Supplemental Material

Table S1: **Oligonucleotides used in cloning.** Restriction sites used are underlined. Stop codons are shown in bold. The oligonucleotides are written 5' to 3'.

Primer	Sequence	Description
pECG28F	GCGCGC <u>CATATG</u> ATCGTGGCGTTTTGTTTATAT	Forward primer for pECG28; NdeI site
pECG28R	GCGCGC <u>GGATCC</u> TCAACCATCTAAACCACCTGT	Reverse primer for pECG28; BamHI site
pECB21F	GGGACCTC <u>CATATG</u> GTGAGTTTTACTC	Forward primer for pECB21; NdeI site
pECB21R	CTATTTCCCGGAGGAAA <u>CTCGAG</u> AAACAAAG	Reverse primer for pECB21; XhoI site
pECI21F	GGGACCTC <u>GCTAGC</u> CAGCAGGTGTTTTTCCAG	Forward primer for pECI21; NheI site
pECI21R	CTTTGTTT <u>CTCGAG</u> ATGCTTTATCTTTTCAATAAA	Reverse primer for pECI21; XhoI site
pSTI28F	GGGACCTC <u>GCTAGC</u> ATGAGCAGAAAATATTTTGA AG	Forward primer for pSTI28; NheI site
pSTI28R	CTTTGTTT <u>CTCGAG</u> TTATTCAAGAAGTTTACGTTTA AAG	Reverse primer for pSTI28; XhoI site
pSTJ28F	GGGACCTC <u>CATATG</u> GATTCATTTCCTGAGATAGAA ATAG	Forward primer for pSTJ28; NdeI site
pSTJ28R	CTTTGTTT <u>CTCGAG</u> TTATTTGTGGAAAAGTTTACG ATAA AG	Reverse primer for pSTJ28; XhoI site
pSTK28F	GGGACCTC <u>CATATG</u> ATTAAAAAAATCATATTTACT GTTA CTC	Forward primer for pSTK28; NdeI site
pSTK28R	CTTTGTTT <u>CTCGAG</u> TCACTTATCAAACCAGCTTTTC ATT TGTTC	Reverse primer for pSTK28; XhoI site

	Abbreviation	Full Name	Label on Images
	Hep ₂ -1-deP-KLA	Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	А
1 core sugar added	Glc-Hep ₂ -1-deP-KLA	Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ - Lipid A	В
2 cores sugars added	Gal-Glc-Hep ₂ -1-deP- KLA	Galactose $\alpha(1\rightarrow 6)$ -Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1- dephospho-Kdo ₂ -Lipid A	С
	Glc ₂ -Hep ₂ -1-deP-KLA	Glucose $\alpha(1\rightarrow 3)$ -Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1- dephospho-Kdo ₂ -Lipid A	Co
	Gal*-Glc- Hep ₂ -1-deP- KLA	Galactose $\alpha(1\rightarrow 3)$ -Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1- dephospho-Kdo ₂ -Lipid A	CI
3 core sugars added	Glc-[Gal]-Glc-Hep ₂ -1- deP-KLA	Glucose $\alpha(1\rightarrow 3)$ -[Galactose $\alpha(1\rightarrow 6)$]-Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	D
	Gal-[Gal]-Glc-Hep ₂ -1- deP-KLA	Galactose $\alpha(1\rightarrow 3)$ -[Galactose $\alpha(1\rightarrow 6)$]-Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	Ds
4 core sugars added	Glc-Gal-[Gal]-Glc- Hep ₂ -1-deP-KLA	Glucose $\alpha(1\rightarrow 2)$ -Galactose $\alpha(1\rightarrow 3)$ -[Galactose $\alpha(1\rightarrow 6)$]-Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	Es
5 core sugars added	GlcNAc-Glc-Gal- [Gal]-Glc-Hep ₂ -1-deP- KLA	<i>N</i> -Acetylglucosamine $\alpha(1\rightarrow 2)$ -Glucose $\alpha(1\rightarrow 2)$ -Galactose $\alpha(1\rightarrow 3)$ -[Galactose $\alpha(1\rightarrow 6)$]-Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	
iple s added	Glc _n -Hep ₂ -1-deP-KLA	(Glucose $\alpha(1\rightarrow 3)$) _n -Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1- dephospho-Kdo ₂ -Lipid A	C ₀ *
Multiple glucoses added	Glc _n -[Gal]-Glc-Hep ₂ -1- deP-KLA	(Glucose $\alpha(1\rightarrow 3)$) _n -[Galactose $\alpha(1\rightarrow 6)$]-Glucose $\alpha(1\rightarrow 3)$ -Heptose ₂ -1-dephospho-Kdo ₂ -Lipid A	D*

