics (MMFF) and keywords "searchmethod=systematic" and "maxenergy=50" were used.

Calculated coordinates and energies

Silyloxydiene alcohol (2c):

Charge = 0 Multiplicity = 1 mem = 20GB, nproc = 16

Link 0: opt m062x/6-31g(d) freq=noraman scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 5 hours 6 minutes 28.9 seconds. File lengths (MBytes): RWF= 180 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 02:33:37 2013. Value Threshold Converged? Item Maximum Force 0.000023 YES 0.000450 **RMS** Force 0.000005 0.000300 YES Maximum Displacement 0.001517 0.001800 YES **RMS** Displacement 0.000412 0.001200 YES Predicted change in Energy = -1.292192D-08 Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 0 hours 45 minutes 35.1 seconds. File lengths (MBytes): RWF= 264 Int= 0 D2E= 0 Chk= 13 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 02:36:32 2013. Item Value Threshold Converged? 0.000023 0.000450 Maximum Force YES **RMS** Force YES 0.000005 0.000300 Maximum Displacement 0.002559 0.001800 NO YES RMS Displacement 0.000680 0.001200

Predicted change in Energy = -2.142063D-08

Values come from Link 1:

HF = -793.4977666 hartrees (-497927.783519166 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.255956 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-793.286374 hartrees (-497795.13254874 kcal/mol)

Comments:

Center		Atomic	Coo	rdinates (Ar	igstroms)
Number		Number	Х	Y	Z
1	6	-1.789	481	-0.288014	-0.572437
2	6	0.380	319	2.656051	-0.177700
3	6	-3.090	830	-0.997507	-0.350989
4	6	-0.048	458	1.411338	-0.423352

5	6	0.791570	-1.302206	1.391004
6	6	3.117543	0.624855	0.841751
7	6	2.564231	-1.710651	-1.107445
8	6	-1.445877	0.955064	-0.200382
9	6	-2.378693	1.946485	0.443736
10	1	-1.034051	-0.907485	-1.051103
11	1	1.413073	2.925175	-0.374643
12	1	-0.283560	3.425212	0.196776
13	1	-3.831018	-0.372046	0.161086
14	1	-3.524191	-1.299905	-1.310550
15	1	0.046637	-1.982972	0.964440
16	1	1.448027	-1.888470	2.045693
17	1	0.266990	-0.572411	2.018642
18	1	3.697007	1.161466	0.082416
19	1	2.678684	1.363738	1.521178
20	1	3.816673	0.014203	1.425967
21	1	3.238273	-2.390030	-0.573475
22	1	1.786506	-2.316488	-1.585546
23	1	3.140843	-1.217469	-1.897471
24	1	-2.480754	-1.965170	1.218249
25	1	-1.969850	2.302424	1.395567
26	1	-2.512158	2.823853	-0.199200
27	1	-3.365079	1.520991	0.631188
28	8	0.810376	0.473233	-0.934987
29	8	-2.871154	-2.210857	0.364149
30	14	1.810874	-0.464008	0.059455

Ethyl fumaroyl chloride (1a):

Charge = 0 Multiplicity = 1 mem = 20GB

Link 0: opt freq=noraman m062x/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 0 hours 41 minutes 50.0 seconds. File lengths (MBytes): RWF= 61 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 10:51:54 2013. Threshold Item Value Converged? Maximum Force 0.000017 0.000450 YES RMS YES Force 0.000004 0.000300 YES Maximum Displacement 0.000879 0.001800 RMS Displacement 0.000217 0.001200 YES Predicted change in Energy = -4.982950D-09 Optimization completed. -- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 0 hours 13 minutes 39.0 seconds. File lengths (MBytes): RWF= 112 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 10:52:46 2013. Item Value Threshold Converged? Maximum Force 0.000017 0.000450 YES RMS Force 0.000004 0.000300 YES

Maximum Displacement0.0017600.001800YESRMS Displacement0.0004770.001200YESPredicted change in Energy = -9.981294D-09Optimization completed.0

-- Stationary point found.

Values come from Link 1: HF = -918.5039922 hartrees (-576370.440145422 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.126267 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-918.416338 hartrees (-576315.43625838 kcal/mol)

Comments:

Center Atomic Coordinates (Angstroms) Number Number Х Υ Ζ _____ 1 -2.404785 0.535097 -0.020979 6 2 6 0.008958 0.346013 -0.031898 3 6 -1.169862 -0.277188 -0.025157 4 6 1.268965 -0.453229 -0.032192 5 6 3.616705 -0.317867 -0.008249 6 6 4.675205 0.755901 0.080148 7 1 0.088461 1.428999 -0.034584 8 1 -1.250380 -1.358672 -0.017684 9 1 3.699592 -0.904604 -0.927911

10	1	3.655164	-1.005150	0.841606
11	1	4.570953	1.326879	1.006880
12	1	5.665622	0.292605	0.068215
13	1	4.604344	1.443500	-0.767095
14	8	-2.491100	1.719758	-0.059931
15	8	2.334266	0.343047	-0.005009
16	8	1.311464	-1.661878	-0.054280
17	17	-3.896583	-0.468432	0.059665

(S)-(-)-BTM catalyst:

Charge = 0 Multiplicity = 1 mem = 57GB

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 3 hours 11 minutes 45.7 seconds. File lengths (MBytes): RWF= 237 Int= 0 D2E= 0 Chk= 11 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 04:29:26 2013. Item Value Threshold Converged? Maximum Force 0.000187 0.000450 YES **RMS** Force 0.000033 0.000300 YES Maximum Displacement 0.000258 0.001800 YES **RMS** Displacement 0.000054 0.001200 YES Predicted change in Energy = -1.391136D-08 Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 1 hours 22 minutes 44.0 seconds. File lengths (MBytes): RWF= 424 Int= 0 D2E= 0 Chk= 16 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 04:38:05 2013.

Item	Value	Threshold	Converged?		
Maximum Force	0.000187	0.000450	YES		
RMS Force	0.000033	0.000300	YES		
Maximum Displacement	0.153336	0.001800	NO		
RMS Displacement	0.032624	0.001200	NO		
Predicted change in Energy = -1.867818D-05					

Values come from Link 1:

HF = -1086.2208184 hartrees (-681614.425754184 kcal/mol) Imaginary Frequencies: 1 (-14.6567 1/cm) Zero-point correction = 0.238538 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Sum of electronic and thermal Free Energies =

-1086.022849 hartrees (-681490.19797599 kcal/mol)

Comments:

Center Number		Atomic Number	Coo X	rdinates (<i>i</i> Y	Angs Z	troms)
1	6	-2.622	757	-1.83534	5 -0).226202
2	6	-2.051	143	-0.56724	3 -0	0.191749
3	6	-2.800	831	0.54335	8 C	.240477
4	6	-4.119	368	0.40180	2 0	.639518
5	6	-4.694	017	-0.87166	9 (.604275
6	6	-3.951	076	-1.97175	4 C	.177476
7	1	-2.040	013	-2.68922	3 -0).557279

8	1	-4.695008	1.261072	0.970043
9	1	-5.726304	-0.999322	0.913007
10	1	-4.410423	-2.955214	0.155941
11	6	-0.453291	1.125987	-0.427716
12	16	-1.834591	2.037413	0.195902
13	7	-0.767979	-0.208171	-0.537803
14	6	0.374198	-0.911640	-1.099338
15	1	0.711082	-1.709620	-0.431290
16	1	0.126795	-1.338116	-2.075938
17	6	1.417213	0.264382	-1.204627
18	7	0.716092	1.500830	-0.770152
19	6	2.655307	0.014957	-0.368832
20	6	3.880315	-0.258566	-0.975907
21	6	2.574811	0.025786	1.027006
22	6	5.011046	-0.524068	-0.203338
23	1	3.949754	-0.262956	-2.061207
24	6	3.700723	-0.238619	1.800282
25	1	1.624399	0.245994	1.508614
26	6	4.922813	-0.515315	1.185873
27	1	5.959686	-0.733435	-0.689213
28	1	3.627323	-0.226295	2.883940
29	1	5.802044	-0.721590	1.789173
30	1	1.723671	0.389164	-2.247721

Chloride anion (Cl⁻):

Charge = -1 Multiplicity = 1 mem = 57GB, nproc = 16

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 0 hours 0 minutes 48.6 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 04:19:55 2013. Value Item Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy = 0.000000D+00

Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 0 hours 1 minutes 17.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 04:20:00 2013. Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS YES Force 0.000000 0.000300 Maximum Displacement 0.001800 YES 0.000000 RMS Displacement 0.000000 YES 0.001200 Predicted change in Energy = 0.000000D+00 Optimization completed.

-- Stationary point found.

Values come from Link 1: HF = -460.31703 hartrees (-288853.5394953 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.000000 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -460.332053 hartrees (-288862.96657803 kcal/mol)

Comments:

Coordinates (from last standard orientation): atom 1 is isolated, type=Cl

Center	Atomi	с	Coord	dinates ((Ang	gstroms	;)
Number	Numb	er	Х	Y		Z	
1	17	0.000	0000	0.0000	00	0.000	000

Acylammonium cation (lowest energy conformer; 0° dihedral angle):

Charge = 1 Multiplicity = 1 mem = 20GB, nproc = 16

Link 0: opt m062x/6-31g(d) freq=noraman scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 8 hours 45 minutes 18.1 seconds. File lengths (MBytes): RWF= 520 Int= 0 D2E= 0 Chk= 20 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 03:57:42 2013. Item Value Threshold Converged? Maximum Force 0.000021 0.000450 YES **RMS** Force 0.000003 0.000300 YES 0.001572 Maximum Displacement 0.001800 YES YES **RMS** Displacement 0.000344 0.001200 Predicted change in Energy = -8.895401D-09 Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 3 hours 54 minutes 45.1 seconds. File lengths (MBytes): RWF= 1305 Int= 0 D2E= 0 Chk= 27 Scr= 1 Normal termination of Gaussian 09 at Tue Oct 15 04:12:33 2013.

Item	Value	Threshold	Converged?		
Maximum Force	0.000021	0.000450	YES		
RMS Force	0.000003	0.000300	YES		
Maximum Displacement	0.002485	0.001800	NO		
RMS Displacement	0.000557	0.001200	YES		
Predicted change in Energy = -1.499555D-08					

Values come from Link 1:

HF = -1544.4297238 hartrees (-969145.095981738 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.369165 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Sum of electronic and thermal Free Energies =

-1544.116364 hartrees (-968948.45957364 kcal/mol)

Comments:

Center Number		Atomic Number	Coo X	rdinates (A Y	ngstroms) Z
	6	5.118	716	0.557519	-0.672996
2	6	3.974	890	-0.164938	-0.347371
3	6	4.040	338	-1.399776	0.309957
4	6	5.267	544	-1.951514	0.663092
5	6	6.413	808	-1.233568	0.341594
6	6	6.339	917	0.001845	-0.316444
7	6	1.761	554	-0.694356	-0.172008

8	6	2.022552	1.329876	-1.262766
9	6	0.498065	1.049299	-1.064955
10	6	-0.190536	2.083743	-0.205172
11	6	-1.070458	2.989354	-0.797295
12	6	0.079524	2.167238	1.162976
13	6	-1.678312	3.977323	-0.025250
14	6	-0.532674	3.151049	1.932707
15	6	-1.411009	4.057704	1.338928
16	6	-0.592561	-1.111837	-0.066609
17	6	-1.932593	-0.601409	-0.422289
18	6	-3.012540	-1.280471	-0.035926
19	6	-4.367303	-0.762183	-0.384195
20	6	-6.676979	-1.141952	-0.167468
21	6	-7.590487	-2.172525	0.452224
22	1	5.045797	1.512466	-1.182892
23	1	5.328840	-2.907601	1.172213
24	1	7.383695	-1.640446	0.607450
25	1	7.253691	0.536706	-0.552594
26	1	2.332151	2.255339	-0.774399
27	1	2.311331	1.339976	-2.314685
28	1	-1.281692	2.918143	-1.861515
29	1	0.766426	1.464302	1.630031
30	1	-2.365469	4.678106	-0.489042
31	1	-0.324464	3.210434	2.996500
32	1	-1.889008	4.824148	1.941246
33	1	0.002605	0.968826	-2.034460
34	1	-2.032994	0.319274	-0.987940
35	1	-6.823075	-0.148272	0.265787
36	1	-6.812969	-1.067522	-1.250148
37	1	-7.427071	-2.237296	1.531413
38	1	-8.631574	-1.888294	0.275606

