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Empirical Bayes Methods Enable Advanced Population-Level Analyses of
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ABSTRACT Many single-molecule experiments aim to characterize biomolecular processes in terms of kinetic models that
specify the rates of transition between conformational states of the biomolecule. Estimation of these rates often requires analysis
of a population of molecules, in which the conformational trajectory of each molecule is represented by a noisy, time-dependent
signal trajectory. Although hidden Markov models (HMMs) may be used to infer the conformational trajectories of individual mol-
ecules, estimating a consensus kinetic model from the population of inferred conformational trajectories remains a statistically
difficult task, as inferred parameters vary widely within a population. Here, we demonstrate how a recently developed empirical
Bayesian method for HMMs can be extended to enable a more automated and statistically principled approach to two widely
occurring tasks in the analysis of single-molecule fluorescence resonance energy transfer (smFRET) experiments: 1), the char-
acterization of changes in rates across a series of experiments performed under variable conditions; and 2), the detection of
degenerate states that exhibit the same FRET efficiency but differ in their rates of transition. We apply this newly developed
methodology to two studies of the bacterial ribosome, each exemplary of one of these two analysis tasks. We conclude with
a discussion of model-selection techniques for determination of the appropriate number of conformational states. The code
used to perform this analysis and a basic graphical user interface front end are available as open source software.
INTRODUCTION
Owing to a host of technological innovations over the past
two decades, single-molecule techniques are now reaching
a level of maturity that makes it possible to perform detailed
mechanistic investigations of some of the cell’s most funda-
mental and complex biomolecular processes (1–5). A large
class of such single-molecule experiments seeks to establish
a kinetic model, defined in terms of a set of structural con-
formations of the molecule (hereafter referred to as states)
and the rates of transition between these states. This kinetic
model must be inferred from a set of experimental signal-
versus-time trajectories that report on conformational
transitions in tens, hundreds, or even thousands of signal tra-
jectories. Unfortunately, however, the analysis of large pop-
ulations of trajectories presents several challenges that
currently impair our ability to accurately infer such kinetic
models. Specifically, it remains difficult or impossible
to 1), accurately determine the number of states that are pre-
sent in each noisy signal trajectory; 2), rigorously infer a
single kinetic model that is consistent with the entire popu-
lation of signal trajectories; 3), directly compare kinetic
models for populations of trajectories recorded under
different experimental conditions; and 4), confidently detect
degenerate states that exhibit the same signal output but that
differ in their transition rates. Overcoming these challenges,
therefore, promises to increase the ease, confidence, and
accuracy with which kinetic models can be inferred from
this class of single-molecule experiments.
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The analysis of individual, noisy signal trajectories has
been greatly facilitated by the use of hidden Markov models
(HMMs) (6–8). In the biophysical community, these
methods were introduced within the context of patch-clamp
experiments on ion channels (9–11), and have since been
applied within a variety of single-molecule experimental
platforms, including optical trapping (12), magnetic twee-
zers (13), and single-molecule fluorescence resonance en-
ergy transfer (smFRET) experiments (14–19). In HMM
approaches, a statistical model defines an expected distribu-
tion of measurement values in terms of a set of parameters,
such as the centers and widths of Gaussian peaks represent-
ing the signal values associated with each conformational
state, and the transition probabilities between states.
Given this model, maximum likelihood (ML) techniques
(14,18,20,21), such as those employed in the smFRET
data analysis software packages HaMMy (14) and SMART
(18), can determine the most likely set of parameters and
conformational trajectory for each measured signal trajec-
tory. A well-known deficiency of ML methods, however,
is that the likelihood can always be improved by adding
more states to the kinetic model, making it difficult to
distinguish real conformational states from states that
arise from overfitting the inherently noisy individual sig-
nal trajectories. Variational Bayesian (VB) techniques
(15,16,19,22), such as those employed in the smFRET
data analysis software package vbFRET (15,16), improve
upon ML methods by introducing a prior distribution, which
specifies the expected range of parameter values, allowing
maximization of the evidence, a likelihood that is averaged
over this prior distribution. Unlike the likelihood, the
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evidence is more likely to peak when the signal trajectory is
modeled with the optimal number of states. Thus, VB
methods can be used to perform model selection, that is,
to determine the number of states that yields the best
average agreement between the data and the model (see
Methods for further background).

Although maximization of the evidence has proven an
effective model-selection strategy, it does not completely
eliminate overfitting, and particularly underfitting, of the
signal trajectories. For example, single-molecule FRET effi-
ciency (EFRET) trajectories that are particularly noisy (i.e.,
with a standard deviation in the EFRET value of � 0:15)
and/or include transitions that are fast relative to the rate
of data acquisition (i.e., more than one transition every
five time points) are particularly prone to underfitting
(15). Moreover, existing ML and VB techniques have an
important shortcoming that has significant theoretical and
practical implications: they can only be used to model indi-
vidual signal trajectories, or multiple signal trajectories (17)
only if they are modeled with exactly the same parameters.
For example, it is a common occurrence that the same state
gives rise to a signal centered at EFRET ¼ 0:30 in one trajec-
tory and EFRET ¼ 0:35 in another, due to variations in the the
photophysical properties of the fluorophores, slight struc-
tural differences in the molecule, and offsetting errors in
the measured fluorescence intensity. Although it might be
trivial for an experimentalist to recognize that the
EFRET ¼ 0:30 and EFRET ¼ 0:35 measurements are different
manifestations of the same state, the ML and VB techniques
described above cannot model this situation. From a theoret-
ical perspective, it is unsatisfying that the existing algo-
rithms cannot account for such a fundamental component
of all real experiments that is obvious to the human eye.
From a practical perspective, this shortcoming means that
rather than simultaneously modeling a large population of
signal trajectories to naturally infer a single kinetic model
that is most consistent with the entire population, the exper-
imentalist must instead individually model each trajectory
and subsequently perform a significant amount of postpro-
cessing to infer and validate the single, consensus kinetic
model.

Recently, we have developed an empirical Bayesian (EB)
technique (23,24) that improves upon VB methods by infer-
ring the features of the prior distribution, which in VB
methods must be specified by the experimentalist. In EB
estimation, the variation in parameter values predicted by
the prior distribution is matched to the variation in inferred
parameter values over the population of trajectories,
enabling a single, consensus kinetic model to be learned
from the simultaneous analysis of a large population of
signal trajectories (see the Methods section for a more
detailed introduction). We have benchmarked this EB tech-
nique using computer-simulated data, demonstrating that,
relative to both ML and VB methods, it exhibits a greater
resistance to both over- and underfitting of signal trajec-
Biophysical Journal 106(6) 1327–1337
tories, and we have provided a basic example showing
that this EB technique can be used to analyze experimental
EFRET trajectories (25).

In this article, we use experimental smFRET data report-
ing on the mechanism of protein synthesis by the bacterial
ribosome to demonstrate how our previously developed
EB method (25) can be extended to perform two very
frequently encountered smFRET data analysis tasks: 1),
the comparison of the number of states, their occupancy,
and associated transition rates, across experiments recorded
for the same biomolecular system but under different exper-
imental conditions (e.g., in the absence, presence, and/or
varying concentrations of a particular buffer or biomole-
cular component), and 2), the detection of states that exhibit
the same EFRET value but have different transition rates.
Currently, most experimentalists treat these problems by
performing inference on the individual trajectories, deciding
via a separate assessment (e.g., via a transition density plot
(14) or similar (26) metric) how many states they believe are
in the data and then binning the inference results in an ad
hoc postprocessing step. This process is time-consuming,
may be prone to user bias, and lacks metrics for assessing
the accuracy of the outcomes. The two extensions of EB
estimation presented here, in contrast, allow users to quickly
perform analysis in a more automated, statistically rigorous,
and reproducible manner, greatly reducing the potential for
user bias.

Collectively, the results of these analyses highlight the
considerable advantages of EB methods over ML and VB
methods and demonstrate how the simultaneous analysis
of large populations of signal trajectories using EB methods
uniquely enables us to 1), automate identification of a com-
mon set of states across various experimental conditions; 2),
detect small, but statistically significant, differences in a sin-
gle state across different experimental conditions; 3), char-
acterize the dependence of the thermodynamic and kinetic
properties of states on experimental conditions; and 4),
identify kinetically distinct subpopulations within a single
experiment.
METHODS

Bayesian inference in coupled HMMs

Bayesian inference seeks to determine the probability of a set of unknown

variables in light of a set of observed data. In the context of single-molecule

studies, these unknown variables are a set of model parameters q and a state

sequence zt, whereas the observations are a signal trajectory, xt. A graphical

model defines a statistical relationship between these variables that can

commonly be factored into two terms

pðx; z; qjj0Þ ¼ pðxjz; qÞ pðz; qjj0Þ: (1)

The two distributions pðxjz; qÞ and pðz; qjj0Þ, known as the likelihood and

prior distribution, respectively, describe our assumptions about the model.
The likelihood describes the measurement signal we expect to see given

the state trajectory, zt, of the molecule and a set of emission model
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parameters that describe the distribution of measurement values associated

with each state. The prior distribution encodes our expectations about the

transition probabilities and emission model parameters. Based on these as-

sumptions, the goal of Bayesian inference is now to reason about the so-

called posterior probability of the state trajectory (zt) and model parameters

(q) in light of a set of measurements (xt). Bayes’ rule states that this poste-

rior probability pðz; qjx;jÞ can be expressed as

pðz; qjx;j0Þ ¼ pðxjz; qÞ pðz; qjj0Þ
pðxjj0Þ

: (2)

The prior distribution for an HMM can be written as pðz; qjj0Þ ¼
pðzjqÞ pðqjj Þ, where the probability pðzjqÞ depends on two model parame-
0

ters. The first is a transition matrix, Akl, that specifies the probability of

entering state l from state k at any given time. The second is a set of proba-

bilities pk that specify the likelihood of starting in state k. The form of the

likelihood pðxjz; qÞ depends on the type of experimental technique consid-

ered. In the case of smFRET experiments, a common approach (14–

16,18,25) is to model the signal for each state k as a Gaussian peak with

center mk and width sk , or precision lk ¼ 1=s2k . The parameters that describe

any given trajectory are therefore q ¼ fm; l;A;pg. The prior distribution

pðqjj0Þ on the parameters can itself be defined in terms of a set of hyperpara-

meters j0 ¼ fm0;b0; a0; b0;a0; r0g (see the Supporting Material).

