Supplemental Information

MLL fusion proteins link transcriptional coactivators to previously active CpG-rich promoters

Hiroshi Okuda, Marie Kawaguchi, Akinori Kanai, Hirotaka Matsui, Takeshi Kawamura, Toshiya Inaba, Issay Kitabayashi, Akihiko Yokoyama

Figure S1. Expression profiles of PCE-leukemic cells

Figure S2. Characteristics of the nucleosomes coprecipitated with P' and P'C mutants.

Figure S3. Frequencies of each histone modification in P'- and P'C-bound nucleosomes.

Figure S4. The P'C'(FBXL11) mutant protein in the input chromatin and precipitate.

Figure S5. Profiles of the MLL target genes in ML-2 cells

Figure S6. Schematic representation of the GAL4-ENL fusion proteins

Table S1. List of MLL-AF6 target genes in ML-2 cells

Table S2. Antibodies used in this study

Table S3. Custom-made probes used for ChIP- and CIRA-qPCR in this study

Figure S1. Expression profiles of PCE-leukemic cells

Expression profiles of leukemia-associated genes in PCE-leukemia cells (PCE-LCs). Gene expression in three independent PCE-induced leukemia cell lines was analyzed by RT-qPCR for the indicated genes. MLL-ENL-immortalized cells (ME-ICs), PCE-ICs, and BiEH-ICs are included for comparison. The expression levels are expressed relative to ME-ICs-1 arbitrarily set as 100.

Figure S2. Characteristics of the nucleosomes coprecipitated with P' and P'C mutants.

- A) Distribution of endogenous RNAPII (phosphorylated at the Ser2 residue in its CTD) and β-tubulin proteins in the three subfractions. 293T cells were subfractionated into the soluble fraction (SOL), the nucleosome fraction (NUC), and the nuclear matrix fraction (NM) as in Figure 2E.
- B) Proteins in the P'C-nucleosome complex. Proteins coprecipitated with P'C were visualized by Oriole staining.
- C) DNAs in the P'C-nucleosome complex. DNAs coprecipitated with P'C were visualized by SYBR Green staining.
- D) P'(W21A) does not coprecipitate nucleosomes. The nucleosome fractions of P'- or P'(W21A)-expressing cells were analyzed as in Figure 2I. P' proteins were precipitated using anti-Xpress antibody. Nucleosomes were visualized by anti-histone H3 antibody.
- E) P'(W21A)C does not coprecipitate nucleosomes. The nucleosome fractions of P'Cor P'(W21A)C-expressing cells were analyzed as in Figure 2I. P'C proteins were precipitated using anti-FLAG antibody. Nucleosomes were visualized by antihistone H3 antibody.

F) The role of DNAs in P'-nucleosome interaction. The precipitates prepared as in Figure 2I were treated with DNase I (300 kunits/mL) for 10 min and washed to remove unbound material. Nucleosomes were visualized by antibodies specific for H3K36me2 and H3K36me3 modification or by anti-histone-H3 antibodies. DNAs coprecipitated with P' were visualized by SYBR Green staining.

Figure S3. Frequencies of each histone modification in P⁻ and P⁻C-bound nucleosomes.

The histone proteins coprecipitated with P'(IP:P') and P'C (IP:P'C) were analyzed by mass spectrometry. Bulk histones (Input) were also analyzed for comparison. The frequencies of different modification status detected by mass spectrometry analysis were expressed in the pie charts. n, number of peptides analyzed. It should be noted that modifications of histones may affect the digestion efficiency by trypsin in the sample preparation procedure and therefore the frequencies shown above may not faithfully reflect the actual ratio of each modification.

Figure S4. Subcellular distribution of the P'C'(FBXL11) mutant

Experiment was performed as in Figure 2E. The P'C' (FBXL11) mutant was visualized by anti-FLAG antibody.

Figure S5. Profiles of the MLL target genes in ML-2 cells

- A. Representative results of ChIP-seq for MLL-AF6, H3K36me3, and RNAPII and CIRA/MIRA-seq for non-methylated CpGs (CpG) and methylated CpGs (Me-CpG) at the *HOXA* cluster are shown with the locations of genes.
- B. Gene ontology (GO) analysis of MLL-AF6 target genes in ML-2 cells. The GO file was downloaded from the GO web site (http://www.geneontology.org/), and the

biological process GO term enrichment in the MLL-AF6 target gene set with annotation was plotted.