39	1	-7.421666	-3.158099	0.009803
40	1	-2.941252	-2.200389	0.536454
41	8	-0.376005	-2.165968	0.498049
42	8	-4.567629	0.250598	-1.015778
43	8	-5.319754	-1.557245	0.094370
44	7	2.650206	0.183925	-0.595405
45	7	0.496113	-0.306196	-0.426096
46	16	2.427552	-2.077844	0.590884

Acylammonium cation (100° dihedral angle):

Charge = 1 Multiplicity = 1 mem = 7200MB

Link 0: hf/3-21g----

1/38=1/1;2/12=2,17=6,18=5,40=1/2;3/5=5,11=9,16=1,25=1,30=1/1,2,3;4//1;5/5=2,38=5/ 2;6/7=2,8=2,9=2,10=2,28=1/1;99/5=1,9=1/99; ----Title---- Symbolic Z-matrix: Charge = 1 Multiplicity = 1C 4.68387 -1.02853 -1.14043 C 3.48635 -1.10242 -0.44016 C 3.20572 -2.17348 0.41637 C 4.1149 -3.20842 0.5902 C 5.31573 -3.13727 -5.59525 -2.06295 -0.96014 C 1.40876 -0.51036 0.34146 C 0.10966 C 2.23597 1.14936 -1.01566 C 0.72875 1.40484 -0.73246 C 0.39431 2.82034 -0.34686 C -0.19471 3.66347 -1.28804 C 0.7094 3.3015 0.92609 C -0.45418 4.99255 -0.96364 С 0.43921 4.62615 1.24953 C -0.13714 5.4727 0.30347 C -0.8748 0.25319 -1.82593 -0.46144 0.09061 C -3.0958 -0.62703 0.4694 C 0.95912 C -4.02944 -1.36631 -0.44119 C -6.22214 -2.15958 -0.70462 C -7.51836 -2.14883 0.07185 H 4.89632 -0.19448 -1.80105 H 3.90056 -4.04062 1.25198 H 6.0462 -3.92923 0.01137 H 6.54013 -2.03316 -1.49139 H 2.87009 1.85234 -0.46538 H 2.46964 1.18447 -2.08032 H -0.45135 3.28444 -2.27446 H 1.13928 2.63517 1.66973 H -0.90991 5.64837 -1.69797 H 0.67332 4.99716 2.24182 H -0.34689 6.5064 0.55834 H 0.13404 1.09906 -1.60376 H -1.48811 -0.85776 -0.86391 H -6.30526 -1.65167 -1.6695 H -5.84909 -3.1714 -0.88664 H -7.85689 -1.12473 0.24603 H -8.28972 -2.6767 -0.49409 H -7.39536 -2.64606 1.03684 H -3.47016 -0.24388 1.41451 O -1.08408 0.71018 2.04303 O -3.69182 -1.81102 -1.5113 O -5.23998 -1.45614 0.09073 N 2.41718 -0.20357 -0.47446 N 0.46614 0.42363 0.36678 S 1.61517 -1.99421 1.18878 Input orientation:

Job cpu time: 0 days 0 hours 3 minutes 35.1 seconds. File lengths (MBytes): RWF= 34 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Sat Oct 19 15:40:13 2013. No convergence data found for this link. HF = -1528.7887896 hartrees (-959330.253361896 kcal/mol)

Comments:

Center	Ator	nic	Соо	rdinates	(An	gstroms)	
Number	Num	nber	Х	Y		Z	
1	6	4.683	870	-1.0285	27	-1.14042	28
2	6	3.486	347	-1.1024	17	-0.44015	58
3	6	3.205	715	-2.1734	78	0.41636	8
4	6	4.114	901	-3.20842	24	0.59020)0
5	6	5.315	733	-3.1372	65	-0.10965	56
6	6	5.595	253	-2.0629	54	-0.96014	10
7	6	1.408	756	-0.5103	59	0.34146	3
8	6	2.235	973	1.14936	65	-1.01565	6
9	6	0.728	747	1.40484	43	-0.73245	58
10	6	0.394	4306	2.8203	42	-0.3468	64
11	6	-0.194	4714	3.6634	66	-1.2880	38
12	6	0.709	9395	3.3015	04	0.92609	90

13	6	-0.454183	4.992547	-0.963642
14	6	0.439210	4.626151	1.249534
15	6	-0.137144	5.472698	0.303471
16	6	-0.874796	0.253194	0.959116
17	6	-1.825932	-0.461444	0.090605
18	6	-3.095799	-0.627027	0.469395
19	6	-4.029444	-1.366307	-0.441192
20	6	-6.222142	-2.159582	-0.704620
21	6	-7.518363	-2.148826	0.071854
22	1	4.896322	-0.194480	-1.801048
23	1	3.900556	-4.040620	1.251979
24	1	6.046202	-3.929230	0.011373
25	1	6.540132	-2.033157	-1.491387
26	1	2.870090	1.852336	-0.465383
27	1	2.469642	1.184474	-2.080320
28	1	-0.451354	3.284443	-2.274461
29	1	1.139276	2.635165	1.669727
30	1	-0.909907	5.648372	-1.697966
31	1	0.673323	4.997155	2.241825
32	1	-0.346887	6.506401	0.558343
33	1	0.134043	1.099058	-1.603764
34	1	-1.488110	-0.857755	-0.863906
35	1	-6.305257	-1.651667	-1.669500
36	1	-5.849090	-3.171403	-0.886637
37	1	-7.856890	-1.124734	0.246033
38	1	-8.289716	-2.676704	-0.494090
39	1	-7.395361	-2.646063	1.036843
40	1	-3.470162	-0.243875	1.414510
41	8	-1.084077	0.710177	2.043027
42	8	-3.691822	-1.811020	-1.511300
43	8	-5.239975	-1.456138	0.090729

44	7	2.417182	-0.203570	-0.474464
45	7	0.466143	0.423629	0.366781
46	16	1.615171	-1.994206	1.188782

Acylammonium cation (180° dihedral angle):

Charge = 1 Multiplicity = 1 mem = 7200MB

Link 0: hf/3-21g----

1/38=1/1;2/12=2,17=6,18=5,40=1/2;3/5=5,11=9,16=1,25=1,30=1/1,2,3;4//1;5/5=2,38=5/ 2;6/7=2,8=2,9=2,10=2,28=1/1;99/5=1,9=1/99; ----Title---- Symbolic Z-matrix: Charge = 1 Multiplicity = 1C4.40731 -1.86212 -0.32001 C 3.03795 -1.63608 -0.22928 C 2.17441 -2.57984 0.33649 C 2.65595 -3.78718 0.82947 C 4.02447 -4.0165 4.88574 -3.06844 0.1754 C 1.01243 -0.56811 -0.46456 C 0.74182 C 2.73258 0.72169 -1.33116 C 1.44182 1.57948 -1.24317 C 1.49475 2.67397 -0.20418 C 1.05071 3.95479 -0.52526 C 1.97616 2.40605 1.08041 C 1.10163 4.96827 2.01916 3.41648 2.03363 C 1.58509 4.70004 1.70508 C 0.42804 C -0.973720.89064 -1.02705 C -1.9642 -0.14033 -0.66123 C -3.22578 0.20727 -0.40839 C -4.2 -0.87272 -0.04893 C -6.44061 -1.3395 0.47173 C -7.73239 -0.57521 0.64641 5.07125 -1.12661 -0.76203 H 1.98945 -4.52313 1.26592 H 4.4292 -4.94875 Н 5.94812 -3.27864 0.12023 H 3.5625 1.18938 -0.79806 H 1.11959 H 3.02802 0.49178 -2.35833 H 0.65209 4.15297 -1.51619 H 2.31922 1.40654 1.34694 H 0.75971 5.96562 0.17238 H 2.39375 3.206 3.02999 H 1.6244 5.49029 2.44781 H 1.16572 1.99055 -2.21524 H -1.70431 -1.19412 -0.62277 H -6.4969 -2.08058 -0.33059 H -6.12965 -1.8537 1.38547 H -8.00652 -0.06207 -0.27832 H -8.53566 -1.26779 0.90941 H -7.63865 0.16584 1.44369 H -3.56516 1.23789 -0.4538 O -1.23585 1.98654 -1.45165 O -3.88654 -2.03401 0.06282 O -5.41727 -0.37901 0.12562 N 2.32694 -0.51608 -0.65636 N 0.40346 0.55325 -0.88418 S 0.49732 -2.01536 0.31698 Input orientation:

Job cpu time: 0 days 0 hours 3 minutes 34.7 seconds. File lengths (MBytes): RWF= 34 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Sat Oct 19 15:41:39 2013. No convergence data found for this link. HF = -1528.8026458 hartrees (-959338.948265958 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center	ŀ	Atomic	Соо	rdinates (Ar	igstroms)
Number	1	Number	Х	Y	Z
		4 407	211	1 962115	0 320008
1	0	4.407	514	-1.002113	-0.320006
2	6	3.037	947	-1.636082	-0.229284
3	6	2.174	414	-2.579839	0.336494
4	6	2.655	947	-3.787180	0.829474
5	6	4.024	465	-4.016496	0.741823
6	6	4.885	737	-3.068440	0.175398
7	6	1.012	431	-0.568109	-0.464564
8	6	2.732	576	0.721685	-1.331155
9	6	1.441	819	1.579483	-1.243168
10	6	1.494	1753	2.673973	-0.204180
11	6	1.050)713	3.954788	-0.525257

12	6	1.976159	2.406049	1.080414
13	6	1.101634	4.968269	0.428037
14	6	2.019163	3.416483	2.033629
15	6	1.585092	4.700042	1.705075
16	6	-0.973717	0.890644	-1.027046
17	6	-1.964201	-0.140327	-0.661228
18	6	-3.225775	0.207273	-0.408391
19	6	-4.199995	-0.872717	-0.048931
20	6	-6.440613	-1.339497	0.471730
21	6	-7.732394	-0.575213	0.646406
22	1	5.071248	-1.126605	-0.762031
23	1	1.989449	-4.523132	1.265923
24	1	4.429197	-4.948754	1.119594
25	1	5.948115	-3.278640	0.120230
26	1	3.562502	1.189380	-0.798055
27	1	3.028023	0.491778	-2.358334
28	1	0.652091	4.152972	-1.516186
29	1	2.319223	1.406543	1.346944
30	1	0.759709	5.965616	0.172376
31	1	2.393746	3.205996	3.029990
32	1	1.624402	5.490285	2.447809
33	1	1.165717	1.990545	-2.215238
34	1	-1.704308	-1.194121	-0.622771
35	1	-6.496904	-2.080580	-0.330593
36	1	-6.129647	-1.853699	1.385467
37	1	-8.006522	-0.062068	-0.278318
38	1	-8.535655	-1.267789	0.909411
39	1	-7.638654	0.165836	1.443692
40	1	-3.565157	1.237891	-0.453799
41	8	-1.235846	1.986537	-1.451646
42	8	-3.886536	-2.034008	0.062824

43	8	-5.417274	-0.379010	0.125617
44	7	2.326941	-0.516083	-0.656362
45	7	0.403463	0.553248	-0.884179
46	16	0.497315	-2.015363	0.316982
EndoBottom TSS (background reaction; leads to endo cycloadduct):

Charge = 0 Multiplicity = 1 mem = 50GB

Dipole moment (field-independent basis, Debye):

X = 8.9322 Y = -2.1207 Z = 2.4065 Tot = 9.4907

Link 0: opt=(calcfc,ts,noeigen) freq=noraman M062X/6-31g(d) scrf=(smd,solvent= dichloromethane)

Job cpu time: 3 days 3 hours 32 minutes 31.3 seconds.