The structure of the probabilistic relationships that define an HMM can

be represented as a network, or more precisely as a directed acyclic graph

(22,27). In this network, the nodes are individual variables and edges

signify dependencies. Such a graphical model for a coupled HMM on N tra-

jectories with K states is shown in Fig. 1. The dependency structure between

variables in this model reflects three fundamental assumptions about the

data: 1), at each time, there is a fixed probability of entering into a given

state, which depends only on the current state, and has no memory of earlier

parts of the state trajectory; 2), observations associated with a given state

are independent and identically distributed; and 3), the parameters qn of

each trajectory are coupled through a shared prior, pðqnjj0Þ, whose distri-
bution reflects the variability of parameter values in an experiment.

The main difficulty in Bayesian inference is that the posterior

pðz; qjx;j0Þ can typically not be calculated directly. This is because the

normalizing term pðxjj0Þ in Eq. 2, known as the evidence, involves an
intractable integral. In the EB approach used here, we approximate the

evidence pðxjjÞwith the same techniques as those employed in VB estima-

tion: we use a pair of distributions qðzÞ and qðqjjÞ to approximate the

posterior with a factorized form:

pðz; qjx;j0ÞxqðzÞ qðqjjÞ: (3)

Whereas ML methods obtain a point estimate for the optimal parameters q,

this approach yields a distribution qðqjjÞ defined in terms of a set of pos-
terior parameters j. The relationship between j and j0 reflects an impor-

tant principle of Bayesian statistics. The posterior parameters have the same

form as the prior parameters, but define a more tightly peaked distribution

that reflects our increased knowledge in light of the measurements. More

precisely put, j can be calculated from a set of sufficient statistics, T
(see section S2 in the Supporting Material). For an HMM, these statistics

are given by

gtk ¼ EqðzÞ½ztk�; xkl ¼
X
t

EqðzÞ
�
zðtþ1Þlztk

�
; (4)

Gk ¼
X

gtk; Xk ¼
X

gtkxt; Uk ¼
X

gtkx
2
t : (5)
t t t

The statistics T ¼ fg; x;G;X;Ug summarize the information contained in

each trajectory in terms of the amount of time spent in each state, G , the
k

number of transitions between states, xkl, the mean Xk=Gk measurement

value for each state, and its variance, Uk=Gk � ðXk=GkÞ2.
The posterior parameters can be calculated directly from the sufficient

statistics and the prior parameters (for details, see section S3.3 of the

Supporting Material). For example, the posterior for the transition probabil-

ities qðAjaÞ,

akl ¼ xkl þ a0;kl; (6)

is simply the sum of the number of transitions x that we believe we have

seen in the trajectory, and the equivalent number of transitions of the
prior a0.
FIGURE 1 Graphical model for the coupled

Bayesian HMM used in EB and VB methods.

(A) smFRET signals and sequence of latent

states for two trajectories in an experiment.

(B) Graphical model showing an HMM for N

trajectories with K states. The parameters

qn ¼ fmn;k ; ln;k ;An;kl;pn;kg of each trajectory are

distributed according to pðqjjÞ with hyperpara-

meters j ¼ fmk ;bk ; ak; bk ;akl; rkg. ML methods

use a non-Bayesian variant of this HMM, which

omits the hyperparameters, j. To see this figure

in color, go online.
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In general, placing a prior on the parameters is equivalent to assuming

that one has already seen a number of data points with statistics T 0 before

seeing the measurements, xt. The number of equivalent observations asso-

ciated with T 0 determine how quickly the posterior will change in light of

new observations.

EB estimation (23–25) extends VB estimation to perform simultaneous

inference on populations of trajectories. To do so, we learn N approximate

posterior distributions qðqnjjnÞ for each trajectory xn. The prior, pðqjj0Þ, is
subsequently chosen by way of a self-consistency requirement; the range of

qn values predicted by the posterior distributions should match that of the

prior. This is equivalent to choosing a set of prior parameters whose distri-

bution is as close as possible to the average posterior (see section S4 of the

Supporting Material).

In a mathematical sense, this estimation procedure approximates the log

evidence log pðxjj0Þ with a lower bound L,

L ¼
X
n

EqðznÞqðqnjjnÞ

�
log

pðxn; zn; qnjj0Þ
qðznÞqðqnjjnÞ

�
; (7)

by iteratively finding solutions to the equations
dL

dqðznÞ
¼ 0;

dL

dqðqnjjnÞ
¼ 0;

vL

vj0

¼ 0: (8)

A full derivation of each of these update steps in this algorithm can be found

in sections S3 and S4 of the Supporting Material for this article.
In summary, the EB approach to kinetic analysis uses HMMs to calculate

two sets of quantities. For each trajectory, we obtain a set of trajectory

statistics, T n, which report on the occupancy, transitions and measurement

values associated with each state. The second quantity is a set of prior

parameters, j0 ¼ jðT 0Þ, which represent the characteristics that all signal

trajectories have in common. Finally, a set of posterior parameters,

jn ¼ jðT n þ T 0Þ, encodes what we know about the parameters of individ-

ual trajectories in light of the measured signal. Note that the prior parame-

ters j0 can be equivalently defined in terms of a set of prior statistics, T 0,

whereas the posterior statistics are simply the sum of the prior statistics and

the trajectory statistics.

We reiterate that EB estimation differs from VB estimation only in the

fact that the hyperparameters j0 are not chosen by the user and held

fixed, but are set to the values that maximize the evidence as part of

the inference procedure. This allows for more accurate inference, as

knowledge of typical parameter values results in better estimates of T n.

Moreover, since the learned EB prior is typically less broadly peaked

than the postulated prior in VB methods, the effective number of ob-

servations for each posterior is larger, resulting in tighter confidence

bounds on parameter estimates for individual trajectories (25). Indeed,

past analysis of simulated data, for which the true state sequence is known,

has shown that EB inference systematically outperforms VB and ML

methods, in terms of both parameter estimation and model-selection

tasks (25).
Analysis of labeled and unlabeled
subpopulations of signal trajectories

In this section, we extend the EB method to perform commonly occurring

advanced analysis tasks, which we illustrate in the next sections using two

experimental smFRET studies that each investigate aspects of translation,

the mechanism by which the bacterial ribosome synthesizes the protein

that is encoded by a messenger RNA (mRNA) template (see Tinoco and

Gonzalez (1) for a review). The goal of analysis in the first example is to

coherently detect the set of states that can be sampled across experiments

performed in the presence and absence of other biomolecular components,

and subsequently separately estimate the transition rates for each experi-

ment. In the second example, our goal is to extend the EB method to detect
Biophysical Journal 106(6) 1327–1337
subpopulations of trajectories that sample the same two states, but to do so

using different transition rates.

The common denominator in both these analysis tasks is that we seek to

use measurements of large populations of trajectories to identify a common

set of states and determine how transition rates differ for subpopulations of

molecules within this aggregate data. In the case of the first set of experi-

ments, we have labeled subpopulations consisting of sets of signal trajec-

tories recorded under identical experimental conditions, and we simply

wish to obtain per-experiment estimates of the transition rates based on a

shared definition of states. In the case of the second study, each experiment

contains two unlabeled subpopulations and the set of signal trajectories

associated with each subpopulation must be inferred from the data.

To allow more straightforward analysis of labeled and unlabeled subpop-

ulations, we will extend the EB estimation procedure in the following

manner. Rather than estimate a single set of prior parameters, j0, from

the trajectory statistics, T n, we split our population in into M fractions

with prior parameters j0m. We introduce a new variable, ynm, for the pop-
ulation membership of each signal trajectory. This variable is simply a

binary indicator that is 1 if trajectory n is part of population m. For labeled

populations, the values for y are known, and we can estimate distributions

for individual populations from the restricted set of posterior distributions

pðqjj0mÞx
X
n

ynmqðqjjnÞ=
X
n

ynm: (9)

In the case of unlabeled subpopulations, y must be inferred from the data.

To do so, we generalize the EB approach to a mixture of distributions,
pðxnjj0mÞ, where we assume a discrete prior, pðyjfÞ, on the subpopulation

membership. The evidence can now be expressed as a marginal over all

possible y values,

pðxjj0Þ ¼
X
y

pðxjy;j0ÞpðyjfÞ; (10)

¼
X X Y

pðxjj0mÞ
ynmfynm

m : (11)

n yn m

An expectation maximization algorithm over this mixture can be con-

structed by introducing a variational posterior qðyÞ and maximizing the
lower bound,

L ¼ EqðzjyÞqðqjyÞqðyÞ½log pðx; y; z; qjj0Þ�: (12)

We can subsequently estimate the statistic unm ¼ EqðyÞ½ynm� from the lower

bounds, LnmRlog pðxnjj Þ
0m

unm ¼ expðLnmÞfmP
m0expðLnm0 Þf0

m

: (13)

In the resulting EB procedure, the expectation values with respect to the

approximate posteriors are now weighted by the population weights (see
section S4.5 of the Supporting Material)

pðqjj0mÞx
X
n

unmqðqjjnmÞ=
X
n

unm: (14)

Software implementation

All analysis algorithms are implemented in MATLAB, with essential inner

components (i.e., the forward-backward and viterbi algorithms) written in C

as MEX files. Our implementation uses multiple processors when available.

We performed a simple benchmark in Matlab 2013a on a Macbook equip-

ped with a four-core 2.3GHz Core i7 processor, using a computer-simulated

data set with N ¼ 350 trajectories of average length T ¼ 112. Analysis with

two to six states required 240 s using eight nodes and 600 s using a single



Population Analysis of smFRET Experiments 1331
node. In comparison, our previously released vbFRET software (15)

required 1500 s to analyze the same data set on the same machine.

A line-by-line derivation of the implemented EB estimation algorithm

and its extensions can be found in the Supporting Material. A command-

line version of the source code used in this publication, along with a

GUI frontend for basic EB estimation tasks, is available at http://ebfret.

github.io. This software supports a new single-molecule data format that

has been designed in collaboration with the Herschlag group at Stanford

to enable exchange of data and analysis results between research

groups (M. Greenfeld, J.-W. van de Meent, D. S. Pavlichin, H. Mabuchi,

C. H. Wiggins, R. L. Gonzalez Jr., and D. Herschlag, unpublished).
RESULTS

Labeled subpopulations: The role of IF3
conformational dynamics in regulating
translation initiation

We begin by showing how the extended EB estimation pro-
cedure described by Eq. 9 can be used to characterize the
dependence of conformational state occupancies, emission
model parameters, and transition probabilities on experi-
mental conditions. We do so by analyzing a set of previously
published smFRET (29) experiments that investigate the
role of initiation factor (IF) 3 in regulating the fidelity
with which the bacterial ribosome initiates translation at
the triplet-nucleotide start codon of the mRNA to be
translated.

