Supporting information

Δ

С

Figure S1. Kinetics of NAD^+ inhibition for NADH-tNAD⁺ transhydrogenase and NADH-UQ₀ reductase activities as same as Figure 4 except that data were presented as s-v plots. Data were globally fit using the same parameters used in Figure 4.

Kinetic parameters for the ping-pong mechanism

Kinetic parameters for the NADH-Q reductase and transhydrogenase reactions are defined as shown below based on rate constants for microscopic steps of each reaction depicted in Scheme S1. In the NADH-Q reductase reaction, the second half-reaction (Q reduction) is much faster than the first-half reaction $(k_7 >> k_3)$. Hence, $K_{\rm M}^{\rm NADH}$ for the NADH-Q reductase reaction can be simplified to $K_{\rm M}^{\rm NADH}_{\rm (N-Q)} \approx \frac{k_2 + k_3}{k_4}$. For the transhydrogenase reaction, $K_{\rm M}^{\rm NADH}_{\rm (Trans)} = \frac{k_2 + k_3}{k_4} \times \frac{k_{44}}{k_4 + k_{44}} = K_{\rm M}^{\rm NADH}_{\rm M(N-Q)} \times \frac{k_{44}}{k_4 + k_{44}}$. If hydride transfer from FADH₂ to tNAD⁺ is rate-limiting, then $k_3 >> k_{11}$ can account for the lower $K_{\rm M}^{\rm NADH}$ for NADH in the transhydrogenase reaction than is observed in the NADH-Q reductase reaction. These assumptions further result in $K_{\rm M}^{\rm Q} \approx \frac{k_{\rm g}(k_{\rm g}+k_{\rm T})}{k_7 k_5}$ and $K_{\rm M}^{\rm ENAD^+} \approx \frac{k_{40}+k_{41}}{k_9}$. The affinity of Q for the enzyme is most likely influenced by the off rate, k_6 . We have observed a clear tendency that the $K_{\rm M}^{\rm Q}$ values are much smaller if quinone has a longer isoprenoid chain, $K_{\rm M}^{\rm UQ} < K_{\rm M}^{\rm UQ} < K_{\rm M}^{\rm UQ}$, suggesting that the isoprenoid chain plays dominant role in substrate binding and dissociation kinetics.

Scheme S1

Table S1

	NADIL O reductors respection	NADH-tNAD ⁺
	NADH-Q leductase leaction	Transhydrogenase reaction
k _{cat}	$\frac{k_3k_7}{k_3+k_7}\left[E\right]_0$	$\frac{k_3 k_{11}}{k_3 + k_{11}} \ [E]_0$
$K_{ m M}^{ m NADH}$	$\frac{(k_2+k_3)k_7}{k_1(k_3+k_7)}$	$\frac{(k_2 + k_3)k_{11}}{k_1(k_3 + k_{11})}$
$K_{\rm M}^{ m Q}$	$\frac{k_3(k_6+k_7)}{(k_3+k_7)k_5}$	-
$K_{\rm M}^{\rm tNAD^+}$	-	$\frac{k_3(k_{10}+k_{11})}{(k_3+k_{11})k_9}$