Table S2: Abbreviations used for lipid A-oligosaccharides

Figure S1: **UDP-Glucose was the only sugar that WaaG transferred to the Hep₂-1-deP-KLA.** Panel A: WaaG (0.01 mg/ml) was reacted for 1 min with 0.01 mM Hep₂-1-deP-KLA, 50 mM Hepes, pH 7.5, 0.1 % Triton X-100 and <1 μ M ¹⁴C-UDP-Glucose or ¹⁴C-GDP-mannose and then displayed on a TLC plate as described in Materials and Methods. Panel B: WaaG (0.01 mg/ml) was reacted for 1 min with 10 μ M [³²P] Hep₂-1-deP-KLA in the presence of various sugar nucleotides (1 mM), 50 mM Hepes, pH 7.5, 0.01 % Triton-X-100.

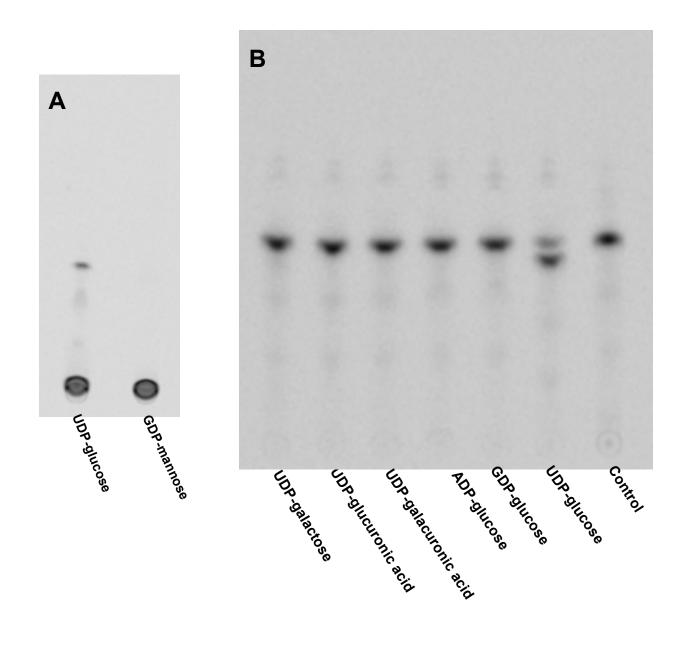


Figure S2: **Triton Dependence of WaaG reaction.** The Triton X-100 concentration was varied from 0 to 2 % in the in vitro assay described in the Materials and Methods.

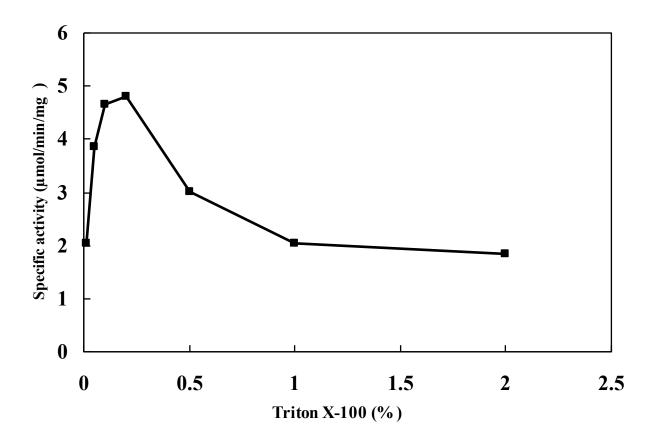


Figure S3: **MgCl₂ dependence of the WaaG reaction.** MgCl₂ concentration was varied from 0 to 5 mM in the WaaG *in vitro* reaction described in the Materials and Methods.

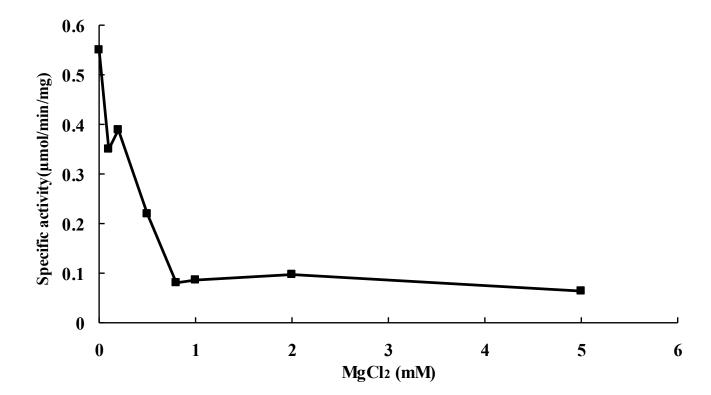


Figure S4: WaaG is inhibited by MgCl₂ and other divalent cations. WaaG (0.01 mg/ml) was reacted for 30 min with 0.5 mM UDP-Glc, 0.01 mM [32 P]-Hep₂-1-deP-KLA, 50 mM Hepes, pH 7.5, 0.1 % Triton X-100, and 1 mM of the indicated cation and then spotted to a TLC plate as described in Materials and Methods.