During bacterial translation initiation, the small, or 30S,
ribosomal subunit, IF1, IF2, IF3, a specialized formylme-
thionyl initiator transfer RNA (fMet-tRNAfMet), and the
mRNA to be translated form a 30S initiation complex
(30S IC) in which the triplet-nucleotide anticodon of
fMet-tRNAfMet is basepaired to the mRNA start codon
within the peptdiyl-tRNA binding (P) site of the 30S subunit
(30). Subsequent joining of the large, or 50S, ribosomal sub-
unit to the 30S IC results in the formation of a translation-
elongation-competent 70S initiation complex (70S IC).
Because errors in fMet-tRNAfMet or start-codon selection
can result in mistranslation of the mRNA sequence, regu-
lating the fidelity of initiation is crucial to protein synthesis
and cellular fitness. Thus, the major role of IF1, IF2, and IF3
during translation initiation is to control the fidelity of this
process by, among other mechanisms, coupling the 50S-
subunit-joining step of the initiation process to the correct
selection of fMet-tRNAfMet and the start codon; the role of
IF3 in this mechanism is to prevent 50S subunit joining until
fMet-tRNAfMet and the start codon have been correctly
selected into the P site.

Here, we present analysis of smFRET experiments inves-
tigating the role that IF3 conformational dynamics plays in
coupling correct fMet-tRNAfMet and start codon selection to
50S subunit joining (29). IF3 is composed of two globular
domains connected by a flexible linker. When these domains
are labeled with FRET donor and acceptor fluorophores, the
value of EFRET ¼ IA=ðID þ IAÞ, where IA and ID are the
emission intensities of the acceptor and donor fluorophores,
respectively, provides a noisy measure of the intramolecular
distance between the two domains. Histograms of the
observed EFRET values (Fig. 2 A) show two dominant peaks,
corresponding to a low-FRET extended conformational
state, and a high-FRET compact conformational state of
30S IC-bound IF3, whose relative occupancies depend on
the presence of the other IFs and fMet-tRNAfMet on the
FIGURE 2 smFRET study of IF3 conforma-

tional dynamics on the 30S initiation complex of

the bacterial ribosome. (A) Schematic illustrations

of experimental contsructs 30S IC�tRNA
�1;�2 , 30S

IC�tRNA
�2 , 30S IC�tRNA

�1 , 30S IC�tRNA, and 30S

ICfMet. (B) Per-state observation histograms. (C)

Lifetime distributions. (D) Free-energy distribu-

tions. States 1–3 are represented by blue, green,

and red lines, respectively. To see this figure in

color, go online.
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TABLE 1 Relative occupancies of IF3 states obtained from VB

and EB- analysis of labeled subpopulations

Construct

VB þ binning EB

ext. int. cpt. ext. int. cpt.

30S IC�tRNA
�1;�2 0.54 0.40 0.06 0.63 0.30 0.07

30S IC�tRNA
�2 0.52 0.45 0.03 0.47 0.43 0.10

30S IC�tRNA
�1 0.23 0.11 0.66 0.14 0.15 0.72

30S IC�tRNA 0.56 0.42 0.02 0.60 0.34 0.06

30S ICfMet 0.15 0.17 0.68 0.15 0.21 0.64

Relative occupancies of the extended (ext.), intermediate (int.), and

compact (cpt.) conformations of IF3, obtained from binned analysis with

vbFRET (29) and EB-based analysis of labeled subpopulations.
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IC. In addition to these two states, there appear to be one or
more intermediate conformational states, which tend to be
shorter-lived and have EFRET values that are less well-
defined.

Previous analysis was performed with the vbFRET soft-
ware (15) that obtains VB estimates for each individual
EFRET trajectory. In this particular set of experiments,
most trajectories are static (i.e., no conformational transi-
tions are observed before the fluorophores photobleach).
This makes it more difficult to distinguish between interme-
diate and extended or compact states, since within individ-
ual trajectories, there are few transitions that reveal the
location of a state relative to others. For this reason, the re-
sulting EFRET means of states in each trajectory were
assigned to three empirically chosen bins with intervals
(0,0.3), (0.3,0.7), and (0.7,1.0), where all potential interme-
diate states were grouped into the middle interval. The
compact state was found to be highly populated in a
correctly assembled 30S IC, whereas the extended state is
highly populated in incorrectly assembled or incomplete
30S ICs, which either lack IFs, lack fMet-tRNAfMet, contain
an incorrect elongator aminoacyl-tRNA, or contain an incor-
rect near-start codon (29).

In our analysis, we first performed EB inference on the
aggregate data from five experiments that were recorded
under different conditions: 30S IC�tRNA

�1;�2 (lacking IF1, IF2,
and tRNA), 30S IC�tRNA

�2 (lacking IF2 and tRNA), 30S
IC�tRNA

�1 (lacking IF1 and tRNA), 30S IC�tRNA (lacking
tRNA), and 30S ICfMet (a correctly assembled 30S IC).
This aggregate dataset contained 4233 trajectories with
4:0,105 total data points. Three states were used to facilitate
comparison with the previous results based on VB analysis.
After inference, separate parameter distributions were esti-
mated from the sufficient statistics of each individual exper-
iment, as described in Eq. 9. The results of this analysis,
which does not require that the user manually assign the
EFRET means of states in each trajectory to empirically cho-
sen bins, are in excellent agreement with previous results
based on explicitly defined bin intervals. Fig. 2 shows obser-
vation histograms for each state, as well as distributions of
the lifetime and free energy of each state relative to the other
states (see section S5 of the Supporting Material for the def-
initions of these quantities). The width of each distribution
provides us with a confidence interval on each of the param-
eters. The fractional occupancies obtained for each experi-
ment (Table 1) similarly show a close correspondence to
the values obtained with the VB-based results.
FIGURE 3 smFRET experiments (31) measuring the influence of EF-G

on the GS1-GS2 equilibrium in the bacterial ribosome. (A) The kinetic

pathway for translocation is believed to have three steps: a reversible

rotation of the two subunits (purple and orange), followed by the binding

of EF-G (green), which stabilizes the rotated GS2 state long enough for a

GTP-driven transition to the posttranslocation (POST) complex, blocked

here by substitution of GTP by a nonhydrolyzable analog. (B) smFRET sig-

nals reporting on the GS1-GS2 transition show a shift of the equilibrium

from the GS1 state (magenta line) toward the GS2 state (cyan line) in the

presence of EF-G. To see this figure in color, go online.
Unlabeled subpopulations: the influence of EF-G
binding on the GS1-GS2 equilibrium

We now demonstrate that the extended EB estimation proce-
dure described by Eq. 14 can be used to identify kinetically
distinct subpopulations of states and estimate the transition
rates for each subpopulation of states. As an example of this
Biophysical Journal 106(6) 1327–1337
use case, we perform analysis of a set of smFRET experi-
ments investigating the role of elongation factor (EF) G, a
member of the GTPase family of translation factors, during
translation elongation.

After the addition of each amino acid to the nascent
polypeptide chain during translation elongation, EF-G
binds to the ribosomal pretranlsocaiton (PRE) complex
and hydrolyzes one molecule of GTP as it promotes the
movement of the ribosome along the mRNA by precisely
one triplet-nucleotide codon, a process termed translocation
(Fig. 3 A). The overall process of translocation can be
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broken up into three smaller multistep processes. The first of
these is a thermally driven, reversible transition between
two global states (denoted as GS1 and GS2) of the PRE
complex. The overall process of translocation can be broken
up into three smaller multistep processes. This conforma-
tional transition is followed by binding of EF-G to the
PRE complex, resulting in a transient stabilization of the
GS2 state of the PRE complex that is long enough to enable
the third step, a GTP hydrolysis-driven movement of the
ribosome along the mRNA. The effect that binding of
EF-G has on the dynamic equilibrium between the GS1
and GS2 states of the PRE complex can be studied using
smFRET by labeling two ribosomal structural elements
with a FRET donor-acceptor pair and substituting GTP
with a nonhydrolyzable analog (GDPNP) that prevents
GTP hydrolysis and the associated movement of the ribo-
some along its mRNA template.

Fig. 3 B shows two EFRET trajectories that exhibit ther-
mally driven, reversible transitions between GS1 and GS2.
The first trajectory is from an experiment that was recorded
in the absence of EF-G and shows a preference for the GS1
FIGURE 4 Analysis of GS1-GS2 equilibrium as a function of EF-G concentra

and GS2 (cyan line) states. (B) EB prior (dashed line) and mean posterior (solid l

in the posterior is visible in experiments where EF-G is present. (C) Prior an

occupancy of the bound fraction (orange line) relative to the nonbound fraction

go online.
state. The second trajectory, from an experiment that was re-
corded in the presence of 500 nM EF-G and 1 mM GDPNP,
shows a dramatic shift of the equilibrium toward the GS2
state. Qualitative comparison of these two trajectories sug-
gests that EF-G destabilizes the GS1 state and stabilizes
the GS2 state in the subpopulation of EF-G-bound PRE
complexes. To quantify this difference in transition rates
and characterize its dependence on EF-G concentration,
we must obtain separate estimates for the distribution on
transition rates for the EF-G-free and EF-G-bound subpop-
ulations of PRE complexes in an experiment.

