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1 Supplementary Figures

Supplementary Figure S1. E2F1 and Cabut regulate distinct but overlapping sets of genes. Using
microarrays, we compared gene expression changes in E2F1/DP expressing wings, and Cabut expressing wings,
at two time points, 24h after puparium formation (h APF) and 36h APF. Venn diagrams indicate total numbers of
transcript changes with a fold change of 1.3 or more (> log2 ±0.4) obtained for E2F1 and Cabut overexpression.
Panel A illustrates the set relationship between Cabut and E2F regulated genes at 24h APF; Panel B for the set
relationship at 36h APF. The E2F1 and Cabut independently regulate a smaller set of non-overlapping transcripts
at each timepoint, but also co-regulate a larger number of transcripts at both time points.



3

known E2F motif

B.

A.

transfac

E2F motif
Cabut/E2F co-regulated

Cabut associated-Motif
Cabut only or Cabut/E2F co-regulated

Supplementary Figure S2. A novel Mad-like motif is found in Cabut-regulated and Cabut/E2F1
co-regulated genes. Using MEME we identified motifs enriched in gene clusters displaying differential
interactions with working zone changes as well as the top 200 most strongly E2F1 and Cabut co-upregulated
genes. A novel Mad-like motif was significantly enriched in the upstream regulatory regions of genes in clusters
corresponding to Cabut regulated and E2F1/Cabut co-regulated genes (A). We also readily identified known E2F
binding sites in E2F1 regulated genes that are not as strongly regulated by Cabut as well as E2F1/Cabut
co-regulated genes (B).
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Histogram of Estimated Noise Level of All Quantized Transcripts
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Supplementary Figure S3. The histogram of estimated noise levels of all quantized transcripts from the
Drosophila microarray data. Each transcript is quantized using its observations across 36 gene expression
arrays at time points 0, 24h, 36h APF. The noise level of each transcript under an identical condition is obtained
by maximum likelihood estimation on replicates of the transcript under that identical condition. The average
estimated noise level is 0.22.
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2 Supplementary Results

2.1 Biological support for predicted parent-child interactions
To confirm our findings of differential interactions between over-expression of E2F or Cabut and the control (Fig. 3
in the main text) obtained from the perturbed and normal cell cycle data, we matched 5 gene interactions to those
in BioGRID (Chatr-Aryamontri et al., 2013). We also found 8 known interactions directly involving E2F. The
13 matched interactions are listed in Supplementary Table S1. All these interactions are reported in Drosophila
melanogaster, though we allowed other organisms in our BioGRID search. These interactions suggest a network
of genes promoting proliferation in response to E2F and Cabut activity. Interestingly, we note some interactions are
also predicted to limit cell cycling in response to high E2F activity (negative regulatory loops), but not in response
to Cabut. This is consistent with our previous finding that a robust cell cycle mechanism indeed limits cell cycle
exit delay in response to high E2F activity (Buttitta et al., 2010).

Supplementary Table S1. Biological evidence of detected known genetic interactions illustrates how E2F or
Cabut promote cell proliferation.

Parent cluster Child cluster Parent Child References

C137(6) C131(9) CG3008 Ebi (Guruharsha et al., 2011)
C39(34) Dah CG8247 Dah (Giot et al., 2003)
C21(50) CG6084 Ntf-2 CG6084 (Guruharsha et al., 2011)
C51(45) tos CG9938 (NDC80) tos (Giot et al., 2003)
C10(61) ncd sub ncd (Giunta et al., 2002)

E2F C40(20) E2F DREF (Hochheimer et al., 2002)
E2F C28(48) E2F CycA (Hayashi and Yamaguchi, 1999)

(Staehling-Hampton et al., 1999)
E2F C39(34) E2F brm (Staehling-Hampton et al., 1999)
E2F C39(34) E2F dap (Frolov et al., 2003)

(Weng et al., 2003)
E2F C131(9) E2F Ebi (Boulton et al., 2000)
E2F C288(9) E2F (E2F2) CG13900 (Stanyon et al., 2004)
E2F Rbf2 E2F (E2F2) Rbf2 (Korenjak et al., 2004)

(Taylor-Harding et al., 2004)
E2F CG13806 E2F (E2F2) CG13806 (Stanyon et al., 2004)

The differential interactions can be detected between clusters, a cluster and a gene, or two genes. In the case of a
cluster being involved, all members in the cluster are considered in search of a match to known interactions in
BioGRID.

The 13 verified gene interactions comprise a network of components predicted to act cooperatively to promote
S-phase and proliferation, thereby delaying cell cycle exit in response to ectopic E2F or Cabut activity. The
biological functions of these 13 gene interactions are summarized as follows:

CG3008 – Ebi: This interaction was reported from the protein complex network derived by Guruharsha et al.
(2011) using yeast two-hybrid screening. CG3008 is the fly ortholog of the human RIO kinases which
were recently shown to promote aberrant growth and proliferation in a Drosophila model of glioblastoma
(Read et al., 2013). Ebi is a component of a transcriptional co-repressor complex that mediates histone
deacetylation to repress gene expression via HDAC3 (Qi et al., 2008) and was recently shown to interact
with the E2F repressor Rbf to inhibit cell cycle gene expression (Lim et al., 2013). This interaction suggests
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RIO kinases may play a role in modifying the Ebi co-repressor to modulate its repressive activity on G1-S
phase cell cycle gene expression