File lengths (MBytes): RWF= 1059 Int= 0 D2E= 0 Chk= 23 Scr= 1

Normal termination of Gaussian 09 at Mon Oct 7 00:33:02 2013.

Item	Value	Threshold	Converged?			
Maximum Force	0.000006	0.000450	YES			
RMS Force	0.000001	0.000300	YES			
Maximum Displacement	0.000534	0.001800	YES			
RMS Displacement	0.000113	0.001200	YES			
Predicted change in Energy = -2.287133D-09						

Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq						
Job cpu time: 0 days 3 ho	Job cpu time: 0 days 3 hours 12 minutes 22.4 seconds.					
File lengths (MBytes): RW	/F= 1059 Int=	0 D2E= 0 Ch	k= 32 Scr= 1			
Normal termination of Gau	ussian 09 at N	Mon Oct 7 00:	45:20 2013.			
Item	Value	Threshold	Converged?			
Maximum Force	0.000006	0.000450	YES			
RMS Force	0.000001	0.000300	YES			
Maximum Displacement	0.001144	0.001800	YES			
RMS Displacement	0.000221	0.001200	YES			
Predicted change in Energy = -5.719982D-09						
Optimization completed.						
Stationary point f	ound.					

Values come from Link 1:

HF = -1712.0012625 hartrees (-1074297.91223137 kcal/mol) Imaginary Frequencies: 1 (-372.8605 1/cm) Zero-point correction = 0.384682 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-1711.674450 hartrees (-1074092.8341195 kcal/mol)

Comments:

 Center	 At	omic	Соо	rdinates (An	astroms)
Number	N	umber	Х	Y	Z
1	6	-1.914	100	0.344829	-1.433254
2	6	0.046	593	1.302003	-0.460606
3	6	-1.331	866	1.361819	-0.628438
4	6	-2.189	280	-0.344562	1.450524
5	6	0.634	395	0.099066	1.154345
6	6	-1.386	6174	-1.357780	1.035562
7	6	0.031	202	-1.120049	0.865302
8	6	-3.687	251	-0.402118	1.565667
9	6	3.360	566	-2.242173	1.413405
10	6	2.83	1588	-0.956549	-1.371656
11	6	2.37	7968	-3.968023	-0.947818
12	6	-1.91	9889	-2.687187	0.571733
13	6	0.72	0289	2.512040	0.103794
14	6	2.77	7643	3.638632	0.323082
15	6	4.21	2645	3.443299	-0.106903
16	17	-3.74	3829	0.622910	-1.718302
17	1	0.62	9688	0.725079	-1.171581
18	1	-1.93	2426	2.149006	-0.192521
19	1	-1.76	6065	0.580838	1.829170
20	1	1.71	3063	0.186708	1.064870
21	1	0.18	8806	0.732276	1.911995
22	1	-4.12	6670	-1.015832	0.768883
23	1	-3.95	7468	-0.872346	2.520586
24	1	3.00	4105	-2.992704	2.127586

25	1	4.405161	-2.477523	1.177381
26	1	3.343806	-1.267574	1.911074
27	1	2.876467	0.048179	-0.937297
28	1	3.828785	-1.188156	-1.766572
29	1	2.140898	-0.934438	-2.222385
30	1	3.400867	-4.239108	-1.232538
31	1	2.004853	-4.736710	-0.262566
32	1	1.760714	-3.991169	-1.852267
33	1	-4.203119	1.237721	0.680188
34	1	-2.950055	-2.844694	0.894870
35	1	-1.879694	-2.747454	-0.522066
36	1	-1.310348	-3.505124	0.965576
37	1	2.670827	3.643315	1.411747
38	1	2.355238	4.569287	-0.066327
39	1	4.292920	3.433703	-1.197476
40	1	4.825220	4.263172	0.278323
41	1	4.610025	2.501611	0.282997
42	8	-1.420823	-0.618465	-1.945900
43	8	0.686102	-2.113036	0.261101
44	8	-4.255428	0.892370	1.586119
45	8	2.019337	2.533044	-0.206800
46	8	0.168457	3.356069	0.772133
47	14	2.339455	-2.284776	-0.152298

ExoTop TSS (background reaction; leads to exo cycloadduct):

Charge = 0 Multiplicity = 1 mem = 50GB

Dipole moment (field-independent basis, Debye):

X = 8.1597 Y = -2.2281 Z = 1.5963 Tot = 8.6077

Link 0: opt=(calcfc,ts,noeigen) freq=noraman m062x/6-31g(d) scrf=(smd,solvent= dichloromethane)

Job cpu time: 1 days 18 hours 10 minutes 1.7 seconds.

File lengths (MBytes): RWF= 1056 Int= 0 D2E= 0 Chk= 22 Scr= 1

Normal termination of Gaussian 09 at Sun Oct 6 22:23:23 2013.

Item	Value	Threshold	Converged?			
Maximum Force	0.000025	0.000450	YES			
RMS Force	0.000004	0.000300	YES			
Maximum Displacement	0.000803	0.001800	YES			
RMS Displacement	0.000192	0.001200	YES			
Predicted change in Energy = -5.773393D-09						
Optimization completed.						

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq							
Job cpu time: 0 days 3 hours 24 minutes 42.4 seconds.							
File lengths (MBytes): RW	/F= 1056 Int=	0 D2E= 0 Ch	k= 31 Scr= 1				
Normal termination of Gau	ussian 09 at S	un Oct 6 22:3	6:26 2013.				
Item	Value	Threshold	Converged?				
Maximum Force	0.000025	0.000450	YES				
RMS Force	0.000004	0.000300	YES				
Maximum Displacement	0.001013	0.001800	YES				
RMS Displacement	0.000231	0.001200	YES				
Predicted change in Energy = -6.934533D-09							
Optimization completed.	Optimization completed.						

-- Stationary point found.

Values come from Link 1:

HF = -1711.9989726 hartrees (-1074296.47529623 kcal/mol)

Imaginary Frequencies: 1 (-383.8352 1/cm)

Zero-point correction = 0.384864 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Sum of electronic and thermal Free Energies =

-1711.671561 hartrees (-1074091.02124311 kcal/mol)

Comments:

Center	Atomic	Coordinates (Angstroms)		
Number	Number	Х	Y	Z

1	6	-3.080620	0.352505	-1.359739
2	6	-0.781102	1.052854	-1.220941
3	6	-1.991994	0.816312	-0.571769
4	6	-1.619592	-1.802151	0.310900
5	6	0.305695	-0.671984	-1.511669
6	6	-0.363073	-1.503903	0.738263
7	6	0.621344	-1.026766	-0.204360
8	6	-2.751963	-2.159950	1.243732
9	6	3.770284	0.615103	-1.464383
10	6	3.387969	-2.454943	-1.339117
11	6	4.485989	-0.888917	1.110981
12	6	0.026703	-1.514038	2.192648
13	6	0.293149	1.817723	-0.517611
14	6	1.238163	2.313287	1.590083
15	6	0.994364	3.797337	1.772958
16	17	-4.668713	0.275045	-0.364539
17	1	-0.792086	1.210637	-2.296002
18	1	-2.123792	1.003386	0.483604
19	1	-1.824113	-1.906520	-0.750204
20	1	1.102184	-0.310861	-2.157078
21	1	-0.512751	-1.161310	-2.027303
22	1	-3.651691	-2.384089	0.659602
23	1	-2.494627	-3.068993	1.800961
24	1	4.830531	0.562727	-1.742929
25	1	3.186178	0.642409	-2.389711
26	1	3.605249	1.560924	-0.939063
27	1	2.665488	-2.447683	-2.162454
28	1	4.381626	-2.621762	-1.770826
29	1	3.154566	-3.307253	-0.691505
30	1	5.534683	-0.979941	0.806424
31	1	4.387959	0.032473	1.695998

32	1	4.248261	-1.733505	1.766470
33	1	-3.454177	-0.429971	1.754062
34	1	1.009444	-1.976101	2.320858
35	1	0.095613	-0.489197	2.575090
36	1	-0.702448	-2.051872	2.799448
37	1	2.195098	2.115572	1.100057
38	1	1.208126	1.781698	2.543084
39	1	0.016080	3.969990	2.230668
40	1	1.761632	4.217711	2.430112
41	1	1.035735	4.318785	0.813344
42	8	-3.138251	0.008296	-2.503832
43	8	1.808776	-0.699301	0.324665
44	8	-3.011123	-1.160730	2.215236
45	8	0.187905	1.711511	0.809566
46	8	1.173548	2.420288	-1.090280
47	14	3.366186	-0.851310	-0.379874

EndoTop TSS (asymmetric reaction; leads to endo cycloadduct):

Charge = 1 Multiplicity = 1 mem = 57GB

Dipole moment (field-independent basis, Debye):

X = 6.4375 Y = 1.2759 Z = 3.3855 Tot = 7.3845

Link 0: opt=(calcfc,ts,noeigen) freq=noraman uM062X/6-31g(d) scrf=(smd,solvent= dichloromethane) guess=(mix,always)

Job cpu time: 27 days 6 hours 0 minutes 44.0 seconds.

File lengths (MBytes): RWF= 7631 Int= 0 D2E= 0 Chk= 62 Scr= 1

Normal termination of Gaussian 09 at Sat Oct 5 22:12:16 2013.

Item	Value	Threshold	Converged?			
Maximum Force	0.000024	0.000450	YES			
RMS Force	0.000003	0.000300	YES			
Maximum Displacement	0.001122	0.001800	YES			
RMS Displacement	0.000192	0.001200	YES			
Predicted change in Energy = -3.365820D-09						

Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk UM062X/6-31G(d) Freq Job cpu time: 1 days 7 hours 5 minutes 19.8 seconds. File lengths (MBytes): RWF= 7684 Int= 0 D2E= 0 Chk= 78 Scr= 1 Normal termination of Gaussian 09 at Sun Oct 6 00:09:28 2013. Item Value Threshold Converged? 0.000024 0.000450 Maximum Force YES **RMS** Force 0.000003 0.000300 YES Maximum Displacement 0.002293 0.001800 NO YES RMS Displacement 0.000421 0.001200

Values come from Link 1:

HF = -2337.9289835 hartrees (-1467073.81643608 kcal/mol) Imaginary Frequencies: 1 (-408.6019 1/cm) Zero-point correction = 0.627069 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Sum of electronic and thermal Free Energies =

Predicted change in Energy = -1.806644D-08

-2337.376333 hartrees (-1466727.02272083 kcal/mol)

Comments:

Center	Α	tomic	Соо	rdinates	(Ang	gstroms)
Number	Ν	lumber	Х	Y		Z	
1	6	6.01 ⁻	 1641	0.72916	53	0.2552	05
2	6	4.68	1109	0.85114	46	-0.1309	82
3	6	4.238	3845	1.91558	37	-0.9272	17
4	6	5.12	7429	2.89138	- 88	-1.3637	34

5	6	6.460553	2.773854	-0.982110
6	6	6.894456	1.709117	-0.183475
7	6	2.448520	0.374371	-0.309824
8	6	3.494545	-1.183271	1.038554
9	6	2.015532	-1.614280	0.795617
10	6	1.857478	-2.902071	0.018827
11	6	1.284281	-4.010427	0.641746
12	6	2.295382	-3.004451	-1.304845
13	6	1.149375	-5.213346	-0.048813
14	6	2.157894	-4.204314	-1.994990
15	6	1.584804	-5.310898	-1.367620
16	6	0.100803	-0.179761	-0.290546
17	6	-0.874580	-1.039450	0.289809
18	6	-2.205520	-0.839067	-0.055543
19	6	-0.565119	0.961361	2.369900
20	6	-3.157981	0.528074	1.164183
21	6	0.813746	1.050217	2.965953
22	6	-2.421514	1.694247	0.978363
23	6	-5.656825	2.995900	0.413861
24	6	-4.433059	1.432199	-1.995072
25	6	-3.921916	4.448483	-1.679842
26	6	-1.123375	1.915352	1.584407
27	6	-3.158267	-1.941041	0.294901
28	6	-5.228982	-2.942795	-0.257776
29	6	-4.829547	-4.231696	-0.945119
30	6	-0.394959	3.167914	1.175762
31	1	6.336245	-0.101197	0.873592
32	1	4.793118	3.718627	-1.981249
33	1	7.173215	3.522145	-1.312383
34	1	7.939854	1.644614	0.099652
35	1	4.206275	-1.950353	0.729145