EB analysis of a series of experiments performed at
increasing EF-G concentrations is shown in Fig. 4. As
with the previous experiment we first analyze the aggregate
data to identify two states. The aggregate data for seven
different EF-G concentrations contained 2472 trajectories
with 2.3� 105 total data points. As can be seen in the obser-
vation histograms (Fig. 4 A), the occupancy of the GS2 state
(cyan line) increases with the EF-G concentration. Conven-
tional EB analysis with a single population (Fig. 4 B) natu-
rally reveals a bimodal signature in the posterior (solid lines)
tion. (A) Histogram of aggregate measurements, split by GS1 (magenta line)

ine) on the free-energy difference DG ¼ GGS1 � GGS2. A bimodal signature

d posterior after unlabeled subpopulation analysis, showing an increasing

(green line) as a function of EF-G concentration. To see this figure in color,

Biophysical Journal 106(6) 1327–1337
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that hints at the existence of two (unlabeled) subpopula-
tions. This signature is absent from the prior (dashed lines),
since EB analysis assumes all transition probabilities are
governed by the same prior distribution. Because a very
limited number of transitions between GS1 and GS2 can
be observed in any one signal trajectory before one of the
fluorophores photobleaches, it is not possible to obtain a
precise estimate of the transition rates for each individual
PRE complex. As a result, the two peaks in Fig. 4 B have
a very high degree of overlap, showing that it would be diffi-
cult to determine the population membership for each signal
trajectory using any form of binning approach. This ambigu-
ity of subpopulation membership is greatly reduced when
using the subpopulation analysis technique described in
the previous section (see also Section S4.5 of the Supporting
Material), which produces two much-better-resolved peaks
(Fig. 4 C). Table 2 lists the population fraction and free
energy difference obtained from EB estimation with unla-
beled subpopulations. As should be expected, the relative
size of the EF-G-bound subpopulation increases as the con-
centration of EF-G increases.
Model selection

One of the stated advantages of the VB and EB methods is
that they optimize a lower bound for the log evidence, a
quantity that may be used to decide among analysis results
with different numbers of states. Previous benchmarks
using computer-simulated data have shown that EB estima-
tion systematically outperforms VB and ML methods in
model-selection tasks (25). Not only does EB estimation
more accurately determine the number of states in individ-
ual trajectories, preventing both under- and overfitting, but
the method can also determine the correct number of states
starting from a larger number of candidate states, leaving
superfluous states unpopulated.

In practice, experimental data differ from simulated data
in that they are never in precise agreement with a given sta-
tistical model. In smFRET experiments, for example, we
assume a Gaussian distribution of EFRET values for each
state. With one exception (17), all HMM approaches for
analysis of (time-binned) smFRET data make this same
assumption (14–16,18). In reality, however, the EFRET value
exhibits a sigmoidal dependence on the distance between
the fluorophores, resulting in a distribution of EFRET values
TABLE 2 EF-G concentration dependence in unlabeled

subpopulation analysis of GS1-GS2 equilibrium

EF-G 0 nM 5 nM 50 nM 500 nM 1000 nM

rþEF�G 0.13 0.30 0.56 0.65 0.67

DGþEF�G 1.7 1.2 1.3 1.4 1.4

DG�EF�G �2.4 �1.7 �0.8 �0.4 �0.4

Fraction of EF-G bound complexes, rþEF�G, and the free energy difference

between the GS1 and GS2 state, DG, for the bound and unbound subpopu-

lation, as a function of EF-G concentration.
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that is skewed toward the middle of the spectrum and ex-
hibits a subtle, but systematic, deviation from the idealized
Gaussian shape assumed in the model. Distributions of
EFRET values further show heavy tails that likely arise
from artifacts such as intermittent photoblinking of fluoro-
phores (32), incorrect detection of the photobleaching
transition, and errors in determining the background fluores-
cence intensity of individual trajectories.

In general, systematic discrepancies and artifacts can
cause a statistical algorithm to correct for the fact that
observed measurement values are not precisely distributed
according to the assumed model by populating additional
states, as was found to be the case in our initial
analysis of experimental data (25). In Fig. 5, we revisit
this notion by examining results obtained by estimating
models with 2–10 states on the same two data sets that
were analyzed in the previous sections. As in previous
work (25), we calculate an effective number of states,
Keff ¼ exp½�

PK
k¼1zk log zk�, in terms of zk ¼

P
nGnk=P

nkGnk, the fraction of time points assigned to each state.
When performing analysis on simulated data, there is typi-
cally a range of solutions for different K that yield the
same (correct) Keff value and leave any additional states
empty (25). Consistent with our previous study (25), the re-
sults in Fig. 5 A show that Keff steadily increases with the
number of candidate states, and it is not clear that there is
an optimum Keff value beyond which the lower bound, L,
decreases. In other words, the fit of experimental data to
the model can be improved by adding incremental low-
occupancy states that capture outliers in the data, even
when using model-selection criteria. This is undesirable
behavior, as such outlier states are more likely to be indica-
tive of measurement artifacts than of actual conformational
states of interest. However, it is important to note that this
behavior is different from the typical overfitting that is asso-
ciated with ML estimation. ML methods obtain a better fit
by assigning natural statistical variations to separate states,
and will do so even for simulated data that is in perfect
agreement with the hypothesized model. EB analysis gener-
ally obtains the correct result on simulated data but uncovers
unnatural variations in experimental data that are real from a
statistical point of view but do not contain useful informa-
tion about actual conformational transitions.

Examples of these systematic discrepancies can be seen
in Fig. 5 B, which shows the averaged posterior distribution
on the state centers, mnk, and state dwell times, tnk, obtained
by analyzing the aggregate data sets from the previous sec-
tions with increasing number of states. When plotted on a
logarithmic scale, a Gaussian distribution will have a para-
bolic shape. The curves for mnk clearly show both asymme-
tries and aberrant tails that deviate from this idealized form.
As a result, it is generally difficult to say whether too many
states are used, since the curves obtained at higher K do
show a closer agreement with the shape assumed in the
model.



FIGURE 5 EB analysis of IF3 and GS1-GS2

aggregate data for an increasing number of

states, K. (A) Evidence lower bound L and effective

number of populated states, Keff, as a function of K.

(B) Averaged posterior on state centers, m, and life-

times, t. To see this figure in color, go online.
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For this reason, we suggest that users do not indiscrimin-
ately rely on the lower bound for model selection; thus,
some prudent decision-making with regard to model selec-
tion may still be required on the part of the experimentalist.
One rule of thumb is to treat states observed in <5% of the
trajectories with some caution. Additional states may simply
1), capture artifacts, such as intermediate points between a
transition (15); 2), split a single state into a short-lived
and long-lived variant (which may mean that a subpopula-
tion as described in Methods is necessary); or 3), isolate
the non-Gaussian tails of actual states. Moreover, any de-
creases in the lower bound indicate that the method has
converged to a local maximum rather than the globally
optimal result, since adding an empty state to the previous
result should result in the same, larger L value. In this
case, the user may either opt to perform additional restarts
with random initializations of j0, to make it more likely
that the global optimum is found for each number of candi-
date states, or accept the point where L begins to decrease as
a bound on the number of states that can be confidently in-
ferred, given computational limitations. As an example, the
GS1/GS2 experiment shows a decrease in L at K ¼ 6,
whereas the lifetime plot for the blue state falls off the scale
at K ¼ 5, suggesting that K ¼ 4 is the largest number of
states that is credible. Also note that these four states form
two pairs with similar EFRET values but different lifetimes,
which is consistent with our knowledge that this experiment
in fact does contain kinetically distinct subpopulations.
Finally, we note that the conformational trajectory can be
inferred with more confidence when more transitions are
observed, as it allows the inference procedure to more confi-
dently situate one state relative to others. In cases such as the
IF3/30S IC experiment, where the majority of trajectories
do not exhibit transitions, analysis results could be improved
by shuttering the excitation source to, optimally, obtain a
state lifetime of the order of 10 time points.

In summary, although EB methods provide model-selec-
tion criteria that are superior to those employed in ML and
Biophysical Journal 106(6) 1327–1337
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VB estimation (when applied to computer-simulated data), a
methodological caveat in any statistical analysis is that
model-selection criteria are only as accurate as the represen-
tation of the measurement data in the model. We emphasize
that this limitation is by no means unique to EB analysis.
ML and VB approaches typically use precisely the same
Gaussian distribution of measurement values and suffer
from the same defects. It is merely the case that these issues
are obfuscated when signal trajectories are analyzed indi-
vidually, since an individual signal trajectory rarely contains
enough data points to make discrepancies between the data
and the model apparent, and the experimentalist makes a
judgment call as to how many conformational states they
think are required as part of the data inference postprocess-
ing. The advantage of the EB methodology is that analyzing
all trajectories at once allows us to identify systematic devi-
ations between data and model, allowing us to assess
whether there is sufficient agreement between the data and
the model for model-selection criteria to be effective.
DISCUSSION

Although HMMs have proven an immensely popular and
effective tool for inferring states and transition rates from
individual signal trajectories, combining results from the
analysis of multiple trajectories has remained a difficult
task. Typically, users manually specify a set of bin intervals,
as was done in our previous, VB-based analysis of the IF3
data (29), that allow states identified in individual signal tra-
jectories to be clustered according to their inferred param-
eter values. In contrast, the EB method uniquely enables
simultaneous inference on multiple signal trajectories in a
statistically robust manner that eliminates the need for
user-defined bin intervals and is consequently less prone
to user bias.

By exploiting the advantages of simultaneously analyzing
multiple EFRET trajectories using the EB method, we have
developed estimation procedures that uniquely enable us
to automate widely encountered tasks in the analysis of
smFRET experiments. The first of these tasks is exemplified
by our analysis of the IF3 experiments, which demonstrates
how EFRET trajectories from a large number of experiments
recorded under different experimental conditions can first be
simultaneously analyzed to identify a common set of states
and then be subsequently reanalyzed to calculate a separate
prior distribution for each experiment, allowing character-
ization of how the state occupancies and transition rates
vary between experiments. The second task is exemplified
by our analysis of the GS1/GS2 experiments, which demon-
strates how the simultaneous analysis of an entire popula-
tion of EFRET trajectories can be used to automatically
identify and characterize subpopulations of molecules occu-
pying functionally and/or conformationally distinct states
that exhibit similar EFRET values but differ in the rates of
transitions between states.
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For each set of experiments, the results of the EB-based
analysis are largely consistent with previous results based
on VB methods. However, although the previous VB-based
analysis required the use of experiment-specific postpro-
cessing procedures that are time-consuming to implement,
subject to user bias, and difficult to validate, our EB method
can be used to obtain results rapidly and with little to no
manual intervention by the user. Moreover, the EB approach
optimizes a well-defined, statistical, model-selection crite-
rion, the lower bound for the log evidence, which in princi-
ple can be used to compare and decide among different
analyses of the same data.

