Supplementary Data

Table 1

Primers used in qRT-PCR

Gene	Sense	Antisense		
E7 5' UTR	TCCGGCCCCTGAATGCGGCTAA	CACCCAAAGTAGTCGGTTCCGC		
GAPDH	GAAATCCCATCACCATCTTCCAGG	GAGCCCCAGCCTTCTCCATG		
ISG15	GGCGGGCAACGAATTCCAGGTGT	CTCCCCGCAGGCGCAGATTCA		
ISG56	CTTGAGCCTCCTTGGGTTCG	GCTGATATCTGGGTGCCTAAGG		
RIG-I	TCCAGATGCCAGACAAAGATGAAG	CCTGCTGCTCGGACATTGC		
MDA-5	CGCTATCTCATCTCGTGCTTCAG	TCCAACCAAGGTGCCAGACTC		
PKR	CCCAGATTTGACCTTCCTGA	ACTTGGCCAAATCCACCTG		

Nested primers used in sequencing individual viral genomes

Region	Virus	Primer type	Nucleotide	Sequence
			position	
1	All	Outer, sense	1809	CCCAATTTGATGTAACACCACACATGG
1	All	Inner, sense	1835	GATATTCCAGGCGAAGTACACAACC
1	W W	Outer, antisense	2343	CAAAGCACTACACACTTATTTGGAG
1	C C	Outer, antisense	2382	ATTCGAACGGAGAAATCGTTAC
1	UU	Outer, antisense	2388	TCCCTTAGCATACGTACTGAGAAAT
1	W W	Inner, antisense	2313	GCACCACTATTCCTGTTTGGT
1	C C	Inner, antisense	2348	AACAAAGCACGACGCACTTATT
1	UU	Inner, antisense	2363	CATTACAAGCTGATGCAAAACATAG
Un-modified	All	Outer, sense	3210	TGAGCCCGTACATCAAATCA
Un-modified	All	Inner, sense	3241	TTTTAACCCCACGAACCTGA
Un-modified	All	Outer, antisense	3785	TTGCCGAGTTGTTCGACATA
Un-modified	All	Inner, antisense	3723	CAAGTCACGGATGTCTGCAA

Nested primers used in amplification of E7 Region 1 or Region 2 for competition assays

Region	Primer	Sense	Antisense
1	Outer	CCCAATTTGATGTAACACCACACATGG	CCCATACTCGGATGTGCTTGGG
1	Inner	GATATTCCAGGCGAAGTACACAACC	CACTCGGATTGTGCTTGACATCTG
2	Outer	CAAGGAGCATACACAGGAATACC	GAATGTCTGCCTCATCGCCAACT
2	Inner	GGTACCTACTCTTAGGCAAGCA	AAGCTGGACGCTTCAATGAGCCT

Table S2

Enzymes used in selective digests for competition assays

Virus 1	Virus 2	Region amplified	Enzyme	Restriction site	
Individual con	npetition experiments				
W W	W P P		HindIII	In R1/R2 Permuted	
W W	C C	1	BamHI	In R1/R2 CpG-high	
W W	U U	2	Scal	In R1/R2 UpA-high	
W W	c c	2	SphI	In R1/R2 CpG-low	
W W	ulu	2	EcoRV	In WT	
Pairwise comp	petition experiments				
W W	P P	2	HindIII	In R1/R2 Permuted	
W W	cu W	1	EcoRV	In WT	
W W	W cu	2	EcoRV	In WT	
W W	c c	2	EcoRV	In R1/R2 CpG-low	
W W	u u	2	EcoRV	In WT	
W W	cu cu	2	SphI	In WT	
PP	cu W	1	SphI	In R1/R2 Permuted	
PP	W cu	2	HindIII	In R1/R2 Permuted	
PP	c c	2	HindIII	In R1/R2 Permuted	
PP	u u	2	HindIII	In R1/R2 Permuted	
PP	cu cu	2	HindIII	In R1/R2 Permuted	
cu W	W cu	1	EcoRV	R2 CpG/UpA-low	
cu W	c c	2	SphI	In R1/R2 CpG-low	
cu W	u u	2	EcoRV	In R1 CpG/UpA-low	
cu W	cu cu	2	EcoRV In R1 CpG/UpA-lov		
W cu	c c	2	EcoRV In R1/R2 CpG		
W cu	ulu	2	SphI	In R2 CpG/UpA-low	
W cu	cu cu	1	EcoRV	In R2 CpG/UpA-low	
c c	ulu	2	EcoRV In R1/R2 CpG-low		
c c	cu cu	2	EcoRV In R1/R2 CpG-low		
u u	cu cu	2	Sphl	In R1/R2 CpG/UpA-low	

Table S3

Virus	Region	kb sequenced	Changes observed	Nucleotide position	Туре	Changes in CpG/UpA
E7 WT	1	7	None	poonon		
E7 WT	Un- modified	8.5	None			
R1/R2 CpG high	1	7.5	C→A	1963	Synonymous	None
R1/R2 CpG high	Un- modified	7.5	A→C C→U	3665 3247	Synonymous Synonymous	CpG created None
R1/R2 UpA high	1	8	A→G U→C	2275 2193	Synonymous Non-synonymous: M→T	None CpG created
R1/R2 UpA high	Un- modified	7.5	None			

Nucleotide substitutions observed after sequencing individual passage 1 virus genomes.

Figure S1

Single-step replication assay for E7 and mutant viruses. RD cells were infected with E7 WT, Permuted, CpG/UpA-high mutants (**A**) or CpG/UpA-low mutants (**B**) at an MOI of 10. Infectious titre of supernatants was measured at different time points by TCID₅₀ titrations Data points are the mean of three biological replicates (SEMs shown by error bars). Figure S2

Expression of ISG15 and ISG56 following infection with WT or mutant virus. Gene expression was analysed by qRT-PCR 8 hours following infection with E7, C|C or U|U mutants at an MOI of 10. Poly I:C was transfected as a positive control. Expression is normalised to GAPDH and is shown relative to the E7 WT value. Results are the mean and standard error of two biological replicates.

Figure S3

Expression of RIG-I, MDA-5 and PKR in induced and uninduced shRNA lines. Cell lines expressing RIG-I, MDA-5 or PKR shRNAs, as well as the parental A549 cell line, were transfected with Poly I:C for 8 hours and the relative expression levels of the targeted gene quantified using qRT-PCR. Expression was normalised against GAPDH and is shown relative to the uninduced parental cell line value. Results are the mean and standard error of two technical replicates.

A) Reduction in PKR mRNA levels by 44 hour pre-treatment with PKR siRNA; reductions shown relative to pre-treatment with a validated non-targeted control siRNA. Reductions in PRK mRNA expression were observed irrespective of whether cells were infected with E7 or not.

B) Detection of PKR by Western blot in cell treated with PKR siRNA. Cells were transfected with siRNAs to PKR and incubated for 48 hours. Equal amounts of protein in cell lysates were blotted and detected using a PKR specific mAB followed by anti-rabbit HRP conjugated antibodies and ECL detection. Band densities were measured for two independent experiments. A dose-dependent reduction of protein expression by up to 83% (20nM) was observed.

Figure S4