36	1	3.666948	-0.896836	2.078838
37	1	0.937449	-3.929739	1.669354
38	1	2.742445	-2.145680	-1.802076
39	1	0.697859	-6.069725	0.442537
40	1	2.496792	-4.276180	-3.024014
41	1	1.476016	-6.246220	-1.908290
42	1	1.499509	-1.673057	1.755284
43	1	-0.600109	-1.824888	0.982612
44	1	-1.139210	0.096376	2.689144
45	1	-4.162110	0.474117	0.754439
46	1	-3.014716	-0.034577	2.078733
47	1	-2.425115	-0.293648	-0.968920
48	1	1.542995	1.392596	2.223622
49	1	0.821975	1.794102	3.777550
50	1	-5.861671	2.070981	0.961670
51	1	-5.460122	3.787720	1.145157
52	1	-6.568628	3.268251	-0.130842
53	1	-3.532067	1.324703	-2.609858
54	1	-4.641081	0.467743	-1.519914
55	1	-5.267338	1.655265	-2.671723
56	1	-3.730917	5.263659	-0.973625
57	1	-3.057736	4.368033	-2.347876
58	1	-4.790120	4.727346	-2.287485
59	1	-6.149140	-2.532363	-0.676249
60	1	-5.351937	-3.078894	0.819036
61	1	-5.620219	-4.976737	-0.816084
62	1	-4.682851	-4.064894	-2.015948
63	1	-3.905461	-4.630308	-0.518323
64	1	0.772698	-0.447154	4.217842
65	1	-0.238701	3.170590	0.092242
66	1	-0.988660	4.054301	1.421154

67	1	0.572245	3.261908	1.673292
68	8	-0.108835	0.779965	-1.033128
69	8	-2.785073	2.635499	0.109384
70	8	-2.975446	-2.740483	1.185108
71	8	-4.241620	-1.914191	-0.486339
72	8	1.285065	-0.203221	3.429524
73	7	3.623440	0.002858	0.182099
74	7	1.462132	-0.447311	0.045747
75	16	2.495052	1.813505	-1.251580
76	14	-4.233484	2.843921	-0.787396

ExoBottom TSS (asymmetric reaction; leads to exo cycloadduct):

Charge = 1 Multiplicity = 1 mem = 55GB

Dipole moment (field-independent basis, Debye):

X = -8.3541 Y = -2.6696 Z = 6.9204 Tot = 11.1718

Link 0: opt=(calcfc,ts,noeigen) freq=noraman M062X/6-31g(d) scrf=(smd,solvent= dichloromethane)

Job cpu time: 1 days 4 hours 58 minutes 5.1 seconds.

File lengths (MBytes): RWF= 4155 Int= 0 D2E= 0 Chk= 50 Scr= 1

Normal termination of Gaussian 09 at Sun Sep 22 12:21:14 2013.

Item	Value	Threshold	Converged?			
Maximum Force	0.000401	0.000450	YES			
RMS Force	0.000080	0.000300	YES			
Maximum Displacement	0.000633	0.001800	YES			
RMS Displacement	0.000128	0.001200	YES			
Predicted change in Energy = 1.881745D-05						

Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck	Guess=TChec	k SCRF=Cheo	ck GenChk RM062X/6-31G(d) Freq			
lob cpu time: 0 days 16 hours 23 minutes 9.4 seconds.						
File lengths (MBytes): RWF= 4181 Int= 0 D2E= 0 Chk= 65 Scr= 1						
Normal termination of Gaussian 09 at Sun Sep 22 13:23:07 2013.						
Item	Value	Threshold	Converged?			
Maximum Force	0.000401	0.000450	YES			
RMS Force	0.000080	0.000300	YES			
Maximum Displacement	0.000584	0.001800	YES			
RMS Displacement	0.000082	0.001200	YES			
Predicted change in Energy = -4.003895D-07						
Optimization completed.						

-- Stationary point found.

Values come from Link 1:

HF = -2337.9292947 hartrees (-1467074.0117172 kcal/mol)

Imaginary Frequencies: 1 (-395.0181 1/cm)

Zero-point correction = 0.627771 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -2337.374439 hartrees (-1466725.83421689 kcal/mol)

Comments:

Center	Atomic	Coordinates (Angstroms)		
Number	Number	Х	Y	Z

1	6	-6.221235	-0.868759	1.043138
2	6	-5.083461	-0.928456	0.245046
3	6	-4.952277	-1.871346	-0.782465
4	6	-5.968435	-2.783912	-1.041659
5	6	-7.108731	-2.730357	-0.245492
6	6	-7.231491	-1.787076	0.781862
7	6	-2.999579	-0.423752	-0.553690
8	6	-3.519924	0.920433	1.250457
9	6	-2.088525	1.268488	0.730754
10	6	-1.920608	2.710779	0.310756
11	6	-1.086379	3.552900	1.044547
12	6	-2.617734	3.213872	-0.790410
13	6	-0.950415	4.892587	0.684607
14	6	-2.478050	4.549616	-1.152366
15	6	-1.645261	5.391231	-0.413938
16	6	-0.707662	0.020478	-1.109161
17	6	1.661999	0.381631	-1.354445
18	6	0.482998	0.646915	-0.653930
19	6	0.606811	-1.552235	1.259747
20	6	2.320754	-1.497322	-1.067275
21	6	1.945484	-1.378162	1.396819
22	6	2.806515	-1.433869	0.234913
23	6	-0.386872	-1.427162	2.384921
24	6	5.543461	-1.768905	-2.083400
25	6	5.684681	-3.516334	0.449776
26	6	6.838887	-0.619006	0.440947
27	6	2.593440	-1.019608	2.708516
28	6	2.921049	1.103170	-0.985275
29	6	4.057199	2.229312	0.757220
30	6	4.151971	3.646503	0.229999
31	1	-6.306579	-0.132512	1.835837

32	1	-5.873672	-3.517143	-1.836252
33	1	-7.914164	-3.434114	-0.426472
34	1	-8.131542	-1.770286	1.387234
35	1	-4.202163	1.770542	1.185761
36	1	-3.498870	0.520454	2.265087
37	1	-0.539872	3.157305	1.897816
38	1	-3.265650	2.557890	-1.368123
39	1	-0.298831	5.542352	1.260964
40	1	-3.018102	4.935287	-2.011792
41	1	-1.537861	6.433677	-0.698001
42	1	-1.351324	1.011504	1.494841
43	1	1.587254	0.156804	-2.415338
44	1	0.489786	1.253706	0.240510
45	1	0.184770	-1.909952	0.323831
46	1	3.038739	-1.573014	-1.876237
47	1	1.354091	-1.946696	-1.267955
48	1	-0.207664	-2.208498	3.137546
49	1	-0.268744	-0.465823	2.897205
50	1	6.578389	-1.924043	-2.414764
51	1	4.937962	-2.568331	-2.522600
52	1	5.206589	-0.806701	-2.482986
53	1	5.821573	-3.521280	1.536489
54	1	4.785332	-4.099265	0.218564
55	1	6.538594	-4.033596	-0.002362
56	1	7.834990	-1.056720	0.306964
57	1	6.820460	0.333482	-0.099973
58	1	6.701716	-0.415714	1.508192
59	1	-1.944906	-2.404751	1.737113
60	1	3.072322	-0.036805	2.643577
61	1	1.872776	-1.003650	3.528043
62	1	3.376435	-1.742828	2.958805

63	1	4.930192	1.630246	0.486579
64	1	3.940354	2.216376	1.842314
65	1	3.246287	4.207816	0.478541
66	1	5.007789	4.151286	0.688061
67	1	4.286082	3.649963	-0.854219
68	8	-0.796949	-0.820217	-2.008391
69	8	4.090614	-1.148400	0.470204
70	8	-1.728591	-1.476428	1.923734
71	8	2.873061	1.571780	0.263779
72	8	3.885932	1.193474	-1.712832
73	7	-3.946555	-0.130966	0.324095
74	7	-1.911405	0.331306	-0.412556
75	16	-3.388583	-1.723662	-1.610891
76	14	5.534737	-1.776596	-0.214599

EndoTop TSS (background reaction; leads to enantiomer of endo cycloadduct)

Charge = 0 Multiplicity = 1 HF = -1712.0020168 hartrees (-1074298.38556217 kcal/mol) Imaginary Frequencies: 1 (-367.8342 1/cm) Zero-point correction = 0.385144 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-1711.674659 hartrees (-1074092.96526909 kcal/mol)

Center Number		Atomic Number	Coo X	rdinates (A Y	ngstroms) Z
1	6	-2.076	063	1.207211	-1.334218
2	6	-1.896	097	-0.116505	-0.837998
3	6	-0.715	221	-0.846522	-0.891264
4	6	-1.508	005	1.341130	1.492633
5	6	0.381	392	-0.733495	0.897915

6	6	-2.638916	2.324655	1.611478
7	6	0.739783	0.608183	0.971809
8	6	4.539213	1.548485	-0.295813
9	6	2.931618	-0.784604	-1.489580
10	6	3.913553	-0.899430	1.469268
11	6	-0.201299	1.657391	1.288986
12	6	0.294000	3.077842	1.215079
13	6	-0.767943	-2.338458	-0.787996
14	6	-1.895911	-4.189418	0.151935
15	6	-0.966863	-4.620068	1.267853
16	17	-0.581647	1.953102	-2.107716
17	1	-2.793754	-0.555576	-0.414438
18	1	-1.811728	0.312341	1.656705
19	1	1.155845	-1.469231	0.703680
20	1	-0.437507	-1.087580	1.512035
21	1	0.092249	-0.508735	-1.531568
22	1	-2.492900	3.163756	0.917046
23	1	-2.661969	2.742260	2.626930
24	1	5.482969	1.139207	-0.673492
25	1	4.145489	2.236455	-1.051522
26	1	4.762118	2.128835	0.605984
27	1	2.216397	-1.600978	-1.340632
28	1	2.536432	-0.120168	-2.266994
29	1	3.858140	-1.224960	-1.878932
30	1	4.898070	-1.314702	1.222961
31	1	4.021964	-0.311151	2.387287
32	1	0.573162	3.343953	0.190283
33	1	-0.458514	3.784351	1.569509
34	1	1.188910	3.196659	1.833584
35	1	-3.972161	1.608643	0.424338
36	1	-2.941987	-4.358978	0.411039

37	1	-1.670245	-4.702945	-0.785216
38	1	-1.199212	-4.079790	2.190339
39	1	-1.088871	-5.691090	1.455139
40	1	0.076183	-4.433895	0.997531
41	1	3.243475	-1.738419	1.681344
42	8	-3.075956	1.884332	-1.337814
43	8	1.935831	1.048263	0.572760
44	8	-3.885875	1.697387	1.389480
45	8	-1.804700	-2.765473	-0.063167
46	8	0.056830	-3.067766	-1.293931
47	14	3.325496	0.181906	0.062077

ExoBottom TSS (background reaction; leads to enantiomer of exo cycloadduct)

Charge = 0 Multiplicity = 1 HF = -1711.9989996 hartrees (-1074296.492239 kcal/mol) Imaginary Frequencies: 1 (-386.7660 1/cm) Zero-point correction = 0.383850 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-1711.672772 hartrees (-1074091.78115772 kcal/mol)