Our EB-based analysis of smFRET data also demon-
strates that comparing the prior and posterior distributions
can often provide useful qualitative diagnostics that indicate
whether a given model is appropriate for the data. In the case
of the GS1/GS2 experiments, for example, we are able to
calculate a posterior distribution on the free-energy differ-
ence between states that reveals a systematic mismatch
between the single population of PRE complexes that is
assumed in conventional EB analysis and the two subpopu-
lations of PRE complexes that are actually present in
the experiment (i.e., EF-G-free and EF-G-bound). This
mismatch is resolved when we extend our EB method to
identify the two subpopulations within the set of multiple
EFRET trajectories. In a similar way, combining results
from multiple trajectories using our EB method allows us
to see that the distribution of EFRET values associated with
a given conformational state often exhibits heavy tails and
is skewed relative to the Gaussian distribution that is typi-
cally assumed in HMM analyses of smFRET data. Whereas
discrepancies between the data and the statistical model will
always exist, they are much more difficult to detect in indi-
vidual trajectories (e.g., in ML- and VB-based HMM
analyses of smFRET data). An important advantage of the
EB method, therefore, is that it can tease out such discrep-
ancies, which inform us as to how our assumptions about
the data need to be adjusted in the next iteration of statistical
model design.

We conclude by noting that the EB estimation framework
is applicable to a wide range of single-molecule techniques.
Although here we have analyzed smFRET experiments
exclusively, our approach is by no means restricted to this
platform. Adaptation of the EB algorithm presented here
to the analysis of optical trapping and magnetic tweezers
experimental data is possible with minimal modifications
and we have recently collaborated to adapt the EB algorithm
presented here to the analysis of tethered particle motion ex-
periments (33).
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S1 Generative Model for Coupled HMMs

S1.1 Variable Definitions

Observation in time series n ∈ {1 . . .N} at time t ∈ {1 . . . Tn}

x = {xn} = {{xn ,t}}

State of molecule n at time t

z = {zn} = {{zn ,t}}

Parameters for time series n

θ = {θn} = {πn ,An , µn , λn}

Initial probabilities: Prob that time series n starts in state k

πn = {πn ,k}

Transition matrix: Prob of moving from state k to state l

An = {{An ,k l}}

EFRET observation mean for state k in time series n

mun = {µn ,k}

EFRET emissions precision (1/var) for state k in time series n

λn = {λn ,k}

Hyperparameters for prior

ψ0 = {{m0 ,k , β0 ,k , a0 ,k , b0 ,k}, {α0 ,k}, {ρ0}}

Variational parameters for posterior of time series n

ψn = {{mn ,k , βn ,k , an ,k , bn ,k}, {αn ,k}, {ρn}}

S1.2 Evidence

p(x ∣ ψ0) = ∫ dθ p(x , θ ∣ ψ0)

= ∫ dθ p(x ∣ θ)p(θ ∣ ψ0)

= ∫ dθ ∏
n

p(xn ∣ θn)p(θn ∣ ψ0)

=∏
n
∫ dθn p(xn ∣ θn)p(θn ∣ ψ0)

(1)

S1.3 Likelihood

p(x ∣ θ) =∏
n

p(xn ∣ θn)

=∏
n

∑
zn

p(xn , zn ∣ θn)

=∏
n

∑
zn

p(xn ∣ zn , θn)p(zn ∣ θn)

(2)
2



S1.4 Emissions model

p(xn ∣ zn , θn) =∏
t

p(xn ,t ∣ zn ,t , θn)

=∏
t

∏
k

p(xn ,t ∣ θn ,k)
zn ,t ,k

(3)

p(xn ,t ∣ θn ,k) = N(xn ,t ∣ µn ,k , λn ,k)

= (λn ,k/2π)1/2 exp[− 12∆
2
n ,t ,k]

(4)

∆2n ,t ,k = λn ,k(xn ,t − µn ,k)
2 (5)

S1.5 Transition probabilities (HMM)

p(zn ∣ θn) = [
Tn

∏
t=2

p(zn ,t ∣ zn ,t−1 , θn)] p(zn ,1 ∣ θn) (6)

p(zn ,t ∣ zn ,t−1 , θn) =∏
k , l

(An ,k , l)
zn ,t−1,k zn ,t , l (7)

p(z1 ∣ θn) =∏
k

(πn ,k)
zn ,1,k (8)

S1.6 Ensemble Distributions (Priors)

p(θn ∣ ψ0) = p(πn ∣ ψ0)p(An ∣ ψ0)p(µn , λn ∣ ψ0)

= p(πn ∣ ψ0)∏
k

p(An ,k ∣ ψ0)p(µn ,k , λn ,k ∣ ψ0)
(9)

πn ∼ Dir(ρ0) (10)
An ,k ∼ Dir(α0 k) (11)
λn ,k ∼ Gamma(a0 k , b0 k) (12)
µn ,k ∼ N(m0 k , β0 kλn ,k) (13)

S1.7 Evidence Lower Bound (ELBO)

Ln[q(zn), q(θn),ψ0] = ∫ dθn ∑
zn

q(zn)q(θn) ln [
p(xn , zn , θn ∣ψ0)

q(zn)q(θn)
] (14)

S1.8 Algorithm Outline

Loop over iterations i until ∑n Ln converges:

1. VB updates: obtain q(i)(θn), q(i)(zn), and L
(i)
n for each trace n, holding the prior

p(i−1)(θn ∣ψ0) constant.

2. Empirical bayes updates: Holding q(zn) and q(θn) constant, solve for

ψ0 = argmax
ψ0
∑
n

L
(i)
n [q(i)(zn), q(i)(θn),ψ0]

As we will show, the variational posterior has the same analytical form as the prior q(θn) =

p(θn ∣ ψn) and its updates correspond to calculating a set of variational parameters ψn . Cal-
culation of ψn only requires knowledge of two sets of expectation values γn ,t ,k = Eq(zn)[zn ,t ,k]

and ξn ,t ,k , l = Eq(zn)[zn ,t+1, l zn ,t ,k], which can be calculated with a forward-backward algorithm
where expectation values of exp(Eq(θn)

[ln θn]) are substituted for the parameters. The empiri-
cal Bayes updates for ψ0 can be calculated in terms of expectation values on q(θn).
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S2 Conjugate-Exponential Forms

In a model where the prior and likelihood are in the exponential family, it is possible to parama-
terize these distributions as

p(x ∣ η) = exp[η ⋅ T (x) − A(η) + B(x)] , (15)

p(η ∣ ν0 , χ0 , ϕ0) = exp [η ⋅ χ0 − ν0A(η) − A(ν0 , χ0 , ϕ0) + B(η, ϕ0)] . (16)

Here η represents the remapped parameters θ, and {ν0 , χ0 , ϕ0} represent the remapped hyperpa-
rameters ψ0. The functions A are sometimes known as log-normalizers, whereas the functions B
can be seen as log base measure. As with parameter distributions, where p(η) is used to repre-
sent a different distribution than p(x), we here employ the convention that the log normalizers
A(η) and A(ν0 , χ0 , ϕ0), as well as the log base measures B(x) and B(η, ϕ0), take unique forms
for each set of parameters.

Given this parameterization, the posterior p(η ∣ x , ν0 , χ0 , ϕ0) is now proportional to

p(η ∣ x , ν0 , χ0 , ϕ0)∝ p(x ∣ η)p(η ∣ ν0 , χ0 , ϕ0) (17)
= exp[η ⋅ (χ0 + T (x)) − (ν0 + 1)A(η)]/Z(x , ν0 , χ0 , ϕ0) (18)

In other words, the posterior has the same analytical form as prior

p(η ∣ x , ν0 , χ0 , ϕ0) = p(η ∣ ν, χ, ϕ0) (19)

with an updated set of hyperparameters

ν = ν0 + 1 (20)
χ = χ0 + T (x) (21)

We see that the hyperparameter ν can be interpreted as scale factor that tracks the number
of previously observed samples. The hyperparameter vector χ in turn takes the role of the
aggregate sufficient statistics T associated with these samples.

In any pair of conjugate distributions η, χ and T (x) must have the same dimensionality. This
means that if η has D components, the hyperparameters {ν, χ} have dimensionality D+1. In gen-
eral a prior distribution need not have D + 1 parameters. For example, the Dirichlet distribution
lacks ν0 and ϕ0 parameters. For a Normal-gamma prior p(µ, λ∣m0 , β0 , a0 , b0), 4 hyperparam-
eters encode a distribution on 2 variables. In this case an extra hyperparameter ϕ0, which can
be thought of as the difference in number of initial observations for the precision and mean,
remains invariant in light of new data.

Our derivation of the EB estimation algorithm on coupled HMMs will assume that the prior
and likelihood are conjugate exponential family. This means the approach derived here could
be adapted to model any experiment where the measurement signal can be represented with an
exponential family likelihood, though the corresponding updates for posterior parameters and
hyperparameters would have to be re-derived.

S2.1 Normal-Gamma

This Normal-Gamma distribution is a joint prior on the mean and precision of a Gaussian like-
lihood, where the aggregate statistics for the mean are equivalent to ν observations and the
statistics for the precision are equivalent to ν + ϕ observations.

p(x ∣ µ, λ) = N(x ∣ µ, λ) (22)
p(µ, λ ∣m, β, a, b) = Norm(µ ∣m, βλ)Gamma(λ ∣ a, b) (23)

η = {− 12 λ, λµ} (24)

ν = β (25)

χ = {2b + βm2 , βm} (26)

ϕ = 2a − β (27)
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T (x) = {x2 , x} (28)

A(η) = −
1
2
[ln (−η1 / π) + η22 / (2η1)] (29)

B(η, ϕ) = −
1
2
(ϕ + 1) ln (−η1 / π) (30)

A(ν, χ, ϕ) = −
1
2
[ ln(ν) + (ν + ϕ − 2) ln(2π)

+ (ν + ϕ) ln[ 12 (χ1 − χ22/ν)] − 2 ln Γ[ 12 (ν + ϕ)]]

= −
1
2
ln(β) − (a − 1) ln(2π) − a ln(b) + ln Γ(a)

(31)

Note: a Normal-gamma distribution is equivalent to a 1-dimensional Normal-Wishart

p(µ, λ ∣m, β,W , ν) = Norm(µ ∣m, βλ)Wish(λ ∣W , ν) (32)

with parameters ν = 2a and W = 1/(2b).

S2.2 Dirichlet

p(z ∣ π) = Cat(z ∣ π) =∏
k

π
zk
k

(33)

p(π ∣ ρ) = Dir(π ∣ ρ) =
Γ(∑k ρk)

∏k Γ(ρk)
∏
k

π
ρk−1
k

(34)

η = {ln π} (35)
χ = {ρ} (36)

T (z) = {z} (37)
A(η) = η (38)
B(η) = −η (39)
A(χ) = log Γ(∑k χk) −∑k log χk (40)

S3 Variational Bayes Expectation Maximization (VBEM)

Note: We will omit the n-subscript in this section, since VBEM is performed on one trace at a
time.