- C. Average distribution of H3K36me3 at the 154 MLL-AF6-occupied TSSs. The input data and all TSS data are included for comparison. Analysis was performed as in Figure 6A.
- D. Genomic localization of menin in ML-2 cells at various gene loci. Analysis was performed as in Figure 6B. IgG control is shown for comparison.
- E. Genomic localization of menin in ML-2 cells at the posterior *HOXA* loci. Analysis was performed as in Figure 6C. IgG control is shown for comparison.

Figure S6. Schematic representation of the GAL4-ENL fusion proteins

r	I		I		1	
AIMP1	CCDC103	FDFT1	НОХА9	PDLIM2	RPL8	TCF4
ANP32E	CCDC56	FOXD4L1	JMJD1C	POLR2A	RPL9	THAP9
APOLDI	CDC2L5	FOXP1	LOC100216545	PPIL5	RPLP1	TIMM13
ATF4	CDKN1B	FUS	LOC153684	PPP1R10	RPLP2	TMED1
ATF5	CDKN2C	GAS5	LOC401093	PSMG2	RPS15A	TOM1
BATI	CENPL	GF11	LZTR1	PTPN6	RPS18	TRPS1
BAT2	CEP76	GGA3	MBNL1	PTPRK	RPS23	TXN2
BAT3	CNTD1	GLMN	MED22	RASSF1	RPS3A	VPS52
BAT4	COMMD3	GNB2L1	MGAT2	REEP3	RUNX2	YWHAE
BLCAP	CTAGE5	HADHA	MLL5	RPAP2	SATB1	ZBTB4
BRD2	DACH1	HADHB	MLLT10	RPL10A	SEC31A	ZNF335
BUD31	DARS2	HEXIMI	МРО	RPL12	SERBP1	
C10orf140	DLX-AS	HNRNPAI	MRPS7	RPL21	SF3B14	
C11orf58	DLX5	HNRNPH1	МҮС	RPL23	SFRS1	
C19orf48	DLX6	HNRNPK	NDUFA4	RPL31	SFRS7	
C5orf39	EFTUD2	HOXA10	NDUFA4L2	RPL36AL	SIN3A	
C7orf55	EIF3D	HOXA11	NUP62	RPL37	SLBP	
C9orf64	EIF4A1	HOXA11-AS	NUP85	RPL6	SNHG6	
CALM2	EMB	HOXA13	PCBP1	RPL7	SUPT3H	
CBX5	FAM169A	HOXA7	PDAP1	RPL7A	ТВСК	

Table S1. List of MLL-AF6 target genes in ML-2 cells

Epitope	Maker/Reference	ID/Product no.	Application
Histone H2B	Abcam	ab1790	WB
Histone H3	Abcam	ab1791	WB
Histone H3	Active Motif	39163	WB
H3K36me1	Abcam	ab9048	WB
H3K36me2	Cell Signaling	9758	WB
H3K36me2	Abcam	ab9049	ChIP
H3K36me3	Abcam	ab9050	ChIP, WB
H3K27me3	Millipore	07-449	WB
H3K27ac	Abcam	ab4179	WB
H3K4me2	Abcam	ab7766	ChIP, WB
FLAG	Sigma	F-7425	WB
FLAG	Sigma	M2	ChIP, IP,WB
Xpress	Santa Cruz Biotech.	M-21/sc-499	WB
Xpress	Santa Cruz Biotech.	D-8/sc-7270	IP
LEDGF	Bethyl laboratories	A300-848A	ChIP
RNAPII	Millipore	CTD4H8/05-623	WB, ChIP
RNAPII P-Ser2	Abcam	ab5095	WB
Tubulin, beta	Santa Cruz Biotech.	sc-9104	WB
ENL	Yokoyama et al. 2010	ENL-3.1	WB
MLL	Yokoyama et al. 2010	rpN1	ChIP
Menin	Bethyl laboratories	A300-105A	ChIP
AF5q31	Bethyl laboratories	A302-538A	WB
p300	Bethyl laboratories	A300-358A	WB
(Rabbit IgG)	Millipore	pp64B	ChIP