Center Number	/ 1	Atomic Number	Coo X	rdinates (Ar Y	ngstroms) Z
1	6	-0.773	704	-1.406040	-1.011874
2	6	-1.912	111	-1.171218	-0.240667
3	6	-1.713	875	1.648816	0.116832
4	6	0.206	660	0.314481	-1.574844
5	6	-0.433	220	1.476396	0.535003

6	6	0.541508	0.880781	-0.349278
7	6	-2.833457	2.185973	0.969347
8	6	-0.006883	1.754847	1.952040
9	6	0.409067	-2.075201	-0.390224
10	6	1.707907	-2.294000	1.558896
11	1	-0.908098	-1.666488	-2.058315
12	1	-3.037176	1.499367	1.805153
13	1	-2.530835	3.141808	1.414705
14	1	-4.444986	1.600225	0.060433
15	1	0.948774	2.285864	1.977636
16	1	-0.747884	2.351397	2.487499
17	1	0.130068	0.813135	2.495863
18	1	1.616322	-3.379379	1.664415
19	8	1.753589	0.694239	0.186771
20	8	-3.997218	2.447184	0.214779
21	8	0.520928	-1.799109	0.910063
22	8	1.191861	-2.761040	-1.010218
23	1	-1.902443	-1.242330	0.837146
24	6	1.826305	-1.599104	2.894445
25	1	2.692427	-1.993707	3.434048
26	1	1.964707	-0.523141	2.752839
27	1	0.933692	-1.768374	3.503903
28	1	2.570370	-2.085955	0.918946
29	6	-3.116833	-0.857670	-0.918598
30	17	-4.577000	-0.811753	0.281692
31	8	-3.354400	-0.620458	-2.066275
32	14	3.298211	0.834114	-0.545806
33	6	3.646554	-0.576064	-1.721619
34	1	4.729906	-0.637418	-1.885288
35	1	3.311203	-1.538055	-1.320144
36	1	3.177225	-0.436264	-2.701178

37	6	4.433765	0.768079	0.931857
38	1	4.155640	1.523376	1.675137
39	1	4.396648	-0.214568	1.416044
40	1	5.472404	0.952771	0.635236
41	6	3.322728	2.479816	-1.426888
42	1	2.559067	2.515959	-2.212252
43	1	3.135933	3.306723	-0.733117
44	1	4.295910	2.648132	-1.901979
45	1	1.000495	-0.101969	-2.188723
46	1	-0.649063	0.688740	-2.124678
47	1	-1.980799	1.516468	-0.928344

EndoBottom TSS (asymmetric reaction; leads to enantiomer of endo cycloadduct)

Charge = 1 Multiplicity = 1 HF = -2337.9215634 hartrees (-1467069.16024913 kcal/mol) Imaginary Frequencies: 1 (-411.3635 1/cm) Zero-point correction = 0.626765 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-2337.369239 hartrees (-1466722.57116489 kcal/mol)

Center Number		Atomic Number	Coo X	ordinates (Ar Y	igstroms) Z
1	6	6.243	099	-0.617570	-0.881687
2	6	4.881	202	-0.876343	-0.766347
3	6	4.389	159	-2.175111	-0.587697
4	6	5.256	763	-3.260418	-0.528746
5	6	6.620	297	-3.008335	-0.642463

6	6	7.104724	-1.705798	-0.815553
7	6	2.626519	-0.483094	-0.641321
8	6	3.772619	1.502996	-0.851492
9	6	2.247644	1.757736	-1.013762
10	6	1.777263	2.945914	-0.213394
11	6	1.532121	4.151811	-0.869682
12	6	1.605067	2.859059	1.168244
13	6	1.124551	5.270009	-0.144576
14	6	1.176638	3.969462	1.888004
15	6	0.942051	5.178509	1.233194
16	6	0.279295	0.026971	-0.685641
17	6	-0.714520	1.041035	-0.680999
18	6	-2.023352	0.645570	-0.929095
19	6	-0.617942	0.064704	2.416406
20	6	-3.045879	0.036371	0.766609
21	6	0.625531	0.131875	3.255322
22	6	-2.349819	-1.105872	1.141843
23	6	-4.257051	-2.242394	-1.759462
24	6	-5.595179	-2.410713	1.041973
25	6	-3.858562	-4.744503	0.005155
26	6	-1.129280	-1.090903	1.940966
27	6	-3.011768	1.739057	-1.204744
28	6	-5.097513	2.226833	-2.207441
29	6	-6.057774	2.227911	-1.036079
30	6	-0.455758	-2.422706	2.142981
31	1	6.607871	0.395383	-1.016500
32	1	4.881932	-4.270122	-0.395437
33	1	7.318473	-3.837358	-0.595236
34	1	8.173469	-1.539512	-0.900565
35	1	4.158125	1.905526	0.089098
36	1	4.346614	1.891892	-1.692681

37	1	1.653476	4.213161	-1.948373
38	1	1.779013	1.919394	1.683964
39	1	0.936218	6.206913	-0.659844
40	1	1.013904	3.877260	2.956910
41	1	0.609449	6.045719	1.795728
42	1	2.003004	1.902381	-2.070929
43	1	-0.488144	2.075696	-0.464295
44	1	-1.118684	1.017650	2.264539
45	1	-4.031364	-0.080691	0.323817
46	1	-2.900543	0.948086	1.333127
47	1	-2.194561	-0.291485	-1.451955
48	1	0.578332	-0.621406	4.054524
49	1	1.510710	-0.110918	2.641866
50	1	-4.406340	-1.157616	-1.794099
51	1	-3.357365	-2.484409	-2.336099
52	1	-5.108636	-2.711166	-2.267847
53	1	-5.389821	-2.594140	2.102429
54	1	-5.881307	-1.360715	0.926195
55	1	-6.463011	-3.020895	0.764239
56	1	-2.944667	-5.013026	-0.535591
57	1	-3.767575	-5.118281	1.030682
58	1	-4.695546	-5.267866	-0.470608
59	1	-5.572497	1.863616	-3.119776
60	1	-4.676862	3.217902	-2.388432
61	1	-6.887690	2.911182	-1.239557
62	1	-6.468622	1.226567	-0.874553
63	1	-5.554815	2.560310	-0.123240
64	1	1.506628	1.462059	4.368529
65	1	-1.092741	-3.099877	2.722222
66	1	-0.277911	-2.893201	1.171782
67	1	0.500390	-2.323870	2.659869

68	8	0.075124	-1.186896	-0.751647
69	8	-2.696216	-2.314278	0.715262
70	8	-2.915272	2.867229	-0.780156
71	8	-4.017741	1.299640	-1.967537
72	8	0.719714	1.434164	3.801706
73	7	3.833583	0.039606	-0.809060
74	7	1.656437	0.438910	-0.608732
75	16	2.618116	-2.196500	-0.484525
76	14	-4.134619	-2.902929	-0.017933

ExoTop TSS (asymmetric reaction; leads to enantiomer of exo cycloadduct)

Charge = 1 Multiplicity = 1 HF = -2337.9166877 hartrees (-1467066.10069863 kcal/mol) Imaginary Frequencies: 1 (-416.3988 1/cm) Zero-point correction = 0.627953 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-2337.361318 hartrees (-1466717.60065818 kcal/mol)

Center Number		Atomic Number	Coc X	rdinates (Ar Y	ngstroms) Z
1	6	-5.889	345	-0.097916	2.085546
2	6	-4.971	356	-0.405723	1.086367
3	6	-5.258	980	-1.333089	0.077906
4	6	-6.489	715	-1.979866	0.038473
5	6	-7.411	501	-1.677668	1.034521
6	6	-7.114	787	-0.750760	2.042551
7	6	-3.019	651	-0.378880	-0.112886

8	6	-2.862870	1.019253	1.714416
9	6	-1.625010	1.220535	0.788868
10	6	-1.595134	2.577671	0.115485
11	6	-0.940912	3.626664	0.766177
12	6	-2.242457	2.814172	-1.098544
13	6	-0.934654	4.901971	0.208882
14	6	-2.232007	4.091006	-1.655405
15	6	-1.580534	5.135894	-1.003775
16	6	-0.940393	-0.273747	-1.300884
17	6	0.432067	0.093779	-1.383417
18	6	1.224308	0.812311	-0.488336
19	6	1.044092	-2.588595	-0.535804
20	6	1.829361	-0.337350	1.116465
21	6	0.510543	-3.568575	-1.547942
22	6	2.740094	-1.213640	0.531204
23	6	6.728796	-0.818338	1.442639
24	6	4.433730	-1.510184	3.404705
25	6	4.721484	1.365853	2.284833
26	6	2.351133	-2.261880	-0.387638
27	6	3.436300	-2.859871	-1.244682
28	6	2.563238	1.292232	-0.966272
29	6	4.319652	0.940577	-2.513646
30	6	5.527887	0.627318	-1.656941
31	1	-5.648145	0.621772	2.861174
32	1	-6.720180	-2.698150	-0.741594
33	1	-8.377818	-2.170702	1.028460
34	1	-7.855134	-0.538629	2.806575
35	1	-3.392831	1.954195	1.901940
36	1	-2.602916	0.532866	2.657279
37	1	-0.429467	3.441535	1.708533
38	1	-2.748081	2.007189	-1.624011

39	1	-0.418481	5.710110	0.717623
40	1	-2.731690	4.266136	-2.603179
41	1	-1.570181	6.128737	-1.442959
42	1	-0.723649	1.065503	1.381858
43	1	0.896000	-0.302998	-2.278010
44	1	0.295165	-2.218157	0.159442
45	1	2.205314	0.416336	1.803538
46	1	0.817404	-0.674386	1.309197
47	1	0.798604	1.531516	0.200189
48	1	0.897610	-4.571453	-1.324345
49	1	0.873567	-3.308861	-2.553760
50	1	7.390222	-0.766358	2.315594
51	1	6.818956	-1.822934	1.015329
52	1	7.098168	-0.098302	0.705368
53	1	3.375470	-1.359267	3.644742
54	1	4.589049	-2.574924	3.199661
55	1	5.015961	-1.251459	4.296774
56	1	5.623358	1.770120	2.760578
57	1	4.549450	1.926280	1.359478
58	1	4.287174	-3.170471	-0.631729
59	1	3.079638	-3.728396	-1.801387
60	1	3.806176	-2.115805	-1.959750
61	1	-1.231577	-2.828297	-1.910843
62	1	4.351814	0.400166	-3.461258
63	1	4.238474	2.011637	-2.715344
64	1	5.587467	-0.443055	-1.442486
65	1	6.433659	0.930944	-2.191761
66	1	5.482170	1.175362	-0.712105
67	1	3.881175	1.559578	2.960411
68	8	-1.505180	-0.987605	-2.143616
69	8	4.051708	-0.983555	0.601940

70	8	-0.897123	-3.651525	-1.514275
71	8	3.088864	0.499427	-1.899936
72	8	3.090525	2.297722	-0.543708
73	7	-3.689497	0.111179	0.918120
74	7	-1.768381	0.110557	-0.200291
75	16	-3.907830	-1.506994	-1.055043
76	14	4.974136	-0.458734	1.956874

Endo cycloadduct (background reaction):

Charge = 0 Multiplicity = 1 mem = 57GB

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 5 hours 19 minutes 13.0 seconds.

File lengths (MBytes): RWF= 404 Int= 0 D2E= 0 Chk= 17 Scr= 1

Normal termination of Gaussian 09 at Thu Oct 10 13:36:14 2013.

Item	Value	Threshold	Converged?		
Maximum Force	0.000017	0.000450	YES		
RMS Force	0.000003	0.000300	YES		
Maximum Displacement	0.001359	0.001800	YES		
RMS Displacement	0.000361	0.001200	YES		
Predicted change in Energy = -1.496742D-08					
Optimization completed.					