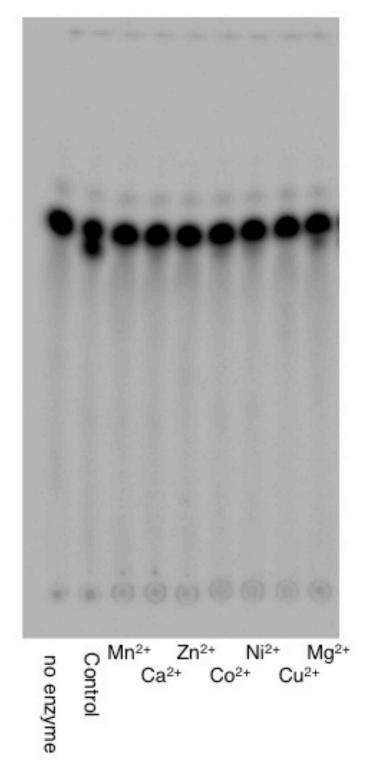


Figure S5: WaaB hydrolyzes UDP-Gal but WaaG and WaaI hydrolyze UDP-Glc. WaaG (0.25 mg/ml), WaaB (0.2 mg/ml), or WaaI (0.2 mg/ml) were reacted for 30 min with [14 C]-UDP-glacose or [14 C]-UDP-glucose, 0.1 % Triton X-100, 50 mM Hepes, pH 7.5 and displayed on TLC as described in Materials and Methods.

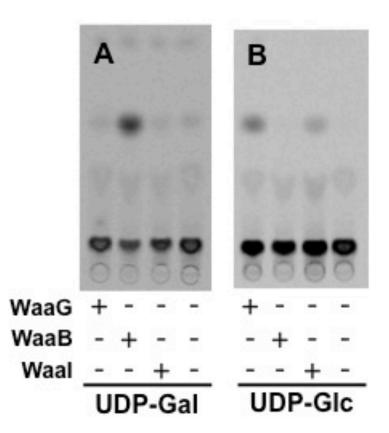
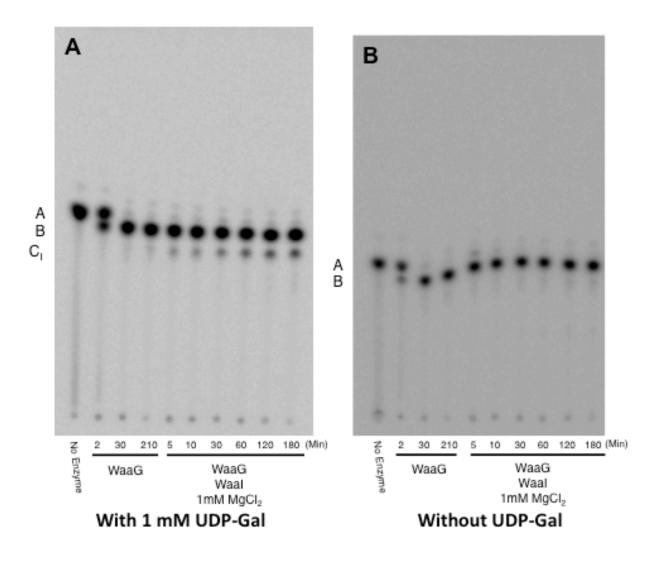



Figure S6: *S. typhimurium* WaaI uses UDP-galactose as its sugar donor. Panel A, left side: WaaG (0.01 mg/ml) was incubated with 10 μ M [³²P]-Hep₂-1-deP-KLA (10 μ M), 0.1 % Triton X-100, 50 mM Hepes, pH 7.5, 1 mM UDP-Glc, and 1 mM UDP-Gal as indicated and resolved on TLC as described in Materials and Methods. Panel A, right side: WaaG (0.01 mg/ml) was incubated with 10 μ M [³²P]-Hep₂-1-deP-KLA (10 μ M), 0.1 % Triton X-100, 50 mM Hepes, pH 7.5, and 1 mM UDP-Glc for 15 minutes and then 1 mM MgCl₂, 1 mM UDP-Gal and WaaI (0.18 mg/ml) were added, incubated as indicated and resolved on TLC as described in Materials and Methods. Panel A except no UDP-Gal was added. "A" indicates the location of Hep₂-1-deP-KLA, "B" indicates the location of Glc-Hep₂-1-deP-KLA, and "D_s" indicates the location of Gal*-Glc-Hep₂-1-deP-KLA (* indicates this Gal is added in a different linkage than the Gal added by WaaB).