When performing (structured) VBEM on a Hidden Markov Model, we introduce an approxi-
mating factorization for the posterior p(z, θ ∣ x ,ψ0) ≃ q(z)q(θ), that allows calculation of a
lower bound on the log-evidence (using Jensen’s inequality):

ln p(x ∣ ψ0) = ln [ ∫ dθ ∑
z

p(x , z, θ ∣ ψ0)]

= ln [ ∫ dθ ∑
z

q(z)q(θ)
p(x , z, θ ∣ ψ0)

q(z)q(θ)
]

≥ ∫ dθ ∑
z

q(z)q(θ) ln [
p(x , z, θ ∣ ψ0)

q(z)q(θ)
]

= L[q(z), q(θ)]

(41)
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The lower bound L is tight if q(z)q(θ) = p(z, θ ∣ x ,ψ0):

L[q(z), q(θ)] = ∫ dθ ∑
z

q(z)q(θ) ln [
p(x , z, θ ∣ ψ0)

q(z)q(θ)
]

= ∫ dθ ∑
z

p(z, θ ∣ x ,ψ0) ln [
p(x , z, θ ∣ ψ0)

p(z, θ ∣ x ,ψ0)
]

= ∫ dθ ∑
z

p(z, θ ∣ x ,ψ0) ln [
p(z, θ ∣ x ,ψ0)p(x ∣ ψ0)

p(z, θ ∣ x ,ψ0)
]

= ∫ dθ ∑
z

p(z, θ ∣ x ,ψ0) ln p(x ∣ ψ0)

= ln p(x ∣ ψ0) ∫ dθ ∑
z

p(z, θ ∣ x ,ψ0)

= ln p(x ∣ ψ0)

(42)

In general we can we write the lower bound in terms of the evidence p(x ∣ ψ0) and a Kullback-
Leibler divergence

L[q(z), q(θ)] = ln p(x ∣ ψ0) − DKL[q(z)q(θ) ∣∣ p(z, θ ∣ x ,ψ0)] , (43)

which is defined as

DKL[q(z)q(θ) ∣∣ p(z, θ ∣ x ,ψ0)] = ∫ dθ ∑
z

q(z)q(θ) ln [
q(z)q(θ)

p(z, θ ∣ x ,ψ0)
] . (44)

The DKL term is ≥ 0 and is 0 only when q(z)q(θ) = p(z, θ ∣ x ,ψ0) and L = ln p(x ∣ ψ0). We can
use q(z) and q(θ) to approximate p(z, θ ∣x ,ψ0) by minimizing the Kullback-Leibler divergence,
which is equivalent to maximizing the lower bound L.

S3.1 Updates

Loop until L converges. For i-th iteration:

1. E-step: keeping q(i)(θ) fixed, solve for

q(i+1)(z) = argmax
q(z)

L[q(z), q(i)(θ)]

2. M-step: keeping q(i)(z) fixed, solve for

q(i+1)(θ) = argmax
q(θ)

L[q(i)(z), q(θ)]

S3.2 E-step

To maximize L w.r.t. q(z), we solve ∇q(z)L = 0, introducing a Lagrange multiplier λz to ensure
normalization:

0 = ∇q(z) [L[q(z), q(θ)] + λz (1 −∑
z′
q(z′))]

= [ ∫ dθ q(θ) (ln p(x , z, θ ∣ ψ0) − ln q(z) − ln q(θ) − 1)] − λz

(45)

We can pull ln q(z) out of the integral, since it has no dependence on θ. This yields

ln q(z) = [ ∫ dθ q(θ) [ln p(x , z ∣ θ) + ln p(θ ∣ ψ0) − ln q(θ) − 1]] − λz

= Eq(θ)[ln p(x , z ∣ θ)] − DKL[q(θ) ∣∣ p(θ ∣ ψ0)] − (1 + λθ)

= Eq(θ)[ln p(x , z ∣ θ)] − ln Z[q(θ)]

(46)
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here we have absorbed all terms without a z-dependence into a constant ln Z[q(θ)]. The ap-
proximate posterior q(z) is obtained by taking the exponent of the above equation

q(z) =
1

Z[q(θ)]
exp [Eq(θ)[ln p(x , z ∣ θ)]] (47)

where normalization of q(z) implies

Z[q(θ)] =∑
z

exp [Eq(θ)[ln p(x , z ∣ θ)]] (48)

The z-dependent terms can be written as:

Eq(θ)[ln p(x ∣ z, θ)] =∑
t

∑
k

zt ,k ∫ dθ q(θ) [ 12 ln (λk / 2π) − 1
2∆
2]

=∑
t

z⊺t ⋅ Eq(θ)[
1
2 ln (λ∶ / 2π) − 1

2∆
2
]

(49)

and

Eq(θ)[ln p(z ∣ θ)] =
T

∑
t=2
∑
k , l

zt , l zt−1,k ∫ dθ q(θ) lnAk l

+∑
k

z1,k ∫ dθ q(θ) ln πk

=
T

∑
t=2

z⊺t−1 ⋅ Eq(θ)[lnA] ⋅ zt + z⊺t ⋅ Eq(θ)[ln π]

(50)

We see that the posterior q(z) is parametrized by expectation under q(θ) of the squared Maha-
lanobis distance Eq(θ)[∆2t ,k], and the logarithm of the parameters Eq(θ)[ln λ], Eq(θ)[lnA] and
Eq(θ)[ln π]. This allows us to define

q(z) =
1

Z[q(θ)]
p∗(x , z) (51)

with

p∗(x , z) = [∏
t

p∗(xt ∣ zt)] p
∗
(z ∣ θ) (52)

p∗(xt ∣ zt = k) = (λ∗k/2π)
1/2 exp [− 12∆

∗2
t ,k] (53)

p∗(z ∣ θ) = p(z ∣A∗ , π∗) (54)

where point estimates for the parameters are defined as

∆∗2 = Eq(θ)[∆2] (55)

λ∗ = exp(Eq(θ)[ln λ]) (56)

A∗ = exp(Eq(θ)[lnA]) (57)

π∗ = exp(Eq(θ)[ln π]) (58)

This result is a specific example of a general property of all exponential family models with
conjugate likelihood/prior pairs [?]. We can always find a set of point-estimates η∗ such that

q(z) =
1

Z[q(η)]
exp[Eq(η)[ln p(x , z, η)]] =

1
Z[q(η)]

p(x , z, η∗) (59)

In our specific case, this result implies that we could in principle compute some η∗ for the
natural parameters for the Normal-Wishart distribution η = {λ, λµ}, such that p(x ∣ η∗k) =

(λ∗k/2π)
1/2 exp[− 12∆

∗2]. However for the purposes of implementing the VBEM algorithm, this
step is not required to calculate q(z).
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From the analytical forms of the priors, we can express the point estimates as:

∆∗2 = (1/βk) + ak(x −mk)
2
/bk (60)

ln λ∗ = Ψ(ak) − ln bk (61)
lnA∗k , l = Ψ (αk , l) − Ψ (∑l αk , l) (62)
ln π∗k = Ψ (ρk) − Ψ (∑k ρk) (63)

Here Ψ(x) = Γ′(x)/Γ(x) is the digamma function.

In practice, we do not calculate q(z) for all KT possible paths through the state space (which
would be numerically unfeasible). Rather, we show in the next section that the updates for
q(θ) only require knowledge of expectation values γtk = Eq(z)[zt ,k] and ξtk l = Eq(z)[zt−1,kzt , l ],
which can be calculated with a standard forward-backward algorithm.

S3.3 M-step

In the m-step we maximize L w.r.t. q(θ). Again λθ is a Lagrange multiplier. We now take the
functional derivative instead of a gradient, but the steps are essentially the same.

0 =
δ

δq(θ)
[L[q(z), q(θ)] + λθ (1 − ∫ dθ′ q(θ′))] (64)

= [∑
z

q(z) (ln p(x , z, θ ∣ ψ0) − ln q(z) − ln q(θ) − 1)] − λθ (65)

like in the E-step, this reduces to

ln q(θ) = [∑
z

q(z) (ln p(x , z, θ ∣ ψ0) − ln q(z) − 1)] − λθ (66)

= Eq(z)[ln p(x , z, θ ∣ ψ0)] − Eq(z)[ln q(z)] − (1 + λθ) (67)

= Eq(z)[ln p(x , z, θ ∣ ψ0)] − ln Z[q(z)] (68)

Again we have absorbed all terms without a θ dependence into a normalization constant Z[q(z)],
which in fact does not need to be calculated explicitly in order to derive our updates. The ex-
pectation term expands to:

Eq(z)[ln p(x , z, θ ∣ ψ0)] =Eq(z)[ln p(x ∣ z, θ) + Eq(z)[ln p(z ∣ θ)]

+ ln p(θ ∣ ψ0)
(69)

where the z-dependent terms become:

Eq(z)[ln p(x ∣ z, θ)] =∑
t

∑
k

Eq(z)[zt ,k] [
1
2 ln (λk / 2π) − 1

2∆
2
t ,k] (70)

Eq(z)[ln p(z ∣ θ)] =
T

∑
t=2
∑
k , l

Eq(z)[zt , l zt−1,k] lnAk l

+∑
k

Eq(z)[z1,k] ln πk

(71)

The variational posterior q(θ) is therefore parameterized in terms of two sets of expected pos-
terior statistics:

γt ,k = Eq(z)[zt ,k] (72)

ξt ,k l = Eq(z)[zt−1,kzt , l ] (73)

The expression for q(θ) can now be rewritten as:

q(θ) =
p(θ∣ψ0)

Z[q(z)]
∏
t ,k

((λk / 2π)
1/2 exp [− 12∆

2
t ,k])

γ t ,k

∏
t=2,k , l

(Ak l)
ξ t ,k l
∏
k

(πk)
γ1,k

(74)
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Note also that the following decomposition for q(θ) holds without further need for approxima-
tion:

q(θ) = q(µ, λ)q(A)q(π) (75)

This in turn means we can write:

q(µ, λ)∝∏
k ,t

p(xt ∣ µk , λk)
γ t ,k p(µk , λk ∣m0 , β0 , a0 , b0) (76)

q(A)∝ ∏
t=2,k , l

(Ak l)
ξ t ,k l p(Ak ∣ α0 k) (77)

q(π)∝∏
k

π
γ1,k
k

p(π ∣ ρ0) (78)