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 3 hours 17 minutes 47.3 seconds. File lengths (MBytes): RWF= 1057 Int= 0 D2E= 0 Chk= 24 Scr= 1 Normal termination of Gaussian 09 at Thu Oct 10 13:48:51 2013. Item Value Threshold Converged? 0.000017 Maximum Force 0.000450 YES **RMS** Force 0.000003 0.000300 YES Maximum Displacement 0.002665 0.001800 NO YES RMS Displacement 0.000692 0.001200

Predicted change in Energy = -3.061451D-08

Values come from Link 1:

HF = -1712.0754828 hartrees (-1074344.48621183 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.390001 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Sum of electronic and thermal Free Energies =

-1711.742319 hartrees (-1074135.42259569 kcal/mol)

Comments:

Center Number		Atomic Number	Coo X	ordinates (Ar Y	ngstroms) Z
1	6	-0.154	183	1.654713	1.284790
2	6	-1.206	319	-0.366778	0.284203
3	6	-1.038	176	1.161296	0.170868
4	6	-0.411	956	1.530950	-1.212825

5	6	-0.337104	-1.164872	-0.727313
6	6	0.938948	0.851693	-1.345586
7	6	0.950168	-0.458169	-1.065573
8	6	-0.388476	3.033571	-1.507435
9	6	4.242242	-2.865825	-0.407324
10	6	1.955515	-2.244303	1.582018
11	6	3.894524	-0.025527	0.772197
12	6	2.171050	1.628411	-1.716439
13	6	-2.668149	-0.748346	0.114379
14	6	-4.157389	-2.569606	-0.030194
15	6	-4.077929	-4.078198	-0.057167
16	17	-0.507604	3.385832	1.775369
17	1	-0.926280	-0.689798	1.293380
18	1	-2.014393	1.644019	0.253315
19	1	-1.125896	1.098392	-1.930569
20	1	-0.132886	-2.160942	-0.330634
21	1	-0.913003	-1.304686	-1.652668
22	1	0.352713	3.555023	-0.888705
23	1	-0.091092	3.173181	-2.551224
24	1	4.830785	-2.488525	-1.250793
25	1	4.940535	-3.146944	0.389188
26	1	3.724387	-3.773486	-0.735777
27	1	1.451631	-3.177051	1.306548
28	1	2.571057	-2.447089	2.466849
29	1	1.196811	-1.509015	1.874054
30	1	4.473085	-0.233234	1.680761
31	1	4.585965	0.366337	0.018716
32	1	3.168801	0.758445	1.016270
33	1	-1.800207	3.852636	-0.444575
34	1	2.027145	2.196038	-2.643174
35	1	2.447284	2.349884	-0.936424

36	1	3.014369	0.950356	-1.863961
37	1	-4.566480	-2.164464	-0.959821
38	1	-4.768758	-2.205407	0.800728
39	1	-3.657501	-4.462744	0.876141
40	1	-5.080698	-4.495892	-0.182771
41	1	-3.455159	-4.417640	-0.889609
42	8	0.713842	1.084506	1.853374
43	8	2.070541	-1.240047	-1.154997
44	8	-1.670391	3.617610	-1.376130
45	8	-2.813512	-2.074625	0.136142
46	8	-3.589837	0.023334	-0.021830
47	14	3.029666	-1.581915	0.198529
Exo cycloadduct (background reaction):

Charge = 0 Multiplicity = 1 mem = 57GB

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 0 days 4 hours 44 minutes 50.9 seconds. File lengths (MBytes): RWF= 397 Int= 0 D2E= 0 Chk= 17 Scr= 1 Normal termination of Gaussian 09 at Wed Oct 9 23:02:15 2013. Value Threshold Converged? Item Maximum Force 0.000027 YES 0.000450 **RMS** Force 0.000005 0.000300 YES Maximum Displacement 0.001382 0.001800 YES YES **RMS** Displacement 0.000303 0.001200 Predicted change in Energy = -3.280765D-08 Optimization completed. -- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 3 hours 14 minutes 57.0 seconds. File lengths (MBytes): RWF= 1053 Int= 0 D2E= 0 Chk= 24 Scr= 1 Normal termination of Gaussian 09 at Wed Oct 9 23:14:42 2013. Item Value Threshold Converged?

Maximum Force	0.000027	0.000450	YES			
RMS Force	0.000005	0.000300	YES			
Maximum Displacement	0.004768	0.001800	NO			
RMS Displacement	0.000868	0.001200	YES			
Predicted change in Energy = -8.778539D-08						

Values come from Link 1: HF = -1712.084226 hartrees (-1074349.97265726 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.390590 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -1711.750175 hartrees (-1074140.35231425 kcal/mol)

Comments:

Center Number		Atomic Number	Coo X	ordinates (Ar Y	ngstroms) Z
		2.458	 361	1.137674	-0.327573
2	6	0.956	213	-0.714155	-1.023078
3	6	1.038	896	0.628876	-0.290363
4	6	0.081	069	1.639775	-0.960971
5	6	-0.428	060	-1.315693	-0.762797
6	6	-1.307	717	1.030291	-1.070545
7	6	-1.510	775	-0.285126	-0.917866
8	6	0.042	787	2.968180	-0.190641
9	6	-2.759	394	-0.115094	1.900776

Coordinates (from last standard orientation):

10	6	-4.154620	-2.645268	0.810024
11	6	-5.294975	0.121478	0.138509
12	6	-2.456600	1.970451	-1.314018
13	6	2.019638	-1.712619	-0.611649
14	6	3.623292	-2.263366	1.045691
15	6	4.931117	-1.861185	0.395701
16	17	2.981276	1.956372	1.215116
17	1	1.083031	-0.549144	-2.098364
18	1	0.736874	0.492146	0.752601
19	1	0.471026	1.871758	-1.964506
20	1	-0.471567	-1.744199	0.249886
21	1	-0.618055	-2.136592	-1.462855
22	1	1.036196	3.436290	-0.201538
23	1	-0.633114	3.661676	-0.696579
24	1	-3.393645	-0.045222	2.792612
25	1	-1.895139	-0.737611	2.161559
26	1	-2.387769	0.889764	1.668287
27	1	-3.248011	-3.237272	0.980076
28	1	-4.790583	-2.742931	1.697627
29	1	-4.691549	-3.089675	-0.035482
30	1	-6.030437	-0.046381	0.934248
31	1	-5.103618	1.198135	0.083477
32	1	-5.752219	-0.191607	-0.807193
33	1	0.277966	2.495300	1.689644
34	1	-3.342110	1.421831	-1.641931
35	1	-2.713827	2.538307	-0.410005
36	1	-2.202725	2.700096	-2.092298
37	1	3.365649	-3.303192	0.833575
38	1	3.645654	-2.109367	2.125586
39	1	5.164139	-0.815054	0.615215
40	1	5.741757	-2.485191	0.783783

41	1	4.882019	-1.993821	-0.688556
42	8	3.221124	1.070365	-1.230973
43	8	-2.768338	-0.833614	-0.913111
44	8	-0.444244	2.821705	1.130299
45	8	2.550630	-1.416270	0.582227
46	8	2.319567	-2.680943	-1.268526
47	14	-3.734068	-0.852259	0.481974

Endo cycloadduct (asymmetric reaction):

Charge = 1 Multiplicity = 1 mem = 57GB

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 3 days 23 hours 33 minutes 21.5 seconds.

File lengths (MBytes): RWF= 1103 Int= 0 D2E= 0 Chk= 40 Scr= 1

Normal termination of Gaussian 09 at Fri Oct 11 03:46:42 2013.

Item	Value	Threshold	Converged?			
Maximum Force	0.000017	0.000450	YES			
RMS Force	0.000002	0.000300	YES			
Maximum Displacement	0.000690	0.001800	YES			
RMS Displacement	0.000144	0.001200	YES			
Predicted change in Energy = -9.200397D-09						

Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 17 hours 45 minutes 55.8 seconds. File lengths (MBytes): RWF= 4190 Int= 0 D2E= 0 Chk= 53 Scr= 1 Normal termination of Gaussian 09 at Fri Oct 11 04:53:46 2013. Item Value Threshold Converged?

Maximum Force	0.000017	0.000450	YES			
RMS Force	0.000002	0.000300	YES			
Maximum Displacement	0.002979	0.001800	NO			
RMS Displacement	0.000389	0.001200	YES			
Predicted change in Energy = -2.034819D-08						

Values come from Link 1: HF = -2338.0058055 hartrees (-1467122.0230093 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.633959 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -2337.442357 hartrees (-1466768.45344107 kcal/mol)

Comments:

Center		Atomic	Coo	rdinates (Ar	igstroms)
Number		Number	Х	Y	Z
1	6	-6.028	443	-0.351319	-0.080054
2	6	-4.690	019	-0.723403	-0.157688
3	6	-4.288	515	-1.921822	-0.761050
4	6	-5.226	731	-2.788241	-1.313068
5	6	-6.565	766	-2.422412	-1.236920
6	6	-6.959	804	-1.222396	-0.629220
7	6	-2.425	956	-0.625474	0.121761
8	6	-3.429	889	1.213020	1.094257
9	6	-1.882	555	1.407563	1.092278

Coordinates (from last standard orientation):

10	6	-1.424117	2.527680	0.182443
11	6	-1.435982	3.826881	0.693744
12	6	-1.030764	2.307182	-1.138233
13	6	-1.080916	4.901352	-0.115480
14	6	-0.660789	3.384321	-1.943236
15	6	-0.695461	4.681438	-1.437213
16	6	-0.064188	-0.349901	0.432696
17	6	1.030634	0.497998	1.028591
18	6	2.096054	0.814298	-0.040044
19	6	1.637913	-0.251262	2.253611
20	6	3.436451	0.059632	0.187534
21	6	0.564762	-0.548277	3.302699
22	6	3.239903	-1.310369	0.779558
23	6	5.014138	-4.159729	-1.619768
24	6	2.881116	-2.059195	-2.420930
25	6	2.109434	-4.360309	-0.574532
26	6	2.404383	-1.485010	1.810480
27	6	2.422808	2.298080	-0.050745
28	6	3.769418	3.914312	-1.142624
29	6	2.788152	4.972579	-1.598358
30	6	2.214542	-2.806891	2.499354
31	1	-6.319913	0.580264	0.393770
32	1	-4.923165	-3.717345	-1.784164
33	1	-7.317853	-3.082011	-1.656557
34	1	-8.013222	-0.966725	-0.586014
35	1	-3.950065	2.034689	0.600918
36	1	-3.830181	1.055062	2.097785
37	1	-1.724684	3.994879	1.728677
38	1	-1.010108	1.302026	-1.553162
39	1	-1.096117	5.909059	0.288300
40	1	-0.353297	3.206353	-2.969441

41	1	-0.412114	5.519379	-2.066962
42	1	-1.522654	1.561009	2.110883
43	1	0.614498	1.437153	1.393606
44	1	2.335159	0.477454	2.699376
45	1	3.982795	-0.006162	-0.755071
46	1	4.057026	0.651383	0.876117
47	1	1.726294	0.546877	-1.034932
48	1	-0.154449	-1.287120	2.930642
49	1	1.030030	-0.970942	4.201197
50	1	5.832012	-3.481537	-1.886159
51	1	5.371861	-4.822824	-0.824431
52	1	4.791916	-4.779467	-2.495951
53	1	1.998490	-1.506515	-2.077925
54	1	3.642734	-1.340536	-2.742409
55	1	2.580315	-2.640742	-3.300945
56	1	2.421812	-5.077173	0.192118
57	1	1.257329	-3.787692	-0.191272
58	1	1.762966	-4.930953	-1.445163
59	1	4.599336	3.813112	-1.844034
60	1	4.166262	4.137976	-0.148802
61	1	3.311966	5.926733	-1.713130
62	1	2.351706	4.701040	-2.564440
63	1	1.987679	5.099019	-0.866510
64	1	0.405028	1.251836	4.033577
65	1	1.193137	-3.190472	2.382963
66	1	2.903446	-3.547444	2.088112
67	1	2.409402	-2.728755	3.575831
68	8	0.109793	-1.390329	-0.170740
69	8	4.017715	-2.310585	0.257228
70	8	2.130780	3.085246	0.820760
71	8	3.172643	2.600597	-1.114210

72	8	-0.196944	0.603787	3.630219
73	7	-3.584223	-0.024649	0.319241
74	7	-1.390714	0.079285	0.623290
75	16	-2.528362	-2.123607	-0.704677
76	14	3.498730	-3.212665	-1.079601

Exo cycloadduct (asymmetric reaction):

Charge = 1 Multiplicity = 1 mem = 57GB

Link 0: opt freq=noraman M062X/6-31g(d) scrf=(smd,solvent=dichloromethane) Job cpu time: 1 days 0 hours 46 minutes 21.8 seconds. File lengths (MBytes): RWF= 1059 Int= 0 D2E= 0 Chk= 39 Scr= 1 Normal termination of Gaussian 09 at Wed Oct 9 03:00:00 2013. Item Value Threshold Converged? Maximum Force 0.000003 0.000450 YES **RMS** Force 0.000001 0.000300 YES Maximum Displacement 0.000175 0.001800 YES **RMS** Displacement 0.000032 0.001200 YES Predicted change in Energy = -5.731885D-10 Optimization completed.