Table S2. Antibodies used in this study

Position	Fwd primer seg	Rev primer seq	Reporter seg
CDKN1B	GGGTCTGTGTGTCTTTTGGCT	GCCCGAACCCCTCTCG	CCAGCGACTGCCCTC
TSS			
CDKN1B	GTCCCGAGGGTCCCTTC	GTGTGCCTACCTCATCTCATACG	CAGCTGTCACATTCTG
Pre TSS			
CDKN1B	GCTTTGGGAGAGCTAACTTTATTG	CGGATCTTACCATCTCCAGTTTC	ACCTGGCCCACTGCTT
Post TSS	GT	TG	
CDKN2C	GGCGGCTGCCCTGT	CCCGGTGCCACTTTGC	CTGTGCCCCTTTGCTG
TSS			
CDKN2C		GCGGGCTTGAGTCTGTGA	CAGCIGCCCCAATIC
Pre 155		CGATTCACACGTGATTATTCAG	CCTCCCCTCCCTTTT
Post TSS	т	CAAA	ceredeerederin
EVI-1	TCACCAGACAGTCATCAATCTCTC	GAAGGGCGTGCAAAATTTTCAA	CCCGCCCAAACAGCAT
Pre TSS	Т	AC	
EVI-1	GCTGCGGAGGATCTGAAAGG	CTCCTTCCCAGTTCCAATGGG	CAGGAGGAGGAGAGTTT
TSS			
EVI-1	CACCACCCTTCATCTCTTTAGCAT	TGGCAGCTTCCTGGAGATATAA	AAGCTGAGATTTTCCC
Post TSS		AAG	
GAPDH	CCACATCGCTCAGACACCAT	GCGAACTCACCCGTTGACT	CCGACCTTCACCTTCC
TSS			
GAPDH	CCCCTCCTAGGCCTTTGC	GCTGAGAGGCGGGGAAAGTT	ACTACCGCAGAGCCTC
Pre TSS			0000404040470040
GAPDH Boot TSS	GGCICICICCCAICCCIICI	AGGAGIGGGAGCACAGGIAA	CUCCACACACAIGUAC
		GCACTGACAAACGTGGCTTT	CCTGCCGGCCTGCACT
Pre TSS	AACTEOCACCEACOAATAOO	UCAUTOACAAAOOTOOCTTT	CERCEGOCETOCACI
HOXA6	GCCTATATGGCCGGGAAATCT	GTCCAGCTCCGGTCAGG	CCCCGCCTCGGCTAC
-2.5kb			
HOXA6	TTCCAGTGTCTCCCCAAAGC	GGAGATGAGGGAGGAGAGAGAGA	CAGCCCCAGACTCAG
Post TSS		AAA	
HOXA7	GCCTTCCCCGTCTGGAT	ACTCTGCCCAAGTCTTCTCTCA	CAGGCCGGACTTAGAC
Pre TSS			
HOXA7	TGCCAGGGTCCATTTCAAGATG	CCCTCATCCCCAGGACCTT	CTCTGTCCTCATTCCC
Post TSS			
HOXA7	CTAGGGATCACTCACTCACTGGAT	AGGCAAATIGCIICCIAAAGGI	CACCELLGCCLETELE
-2.3KD	GACCCCTACCCCAACCT		CCCTCCCCCCCTCCTAC
TSS	GACOCCTACOOCAACCT	OCCITIOGCOAGOTCACI	CELIGEOCETECTAC
HOXA7	CCAGAGCTGATTCCGGATTCG	CCTCGCCTGGTCTGCA	CCCTGAACCCAGCCCC
+4kb			
HOXA9	TGGCTGCTTTTTTTTTTGGCTTCAAT	CCGCGTGCGAGTGC	CCCCTCACATAAAATT
Pre TSS	Т		
HOXA9	TCACCACCACCCCTACGT	GCAAGCCCGCGAAGGA	CAGGAGCGCATGTACC
TSS			
HOXA9	AGTGGCGGCGTAAATCCT	TGATCACGTCTGTGGCTTATTTG	CCCGCAGCCTCATC
Post TSS		AA	
HOXA9	GGATATTCCACCAAAGCCCTTTCA	GGCAATGCCAATAAAAGAGGTG	CTGCCGCCGATAAAG
+5kb			
MEIST	THUCHCAUGICCCUTAGAC		ACIGGICCCAGAICIT
MFIS1	CGGCGTTGATTCCCAATTTATTTC		CCGCCAGCTTTATTT
Pre TSS	A	Chenenaneoenouchulau	
MEIS1	TCTCAGCGCCTCCAAATCTTG	TTTGTGTGTGTGAAATTTAGCTA	CCAGGCAGTTATTTTC
Post TSS		TTTAGGTTTT	
PITX2	CGGTGTCCCAGCTAAGCT	CGAACGAGCTAGGCTTGTCA	CAGCGTCCCGGCCTT
Pre TSS			
PITX2	AGAGAGAGTGCGAGACCGA	GCCACTGGCAGTTTCTTTCTG	CCTCTCCAGCTTTCTC
TSS			

Table S3. Custom-made probes used for ChIP- and CIRA-qPCR in this study