Note that in each of these equations we now have a product of an exponential family likelhood
with an exponential family prior, since the the normal likelhood is conjugate to a normal-gamma
prior, and a multinomial distribution is conjugate to a Dirichlet prior. The variational posterior
distribution is therefore in the same family as the prior, and the m-step updates reduce to calcu-
lating a set of posterior parameters ψ

For the distribution on q(µ, λ) the exponential form for these updates is simply

νk = νk +∑
t

γt ,k (79)

χk = χk +∑
t

γt ,kT (xt) (80)

and can now substitute

ν = β0 (81)

χ = {2b + βm2 , βm} (82)

T (x) = {x2 , x} (83)

and define

Nk =∑
t

γt ,k (84)

⟨X⟩k =∑
t

γt ,kxt (85)

⟨X2⟩k =∑
t

γt ,kx
2
t (86)

to obtain the following expressions for the variational parameters ψ

mk =χk ,2/νk = (β0 km0 k + ⟨X⟩k)/(β0 k + Nk) (87)
βk =β0 k + Nk (88)

ak =a0 k +
1
2Nk (89)

bk =χk ,1 − χ2k ,2 / (2νk)

=b0 k +
1
2
[β0 km0

2
k + ⟨X2⟩k −

(β0 km0 k + ⟨X⟩k)
2

β0 k + Nk

]
(90)

Finally, the updates for α0 and ρ0 can be obtained by substitution of the terms in equation (74)
into equations (77) and (78):

αn ,k l = α0 ,k l +
T

∑
t=2

ξn ,t ,k l (91)

ρk = ρ0 k + γn ,1,k (92)

We now proceed to derive how γ and ξ can be calculated using the Forward-backward algorithm.
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S3.4 Forward-Backward Algorithm

The forward-backward algorithm is a method to calculate expectation values under the posterior
p(z∣x , θ), or in our case, the approximate posterior q(z) of a Hidden Markov Model:

γt ,k = Eq(z)[zt ,k] = p∗(x1 ∣ z1)p
∗
(z1) (93)

ξt ,k l = Eq(z)[zt−1,kzt , l ] = p∗(zt−1 = k, zt−1 = l ∣ x1∶T) (94)

to do so we calculate two variables:

αt ,k = p∗(x1∶t , zt = k) (95)
βt ,k = p∗(zt = k ∣ xt+1∶T) (96)

such that

γt ,k = p∗(zt = k ∣ x1∶T) =
αt ,kβt ,k

p∗(x1∶T)
(97)

ξt ,k , l = p∗(zt−1 = k, zt−1 = l ∣ x1∶T) (98)

=
p∗(x1∶T ∣ zt , zt−1)p∗(zt , zt−1)

p∗(x1∶T)
=

βt , l p
∗(xt ∣ zt = l)Ak lαt−1,k

p∗(x1∶T)
(99)

and exploit the following recursive relationships:

αt ,k = p∗(x1∶t , zt)
=∑

l

p∗(xt ∣ zt = k)p∗(zt = k ∣ zt−1 = l)p∗(x1∶t−1 , zt−1 = l)

=∑
l

p∗(xt ∣ zt = k)A∗l kαt−1, l

(100)

βt ,k = p∗(xt+1∶T ∣ zt)

=∑
l

p∗(xt+2∶T ∣ zt+1 = l)p∗(xt+1 ∣ zt+1 = l)p∗(zt+1 = l ∣ zt = k)

=∑
l

βt+1, l p
∗
(xt+1 ∣ zt+1 = l)A∗k l

(101)

We can now loop forward in time to recursively calculate αt from αt−1 and backward in time to
calculate βt from βt+1. The boundary conditions on these passes are:

α1,k = p∗(x1 , z1) = p∗(x1 ∣ z1)p
∗
(z1) =∏

k

p∗(x1 ∣ z1 = k)π∗k (102)

βT ,k = 1 (103)

In practice, it proves more convenient to calculate a normalized version of α̂ and β̂. To do so,
we introduce a set of scaling factors ct :

ct = p∗(xt ∣ x1∶t−1) (104)

such that normalized forward and backward variables can be defined as:

α̂t ,k =
αt ,k

p∗(x1∶t)
=

t

∏
t′=1

1
ct′

αt ,k

β̂t ,k =
βt ,k

p∗(xt+1∶T ∣ x1∶t)
=

T

∏
t′=t+1

1
ct′

βt ,k

(105)

This choice of normalization implies:

γt ,k =
αt ,kβt ,k

p∗(x1∶T)
=

αt ,kβt ,k

p∗(xt+1∶T ∣ x1∶t)p∗(x1∶t)
= α̂t ,k β̂t ,k (106)

ξt ,k , l =
βt , l p

∗(xt ∣ zt = l)Ak lαt−1,k

p∗(x1∶T)
=
ct β̂t , l p

∗(xt ∣ zt = l)Ak l α̂t−1,k

p∗(x1∶T)
(107)
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The following recursion relations hold for α̂ and β̂:

ct α̂t ,k =∑
l

p∗(xt ∣ zt = k)A∗l k α̂t−1, l (108)

ct+1βt ,k =∑
l

β̂t+1, l p
∗
(xt+1 ∣ zt+1 = l)A∗k l (109)

We can now solve for ct from the recursion relation for α̂ using that ∑k α̂t ,k = 1:

ct = ct∑
k

α̂t ,k =∑
k , l

p∗(xt ∣ zt = k)A∗l kαt−1, l (110)

So the scale factors ct are nothing but the normalization constant for α̂t and can therefore es-
sentially be obtained for free during the forward pass. Note that these also give us an estimate
for p∗(x):

p∗(x) = p∗(x1∶t) =∏
t

ct (111)

which gives us the normalization constant for q(z)

Ẑq(z) = ln p∗(x) =∑
t

ln ct (112)

S3.5 Calculation of the Evidence

The lower bound for the evidence

L[q(z), q(θ)] =∑ ∫ dθ ∑
z

q(z)q(θ) ln [
p(x , z, θ ∣ ψ0)

q(z)q(θ)
] (113)

can be decomposed into the terms

L[q(z), q(θ)] =∑Eq(z)q(θ) [ln p(x , z ∣ θ)]

− DKL[q(θ) ∣∣ p(θ ∣ ψ0)] − Eq(z) [ln q(z)]
(114)

Now note from equation (51) that Eq(z) [ln q(z)] can be written as:

Eq(z) [ln q(z)] = Eq(z)q(θ)[ln p(x , z ∣ θ)] − ln Z[q(θ)] (115)

So

L[q(z), q(θ)] = ln Z[q(θ)] − DKL[q(θ) ∣∣ p(θ ∣ ψ0)] (116)

The term ln Z[q(θ)] is obtained from the forward backward algorithm. The Kullback-Leibler
divergence between q(θ) and p(θ) decomposes into:

DKL[q(θ) ∣∣ p(( ∣ θ))] =∑
k

DKL[q(µk , λk) ∣∣ p(µk , λk)]

+ DKL[q(A) ∣∣ p(A)] + DKL[q(π) ∣∣ p(π)]

(117)

The Kullback-Leibler divergence of two exponential family distributions is

DKL[q(η ∣ ν, χ, ϕ0) ∣∣ p(η ∣ ν0 , χ0 , ϕ0)]

= Eq(η)[η ⋅ (χ − χ0) − A(η)(ν − ν0) − A(ν, χ, ϕ0) + A(ν0 , χ0 , ϕ0)]
= Eq(η)[η] ⋅ (χ − χ0) − Eq(η)[A(η)](ν − ν0) − A(ν, χ, ϕ0) + A(ν0 , χ0 , ϕ0)

(118)

The two required expectation values can be obtained from the relationships

0 =
∂

∂ν ∫ dη q(η∣ν, χ, ϕ) (119)

0 = ∇χ ∫ dη q(η∣ν, χ, ϕ) (120)
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which yield

Eq(η)[A(η)] = −∇νA(ν, χ, ϕ0) (121)

Eq(η)[η] = ∇χA(ν, χ, ϕ0) (122)

For a Normal-Gamma distribution we may now substitute the exponential forms

ν = β

χ = {2b + βm2 , βm}

A(ν, χ, ϕ) = −
1
2
[ ln(ν) + (ν + ϕ − 2) ln(2π)

+ (ν + ϕ) ln[ 12 (χ1 − χ22/ν)] − 2 ln Γ[ 12 (ν + ϕ)]]

= −
1
2
ln(β) − (a − 1) ln(2π) − a ln(b) + ln Γ(a)

after which the expressions for expectation values are given by

Eq(η)[A(η)] =
1
2
[
1
β
+
am2

b
+ ln(2π) − Ψ(a) + ln(b)] (123)

Eq(η)[η] = { −
a

2b
,
am

b
} (124)

The KL divergences for A and π have simple closed-form expressions:

DKL[q(Ak) ∣∣ p(Ak)] =∑
l

[αk , l − α0 k , l ][ψ0(αk , l) − ψ0(α0 k , l)] (125)

DKL[q(π) ∣∣ p(π)] =∑
l

[ρ l − ρ0 l ][ψ0(ρ l) − ψ0(ρ0 l)] (126)

S4 Empirical Bayes Updates
In (parametric) empirical Bayes estimation, we construct a generalized EM algorithm that ob-
tains a point estimate ψ0. The quantity optimized is the summed lower bound log evidence over
the ensemble of time series:

ln p(x ∣ ψ0) ≥∑
n

Ln (127)

=∑
n

Eq(zn)q(θn)
[ln(

p(xn , zn , θn ∣ ψ0)

q(zn)q(θn)
)] (128)

=∑
n

ln p(xn ∣ ψ0) − DKL[q(zn)q(θn) ∣∣ p(zn , θn ∣ xn ,ψ0)] (129)

=∑
n

Eq(zn)q(θn)
[ ln p(xn ∣ zn , θn)] − DKL[q(zn)q(θn) ∣∣ p(zn , θn ∣ ψ0)] (130)

In the E-step the posterior p(zn , θn ∣ xn ,ψ0) is approximated by maximizing the lower bound
with respect to q(zn) and q(θn). In the M-step the prior p(zn , θn ∣ ψ0) is used to approximate
the variational posterior q(zn)q(θn) by maximizing the lower bound with respect to ψ0

0 = ∇ψ0∑
n

Ln (131)

= ∇ψ0∑
n
∫ dθn q(θn ∣wn) ln p(θn ∣ ψ0) (132)

=∑
n
∫ dθn q(θn ∣wn)∇ψ0 ln p(θn ∣ ψ0) (133)