-- Stationary point found.

Link 1: N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/6-31G(d) Freq Job cpu time: 0 days 16 hours 35 minutes 4.4 seconds. File lengths (MBytes): RWF= 4176 Int= 0 D2E= 0 Chk= 52 Scr= 1 Normal termination of Gaussian 09 at Wed Oct 9 04:02:37 2013.

Item	Value	Threshold	Converged?		
Maximum Force	0.000003	0.000450	YES		
RMS Force	0.000001	0.000300	YES		
Maximum Displacement	0.000596	0.001800	YES		
RMS Displacement	0.000083	0.001200	YES		
Predicted change in Energy = -1.789859D-09					
Optimization completed.					
Stationary point found.					

Values come from Link 1:

HF = -2338.0127968 hartrees (-1467126.41011997 kcal/mol) Imaginary Frequencies: none found Zero-point correction = 0.634114 (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies =

-2337.450449 hartrees (-1466773.53125199 kcal/mol)

Comments:

Coordinates (from last standard orientation):

Center Number		Atomic Number	Coc X	ordinates (Ar Y	ngstroms) Z
1	6	-6.238	075	-1.215360	1.042573
2	6	-5.015	632	-1.324817	0.388431
3	6	-4.790	404	-2.282228	-0.608914
4	6	-5.797	449	-3.166676	-0.981947
5	6	-7.022	732	-3.060955	-0.332668

6	6	-7.239203	-2.099585	0.664001
7	6	-2.843683	-0.884921	-0.165348
8	6	-3.528990	0.507834	1.545246
9	6	-2.162247	1.010393	0.995328
10	6	-2.252006	2.319043	0.236097
11	6	-1.411895	3.377878	0.582246
12	6	-3.176112	2.479539	-0.802162
13	6	-1.493935	4.589211	-0.103988
14	6	-3.255724	3.688047	-1.485005
15	6	-2.415133	4.745683	-1.135380
16	6	-0.534721	-0.353330	-0.561286
17	6	1.725021	0.616745	-1.090935
18	6	0.626750	0.441953	-0.028392
19	6	1.142896	-0.252517	1.261410
20	6	2.447410	-0.683725	-1.418660
21	6	2.144201	-1.357231	0.998302
22	6	2.737707	-1.508535	-0.195002
23	6	1.713201	0.766400	2.253088
24	6	5.984638	-1.284501	-1.619940
25	6	5.941045	-4.112348	-0.380596
26	6	5.695739	-1.594137	1.405508
27	6	2.443222	-2.267229	2.160997
28	6	2.715808	1.674837	-0.617892
29	6	2.899473	3.857048	0.285274
30	6	3.463950	4.693780	-0.843814
31	1	-6.389535	-0.466638	1.812976
32	1	-5.634858	-3.912878	-1.752522
33	1	-7.825819	-3.736902	-0.606204
34	1	-8.206988	-2.043159	1.150864
35	1	-4.291008	1.288464	1.531790
36	1	-3.446490	0.074738	2.544217

37	1	-0.683262	3.241950	1.377820
38	1	-3.841899	1.664380	-1.081019
39	1	-0.836645	5.409257	0.169177
40	1	-3.976432	3.806551	-2.288058
41	1	-2.480087	5.688848	-1.669350
42	1	-1.425293	1.085848	1.798588
43	1	1.261210	1.027764	-1.996362
44	1	0.256970	1.431565	0.248372
45	1	0.276809	-0.699801	1.774408
46	1	3.389290	-0.453990	-1.924780
47	1	1.847173	-1.283206	-2.109389
48	1	2.003552	0.236586	3.168797
49	1	2.615958	1.242284	1.846123
50	1	7.081044	-1.287636	-1.580625
51	1	5.686955	-1.644018	-2.611282
52	1	5.650776	-0.246148	-1.514293
53	1	5.493086	-4.753413	0.386754
54	1	5.716088	-4.549621	-1.359543
55	1	7.028316	-4.135652	-0.244992
56	1	6.771920	-1.390950	1.466516
57	1	5.174960	-0.637902	1.532947
58	1	5.431035	-2.247878	2.242677
59	1	1.036201	2.328376	3.216256
60	1	3.102231	-1.793750	2.899014
61	1	1.517015	-2.535979	2.683995
62	1	2.926951	-3.187496	1.824882
63	1	3.692980	3.430493	0.904610
64	1	2.223637	4.437104	0.916757
65	1	2.657218	5.087681	-1.468631
66	1	4.026091	5.537039	-0.431595
67	1	4.137767	4.099311	-1.466224

68	8	-0.496980	-1.203335	-1.425101
69	8	3.619775	-2.532359	-0.422265
70	8	0.705090	1.724631	2.532231
71	8	2.083136	2.785922	-0.226467
72	8	3.918635	1.542970	-0.597645
73	7	-3.874246	-0.555150	0.592352
74	7	-1.767443	-0.114299	0.077601
75	16	-3.142385	-2.174217	-1.255814
76	14	5.296222	-2.364429	-0.253913

Figure S4. Dihedral angle scan of the O–C–N–C angle at 10-degree increments for 18 steps shows the lowest energy conformation where the sulfur atom is in close proximity to the oxygen atom. Selected distance is shown in Angstroms.

Reaction Coordinate

Figure S5. Reaction coordinate of the background reaction proceeding directly with ethyl fumaroyl chloride. Minima and transition state structures were optimized at the M06-2X/6-31G(d) level with an implicit solvent model (SMD(dichloromethane)). The TIPS group was truncated to a TMS group. Energies are Gibbs Free Energies in kcal/mol relative to the reactants. Selected distances are in Angstroms.

Reaction Coordinate

Figure S6. Reaction coordinates for the asymmetric Diels-Alder cycloaddition. Minima and transition state structures were optimized at the M06-2X/6-31G(d) level with an implicit solvent model (SMD(dichloromethane)). The TIPS group was truncated to a TMS group. Silyloxydiene and acylammonium cation energies were calculated for the reactants. Energies are Gibbs Free Energies in kcal/mol relative to the reactants. Selected distances are in Angstroms.

Reaction Coordinate

Figure S7. Reaction coordinates for the asymmetric Diels-Alder cycloaddition. Minima and transition state structures were optimized at the M06-2X/6-31G(d) level with an implicit solvent model (SMD(dichloromethane)). The TIPS group was truncated to a TMS group. Silyloxydiene, ethyl fumaroyl chloride and (*S*)-(–)-BTM energies were calculated for the reactants. Energies are Gibbs Free Energies in kcal/mol relative to the reactants. Selected distances are in Angstroms.

Intrinsic Reaction Coordinate: The following IRC was generated at the uM062X/6-31g(d) level with "guess=(mix,always)" keywords to assure that diradical processes were not missed and using the SMD(dichloromethane) continuum model. The IRC is for the *endo* Diels-Alder cycloadduct. This model has been truncated. The TIPS group was truncated to a TMS group, the ethyl ester moiety was removed from the acylammonium, and the alcohol tether was removed from the silyloxydiene. Note that there is a likely "hidden intermediate" in the area of the plateau.¹⁶

NBO Analysis: All NBO calculations were done at the M06-2X/6-31G(d) level with the following keywords in the route card: pop(nbo6read) scf(tight) int(finegrid) iop(3/32=2). The keywords "E2PERT=0.1" and "STERIC=0.1" were used to compute all favorable (lone pair_N \leftrightarrow S^{*}_{SC}) and unfavorable (lone pair_N \leftrightarrow lone pair_S) interactions that were 0.1 kcal/mol or higher in energy.

Figure S9. Natural bonding orbital (NBO) interactions generated at the M06-2X/6-31G(d) level. Favorable (lone pair_N $\leftrightarrow \sigma^*_{SC}$) and unfavorable (lone pair_N \leftrightarrow lone pair_S) interactions tracked along the reaction coordinate (reactant \rightarrow TS \rightarrow product).

Type of NBO Interaction	Conformer	Energy (kcal/mol)
Good		43.93
Bad	0 degrees	21.21
Net Good	2010	22.72
Good	100	44.17
Bad	dogroop	23.34
Net Good	degrees	20.83

Figure S10. Relevant NBO interactions in the acylammonium cation. "Good" donoracceptor interaction energies are shown in green, and "bad" filled-filled interaction energies are shown in red. The orbital interactions favor the 0-degree conformer (where the sulfur atom is in close proximity to the oxygen atom) by 1.89 kcal/mol.

Spin density maps: Spin density maps of the silyloxydiene **2c** and dienophiles (ethyl fumaroyl chloride **1a** and (*S*)-(–)-BTM catalyst-bound acylammonium cation) were generated using Spartan10. Optimizations were carried out using Spartan10, Truhlar M05-2X functional and 6-31+G(d) basis set.¹⁷ The silyloxydiene **2c** was optimized as a radical cation and the dienophiles as radical anions.

Figure S11. Spin density maps of the (a) background Diels-Alder cycloaddition and (b) asymmetric Diels-Alder cycloaddition leading to the preferred *endo* cycloadduct. The blue regions represent the reactive sites (highest spin density). The new bond occurs preferentially at these reactive sites. The above maps correctly predict the site of the first bond formations that occur in the Diels-Alder reaction.

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of ketoester S3 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of diene S4 in CDCl_3

 ^{1}H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2a in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2b in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of ketoester S7 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of diene S8 in CDCl_3

 ^{1}H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2c in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2d in C_6D_6

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of ketoester S11 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of diene S12 in CDCI_3

 ^{1}H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2e in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of ketoester S14 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol 2f in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of diketone S17 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of diene S18 in CDCI_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of silyloxydiene alcohol (±)-2g in CDCl_3

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ-lactones **3a** and **3a'** (1.5:1 mixture of *endo/exo* diastereomers) in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of bicyclic $\gamma\text{-lactone}$ (–)-3b in CDCl3

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ -lactone (–)-**3c** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of ester S19 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of bicyclic $\gamma\text{-lactone}$ (–)-3d in CDCl3

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ -lactone (–)-**3e** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of bicyclic $\gamma\text{-lactone}$ (–)-3f in CDCl3

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ -lactone (–)-**3g** in CDCl₃

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ -lactone (–)-**3h** in CDCl₃

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of bicyclic γ -lactone (+)-**3i** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of amide (–)-S20 in CDCl_3

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of bicyclic $\delta\text{-lactone}$ (+)-3j in CDCl_3

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of tricyclic γ -lactone (–)-**3k** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of tricyclic $\gamma\text{-lactone}$ (–)-**3k'** in CDCl₃

 1 H (500 MHz) and 13 C NMR (125 MHz) spectra of bicyclic amide (–)-**S21** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of bicyclic $\gamma\text{-lactone}$ (+)-3c' in CDCl₃

¹H (500 MHz) and ¹³C NMR (125 MHz) spectra of α , α -dimethyl ketone (–)-**4** in CDCl₃

 ^1H (500 MHz) and ^{13}C NMR (125 MHz) spectra of enone $\gamma\text{-lactone}$ (–)-5 in CDCl3

Figure S12. Chiral HPLC determination of enantiomeric excess of bicyclic γ -lactones 3a and 3a':

Chiral HPLC analysis of bicyclic γ -lactone 3a and 3a': Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 10.3 min, t_{minor} = 10.9 min; 99% ee; t_{minor} = 12.7 min, t_{major} = 19.4 min; 99% ee.

Table S1, entry 11:

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	10.367	BV	0.3620	2754.59033	117.28511	24.8423
2	10.987	VB	0.3772	2763.33936	112.26688	24.9212
3	12.746	BB	0.4276	2769.97803	99.87013	24.9811
4	19.434	BB	0.5993	2800.39136	72.71989	25.2554

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	10.378	MM	0.4019	3085.39746	127.96414	38.8161
2	19.469	BB	0.6070	4863.35352	124.70683	61.1839

Totals: 7948.75098 252.67097

Figure S13. Chiral HPLC determinations of enantiomeric excess of bicyclic lactones 3b-j:

Determination of enantiomeric excess of bicyclic γ-lactone (–)-3b:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3b: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 15.9 min, t_{minor} = 17.9 min; 94% ee.

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
						l
1	15.927	VB	0.4815	914.27545	29.18653	50.2026
2	17.960	BB	0.5175	906.89441	27.16312	49.7974

Totals :

1821.16986 56.34965

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.951	MM	0.5203	1032.26636	33.06614	97.0640
2	17.962	MM	0.5113	31.22353	1.01772	2.9360
Total	s:			1063.48989	34.08386	

Determination of enantiomeric excess of bicyclic γ -lactone (–)-3c:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3c: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 15.4 min, t_{major} = 18.1 min; 99% ee (using 20 mol% (*S*)-(–)-BTM), 98% ee (using 10 mol% (*S*)-(–)-BTM).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	15.343	MM	0.4858	4449.61182	152.66600	50.1120
2	18.235	BB	0.4896	4429.72021	138.32141	49.8880

Totals: 8879.33203 290.98741

Using 20 mol% (S)-(–)-BTM:

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	15.431	BB	0.3303	52.56739	2.53123	0.4602
2	18.188	BB	0.4743	1.13713e4	372.35049	99.5398
Total	ls :			1.14239e4	374.88173	

Using 10 mol% (S)-(–)-BTM:

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	15.369	BV	0.4333	99.30708	3.37506	1.0494
2	18.253	BB	0.4961	9363.54004	292.00168	98.9506

Totals: 9462.84712 295.37674

Determination of enantiomeric excess of bicyclic γ -lactone (–)-3d:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3d: Chiralcel AS-H column: hexanes:^{*i*}PrOH = 99:01, flow rate 1.0 mL/min, λ = 210 nm: t_{major} = 10.3 min, t_{minor} = 11.5 min; 99% ee.

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	10.353	BV	0.4441	1179.79602	42.73602	100.0000

Totals : 1179.79602 42.73602

Determination of enantiomeric excess of bicyclic γ -lactone (–)-3e:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3e: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 98:02, flow rate 0.4 mL/min, λ = 210 nm: t_{major} = 20.0 min, t_{minor} = 21.3 min; 99% ee.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	20.014	BB	0.6478	1.96563e4	441.19595	99.8988
2	21.339	MM	0.1555	19.91752	1.55744	0.1012
Total	s:			1.96762e4	442.75339	

Determination of enantiomeric excess of bicyclic γ -lactone (–)-3f:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3f: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 11.6 min, t_{minor} = 13.6 min; 98% ee.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	11.642	BB	0.3965	4945.87793	190.72485	99.0991
2	13.667	BB	0.2957	44.95997	1.87553	0.9009
Total	ls :			4990.83790	192.60038	

Determination of enantiomeric excess of bicyclic γ-lactone (+)-3f:

Chiral HPLC analysis of bicyclic γ -lactone (+)-3f: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 11.4 min, t_{major} = 13.5 min; 96% ee.

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.496	MM	0.3682	165.08434	7.47177	2.1938
2	13.564	MM	0.5582	7359.91846	219.76448	97.8062

Totals : 7525.00279 227.23625

Determination of enantiomeric excess of bicyclic γ -lactone (–)-3g:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3g: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 16.0 min, t_{major} = 17.0 min; 95% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.069	MM	0.6625	87.59249	2.20367	2.2516
2	17.056	BB	0.4934	3802.59204	119.45309	97.7484

Totals : 3890.18453 121.65676

Determination of enantiomeric excess of bicyclic γ-lactone (–)-3h:

Chiral HPLC analysis of bicyclic γ -lactone (–)-3h: Chiralcel AS-H column: hexanes:^{*i*}PrOH = 98:02, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 11.8 min, t_{minor} = 14.0 min; 91% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.807	BB	0.5004	9266.48242	290.29224	95.5840
2	14.014	BB	0.7472	428.11127	9.54867	4.4160

Totals :	9694.59369	299.84090
----------	------------	-----------

Determination of enantiomeric excess of bicyclic γ-lactone (+)-3i:

Chiral HPLC analysis of bicyclic γ -lactone (+)-3i: Chiralcel AD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 11.4 min, t_{minor} = 12.8 min; 99% ee (using 20 mol% (*S*)-(–)-BTM), 97% ee (using 5 mol% (*S*)-(–)-BTM).

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	11.336	BV	0.3475	4267.38916	186.10463	49.4355
2	12.724	VB	0.3557	4364.84277	187.40324	50.5645

Totals : 8632.23193 373.50787

Using 20 mol% (S)-(-)-BTM:

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.412	BB	0.3652	3537.73755	147.84750	100.0000

Totals : 3537.73755 147.84750

Using 5 mol% (S)-(–)-BTM:

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.412	BV	0.3628	733.42120	30.69212	98.4827
2	12.880	VB	0.3948	11.29927	3.44362e-1	1.5173

Totals: 744.72048 31.03648

Determination of enantiomeric excess of bicyclic δ -lactone (+)-3j:

Chiral HPLC analysis of bicyclic δ -lactone (+)-3j: Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 10.7 min, t_{major} = 12.5 min; 92% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-		-	· ·	
1	10.763	MM	0.5989	131.20264	3.65145	3.7611
2	12.557	BB	0.6211	3357.17163	83.48924	96.2389
Total	.s :			3488.37427	87.14069	

Figure S14. Chiral HPLC determinations of enantiomeric excess of lactones 3k, 3k' and 3c':

Determination of enantiomeric excess of tricyclic γ -lactone (–)-3k:

Chiral HPLC analysis of tricyclic y-lactone (-)-3k: Chiralcel AS-H column: hexanes: i PrOH = 97:03, flow rate 0.5 mL/min, λ = 210 nm: t_{major} = 21.1 min, t_{minor} = 28.6 min; 99% ee.

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 8 1 21.153 BB 0.9376 3851.73779 62.79996 100.0000 Totals : 3851.73779 62.79996

Determination of enantiomeric excess of tricyclic γ -lactone (–)-3k':

Chiral HPLC analysis of tricyclic γ -lactone (–)-3k': Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 17.4 min, t_{major} = 25.7 min; 99% ee.

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 90 ---|-----|-----|------|------|------48.86073 100.0000 1 25.765 BB 0.8166 2615.85327 Totals : 2615.85327 48.86073

Determination of enantiomeric excess of bicyclic γ-lactone (+)-3c':

Chiral HPLC analysis of bicyclic γ -lactone (+)-3c': Chiralcel OD-H column: hexanes:^{*i*}PrOH = 95:05, flow rate 0.5 mL/min, λ = 210 nm: t_{minor} = 22.1 min, t_{major} = 26.1 min; 99% ee.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	22.182	MM	0.8519	85.42705	1.67124	0.7437
2	26.122	BB	0.7879	1.14013e4	223.98254	99.2563
Total	.s :			1.14867e4	225.65378	
References:

- 1. Seebach, D., Imwinkelried, R. & Stucky, G. Optically-active alcohols from 1,3dioxan-4-ones – a practical version of enantioselective synthesis with nucleophilicsubstitution at acetal centers. *Helv. Chim. Acta.* **70**, 448-464 (1987).
- 2. Birman, V. B. & Li, X. M. Homobenzotetramisole: An effective catalyst for kinetic resolution of aryl-cycloalkanols. *Org. Lett.* **10**, 1115-1118 (2008).
- 3. Calter, M. A. Catalytic, asymmetric dimerization of methylketene. *J. Org. Chem.* **61**, 8006-8007 (1996).
- 4. Pracejus, H. & Matje, H. Zusammenhänge zwischen dem räumlichen Bau einiger alkaloidartiger Katalysatoren und ihren stereospezifischen Wirkungen bei asymmetrischen Estersynthesen. *J. Prakt. Chem.* **24**, 195-205 (1964).
- 5. Runcie, K. A. & Taylor, R. J. K. The in situ oxidation-Wittig reaction of αhydroxyketones. *Chem. Commun.* 974-975 (2002).
- 6. Ng, S. S. & Jamison, T. F. Simple alkenes as substitutes for organometallic reagents: Nickel-catalyzed, intermolecular coupling of aldehydes, silyl triflates, and alpha olefins. *J. Am. Chem. Soc.* **127**, 14194-14195 (2005).
- 7. Yu, J. Q. & Corey, E. J. A mild, catalytic, and highly selective method for the oxidation of α , β -enones to 1,4-enediones. *J. Am. Chem. Soc.* **125**, 3232-3233 (2003).
- Gaussian 09, Revision **B.01**, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- Gaussian 09, Revision **D.01**, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M.,

Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.

- Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert, A. T., Slipchenko, L. V., Levchenko, S. V., O'Neill, D. P., DiStasio, R. A., Jr., Lochan, R. C., Wang, T., Beran, G. J., Besley, N. A., Herbert, J. M., Lin, C. Y., Van Voorhis, T., Chien, S. H., Sodt, A., Steele, R. P., Rassolov, V. A., Maslen, P. E., Korambath, P. P., Adamson, R. D., Austin, B., Baker, J., Byrd, E. F., Dachsel, H., Doerksen, R. J., Dreuw, A., Dunietz, B. D., Dutoi, A. D., Furlani, T. R., Gwaltney, S. R., Heyden, A., Hirata, S., Hsu, C. P., Kedziora, G., Khalliulin, R. Z., Klunzinger, P., Lee, A. M., Lee, M. S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E. I., Pieniazek, P. A., Rhee, Y. M., Ritchie, J., Rosta, E., Sherrill, C. D., Simmonett, A. C., Subotnik, J. E., Woodcock, H. L., 3rd, Zhang, W., Bell, A. T., Chakraborty, A. K., Chipman, D. M., Keil, F. J., Warshel, A., Hehre, W. J., Schaefer, H. F., 3rd, Kong, J., Krylov, A. I., Gill, P. M. & Head-Gordon, M. Advances in methods and algorithms in a modern quantum chemistry program package. *Phys. Chem. Chem. Phys.* 8, 3172-3191 (2006).
- 11. Zhao, Y. & Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215-241 (2008).
- 12. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. *Acc. Chem. Res.* **41**, 157-167 (2008).
- Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378-6396 (2009).
- NBO 6.0. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Landis, C. R. & Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013 (http://nbo6.chem.wisc.edu)
- 15. CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

- 16. Kraka, E. & Cremer, D. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: Hidden intermediates and hidden transition states. *Acc. Chem. Res.* **43**, 591-601 (2010).
- 17. Cahill, K. J. & Johnson, R. P. Beyond frontier molecular orbital theory: A systematic electron transfer model (ETM) for polar bimolecular organic reactions. *J. Org. Chem.* **78**, 1864-1873 (2012).