From section 3.3 we note that p(θ) factorizes without need for further approximation

p(θ ∣ ψ0) = p(µ, λ ∣m0 , β0 ,W0 , ν0)p(A ∣ α0)p(π ∣ ρ0) (134)

so the updates for {µ, λ}, A, and π can be computed separatedly.
12



S4.1 Conjugate-Exponential Form

If we rewrite p(θ ∣ ψ0) to its conjugate exponential form p(η ∣ ν0 , χ0 , ϕ0), the expression in
equation (133) becomes

0 =∑
n

Eq(ηn)
[∇ν0 , χ0 ,ϕ0 [η ⋅ χ0 − A(η) ⋅ ν0 + B(η, ϕ0) − A(ν0 , χ0 , ϕ0)] ] (135)

The empirical Bayes updates for the hyperparameters therefore reduce to finding solutions for
3 sets of equations

∇ν0A(ν0 , χ0 , ϕ0) = −
1
N
∑
n

Eq(ηn)
[A(ηn)] (136)

∇χ0A(ν0 , χ0 , ϕ0) =
1
N
∑
n

Eq(ηn)
[ηn] (137)

∇ϕ0A(ν0 , χ0 , ϕ0) =
1
N
∑
n

Eq(ηn)
[∇ϕ0B(ηn , ϕ0)] (138)

where each of the 3 expectation values can be calculated for a given q(θn ∣,ψn) in terms of the
derivatives of the posterior log normalizer A(νn , χn , ϕ0):

Eq(ηn)
[A(ηn)] = −∇νn

A(νn , χn , ϕ0) (139)

Eq(ηn)
[ηn] = ∇χn

A(ν0 , χ0 , ϕ0) (140)

Eq(ηn)
[∇ϕ0B(ηn , ϕ0)] = ∇ϕ0A(νn , χn , ϕ0) (141)

S4.2 State Distributions (Dirichlet)

Empirical Bayes updates for a Dirichlet distribution simply match the log expectation values

Ep(θn)
[logAk] =

1
N
Eq(θn)

[logAk],

Ep(θn)
[log π] =

1
N
Eq(θn)

[log π].

These log expectation values can be expressed in terms of the digamma function Ψ

Ψ[∑mα0,km] − Ψ[α0,k l ]

=
1
N
∑
n

Ψ[∑mαn ,km] − Ψ[αn ,k l ].

While equations above have no closed-form solution, their stationary point can be found effi-
ciently with a Newton iteration method [?].

S4.3 Emission Distribution (Normal-Gamma)

For a 1-dimensional Normal-Gamma distribution substituation of the conjugate exponential
forms (section 2.1) yields a set of update equations take the form

m0k =∑
n

Eq(θn)
[µnkλnk]/∑

n

Eq(θn)
[λnk], (142)

1/β0k =
1
N
Eq(θn)

[µ2nkλnk] −
1
N
Eq(θn)

[λnkµnk]
2
/Eq(θn)

[λnk], (143)

Ψ(a0k) − ln(a0k) =
1
N
Eq(θn)

[ln λnk] −
1
N
ln Eq(θn)

[λnk], (144)

bk =
Nak

Eq(θn)
[λnk]

, (145)

As with the Dirichlet distribution, a Newton iteration method can be used to obtain a0k . The
prerequisite expectation values can be calculated from

Eq(θn)
[λnk] = an ,k/bn ,k , (146)

Eq(θn)
[log λnk] = ψ(an ,k) − log(bn ,k), (147)

Eq(θn)
[µnkλnk] = mn ,kan ,k/bn ,k , (148)

Eq(θn)
[µ2nkλnk] = 1/βn ,k +m2n ,kan ,k/bn ,k . (149)
13



S4.4 Inital State and Transition Probabilities (Dirichlet)

For a Dirichlet distribution the conjugate exponential forms (section 2.2) are given by:

η = {ln πk} (150)
χ = {ρ0 k} (151)

h(χ) =
∏k Γ(χk + 1)
Γ(∑k(χk + 1))

(152)

And the log expectation value of η is:

Eq(θn)
[η] = Eq(θn)

[ln π] = ψ0(ρn ,k) − ψ0(∑
k

ρn ,k) (153)

which again leads to a coupled set of implicit equations that must be solved numerically:

ψ0(ρ0 k) − ψ0(∑
k

ρ0 k) =
1
N
∑
n

ψ0(ρn ,k) − ψ0(∑
k

ρn ,k) (154)

The updates for each row of the transition matrix are performed in the same manner

ψ0(α0 k l) − ψ0(∑
l

α0 k l) =
1
N
∑
n

ψ0(αn ,k l) − ψ0(∑
l

αn ,k l) (155)

S4.5 Mixtures of Priors

Empirical Bayes estimation can be extended to perform inference over unlabeled subpopulations
by defining a mixture model p(xn , yn ∣ ψ0 , ζ) on the evidence

p(x ∣ ψ0) = p(x ∣ ψ0 , y)p(y ∣ ζ) (156)

=∏
nm

(p(x ∣ ψ0m)ζm)
ynm (157)

≥∏
nm

( exp(Lnm)ζm)
ynm (158)

where Lnm ≥ ln p(xn ∣ ψ0m) is the lower bound log evidence for trace n with respect to mixture
component m. An expectation maximization procedure can be constructed for this mixture
model by introducing a variational posterior q(zn , θn , yn) = q(zn ∣ yn)q(θn ∣ yn)q(yn) for each
time series. The update equations for this EM procedure are

δL

δq(yn)
= 0

δL

δq(zn ∣ yn)
= 0

δL

δq(θn ∣ yn)
= 0 ,

∂L

∂ψ0m
= 0

∂L

∂ζ
= 0 . (159)

The E-step of this EM procedure calculates a set of posterior responsibilities

ω
(i+1)
nm = Eq(yn)[ynm] =

exp [L(i)nm]ζ
(i)
m

∑l exp [L
(i)

nl
]ζ
(i)
m

(160)

In the M-step we hold q(i+1)(yn) fixed and maximize L relative to ψ0m and ζ. This amounts
to performing EB analysis for subpopulation. In other words we first obtain VB estimates for
q(θn ∣ψnm) and then obtain a weighted update of for the hyperparameters

0 =
∂L(i+1)

∂ψ0m
=∑

n

ω
(i+1)
nm

∂L
(i+1)
nm

∂ψ0m
. (161)

The updates in equations (136-138) now become

∇ν0mA(ν0m , χ0m , ϕ0m) = −∑
n

ωnmEq(ηn)
[A(ηn)] / ∑

n

ωnm , (162)

∇χ0mA(ν0m , χ0m , ϕ0m) =∑
n

ωnmEq(ηn)
[ηn] , (163)

∇ϕ0mA(ν0m , χ0m , ϕ0m) =∑
n

ωnmEq(ηn)
[∇ϕ0mB(ηn , ϕ0m)]/∑

n

ωnm . (164)

Finally the mixture weights ζ(i+1) are obtained from

ζ
(i+1)
m =

∑n ω
(i+1)
nm

∑nm ω
(i+1)
nm

. (165)
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S5 Calculation of Derivative Kinetic Quantities

S5.1 Kinetic Rates

The kinetic rates κ define a differential equation for the evolution of the probabality γk(t) that
a molecule is in state k at time t

∂γk(t)

∂t
=∑

l

κ l kγ l(t) . (166)

The transition matrix A and measurement time interval ∆t define a discretized version of this
differential equation

1
∆t

[γk(t + ∆t) − γk(t)] =
1
∆t

[∑
l

A l kγ l(t) − γk(t)] =∑
l

[
A l k − I
∆t

] γ l(t) . (167)

In general, the transition matrix Ak l can be expressed in terms of of κk l and ∆t through the
relationship

A = exp[κ∆t] . (168)

While any given κ value uniquely determines A, the equation κ = ln[A]/∆t does not necessarily
have a unique solution. However in the limit of small ∆t we may truncate the series expansion
of the matrix exponent to first order

A = I + (κ∆t) +O[(κ∆t)2] , (169)

to obtain the same relationship

κ ≃ (A− I)/∆t . (170)

S5.2 Life Time

In order to obtain a distribution on the state life time τk we define

Akk = exp(−1/τk) . (171)

The marginal distribution on Akk is a Beta distribution

p(Akk ∣ α) = Beta(Akk ∣ ak , bk) , (172)

=
Γ(ak + bk)

Γ(ak)Γ(bk)
(Akk)

ak−1(1 − Akk)
bk−1 . (173)

with

ak = αkk (174)

bk = (∑
l

αk l) − αkk . (175)

The probability density function for the life time is now given by

p(τk ∣ ak , bk) =
∂Akk

∂τk
p(Akk(τk) ∣ ak , bk) (176)

=
Γ(ak + bk)

Γ(ak)Γ(bk)
1

τ2
k

( exp[−1/τk])
ak
(1 − exp[−1/τk])

bk−1 (177)

S5.3 Free Energy

In the limit t →∞, the markov chain for a set of probablities γkt will converge to the stationary
distribution υk , which is given by the solution to the eigenvalue equation

υk =∑
l

A l kυ l . (178)
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In other words, the stationary distribution υ is the normalized eigenvector of A⊺ with eigenvalue
1. This quantity is related to the free energy Gk of each state through

υk ∝ exp[−Gk/kBT] . (179)

For a 2-state, system the eigen-vector of the transition matrix can be calculated trivially from
the off-diagonal elements

A = [
(1 − δ) δ

є (1 − є)
] u ∝ [

є

δ
] G = kBT ln [δ/є] (180)

We approximate Gk for each state by calculating a marginal

p(δk , єk ∣ ak , bk , ck , dk) = Beta(δk ∣ bk , ak)Beta(єk ∣ ck , dk) . (181)

with

ak = αkk (182)

bk = (∑
l

αk l) − αkk (183)

ck = (∑
l

α l k) − αkk (184)

dk = αkk + (∑
k l

αk l) − bk − ck (185)

In other words, for each state k we collapse all states l /= k and calculate Gk based on the
resulting prior on a 2 × 2 transition matrix. We will now define gk = Gk/(kBT) to calculate the
marginal

p(gk ∣ ak , bk , ck , dk) = ∫ dδk ∣J(δk , gk)∣p(δk , exp[−gk]δk ∣ ak , bk , ck , dk) , (186)

where the Jacobian term is given by

∣J(δk , gk)∣ = δk exp[−gk] (187)

The integral has no closed-form solution, but can be integrated numerically.
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