CG8247 – Dah: This interaction was previously reported from the protein interaction map of Drosophila based
on fly proteome data (Giot et al., 2003). CG8247 is an uncharacterized gene. Dah is a component of actin
contractile ring assembly, essential for completion of the cell cycle at cytokinesis (Albertson et al., 2008)

Ntf-2 – CG6084: This interaction was reported from the protein complex network derived by Guruharsha et al.
(2011), Ntf-2 is a part of a multiprotein complex that facilitates import of the Relish transcription factors
into the nucleus (Bhattacharya and Steward, 2002). CG6084 is an uncharacterized gene with homology to
human Aldehyde reductases

CG9938 (NDC80) – tos: This interaction was previously reported from the fly proteome data (Giot et al., 2003).
CG9938, also known as NDC80, is an outer kinetochore protein, critical during the cell cycle in mitosis
for proper spindle assembly. tos (tosca) is an endonuclease involved in DNA repair pathways, which are
induced in response to cell cycle entry

sub – ncd: sub (subito) and ncd are both kinesin-family microtubule motor proteins required for chromosome
segregation during mitosis. Both interact in mitotic spindle formation (Giunta et al., 2002)

E2F – DREF: DREF is a promoter binding component that interacts with the TRF2 complex to direct core pro-
moter recognition of hundreds of cell cycle and cell growth genes including the proliferating cell nuclear
antigen (PCNA) gene (Hochheimer et al., 2002). The upstream regions of most direct E2F transcriptional tar-
gets also contain DREF binding sites (O’Keefe et al., 2012). This interaction suggests a positive-regulatory
loop to promote cell cycle progression in response to E2F activity

E2F – CycA: CycA is the S and G2 cyclin promoting cell cycle progression (Lehner and O’Farrell, 1989). CycA
with Cdc2 also cooperatively inhibits transcriptional activity of E2F to limit S-phase (Hayashi and Yam-
aguchi, 1999). This interaction suggests a potential negative-feedback loop to partially limit abnormal cell
cycle progression in response to aberrant E2F activity

E2F – brm: brm modifies chromatin structure facilitating DNA binding of transcription factors (Staehling-Hampton
et al., 1999), and both physically and genetically interacts with the cell cycle regulator and E2F target gene
CycE (Brumby et al., 2002)

E2F – dap: Dacapo (dap) is the Drosophila homolog of p21, which inhibits S-phase entry by repression of
CycE/cdk activity (Frolov et al., 2003; De Nooij et al., 1996; Lane et al., 1996). This interaction suggests a
negative-feedback loop to limit abnormal cell cycle progression in response to E2F activity

E2F – Ebi: As mentioned above, Ebi was recently shown to interact with the E2F repressor Rbf to inhibit cell
cycle gene expression (Lim et al., 2013). Ebi is highly expressed only in E2F+ but not in Cabut+. This
interaction suggests a negative-feedback loop to limit abnormal cell cycle progression in response to E2F
activity, which is not observed in response to Cabut activity

E2F – CG13900: This interaction was identified through high throughput yeast two-hybrid screening using the
E2F paralog E2F2 as bait and CG13900 as prey (Stanyon et al., 2004). CG13900 is the Drosophila ortholog
of the splicing factor 3b, subunit 3 (SF3B3), conserved from yeast to humans. In yeast, SF3B3 has been
suggested to be involved in splicing transcripts encoding a protein (or proteins) required for G2/M transition
(Habara et al., 2001)

E2F – Rbf2: E2F2 and Rbf2 form a complex to suppress cell cycle gene expression (Taylor-Harding et al., 2004).
Rbf2 is highly expressed only in E2F+, but not in Cabut+. This interaction suggests a negative-feedback
loop to limit abnormal cell cycle progression in response to E2F activity, which is not observed in response
to Cabut activity.
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E2F – CG13806: This interaction was identified through high throughput yeast two-hybrid screening using the
E2F paralog E2F2 as bait and CG13806 as prey (Stanyon et al., 2004). CG13806 is an uncharacterized
gene encoding a protein with a chitin binding domain. CG13806 is repressed in both E2F+ and Cabut+
conditions, suggesting it is a novel common target for repression upon cell cycle exit delay.

2.2 Novel gene interactions promoting proliferation in response to E2F and Cabut
In addition to the interactions confirmed from the literature above, we also predicted parent-child interactions with
genes that do not have any known interactions within the BioGRID database (Chatr-Aryamontri et al., 2013) or
literature search. Function via GO terms and expression patterns of the target child genes are summarized in
Supplementary Table S2. These suggest novel interactions for future investigation. Importantly, certain classes
of genes were conspicuous within this group, further suggesting a coherent network modulated by E2F and Cabut
to promote proliferation. These include several genes involved in DNA replication and repair during S-phase, as
well as centrosome assembly, duplication and function during G2 and mitosis.

Supplementary Table S2. Function and gene expression patterns of target genes of the shared differential
interactions under E2F+ and Cabut+.

Relative Expression
Gene GO terms References E2F+ Cabut+ Control

RanGap meiotic chromosome segregation (Kusano et al., 2003) ++ - - -
RpA-70 DNA-dependent DNA replication (Mitsis et al., 1993) ++ - - -
tefu cell cycle check point (Sekelsky et al., 2000) + - - -
CG13745 mitotic G2 DNA damage checkpoint (Kondo and Perrimon,

2011)
0 - - -

DnaJ-60 protein folding (Iliopoulos et al., 1997) 0 + ++

skl apoptotic process; cell death; devel-
opmental programmed cell death

(Bergmann et al., 2003) + 0 - -

l(3)s2214 asymmetric cell division; centriole
replication; centrosome duplication

(Basto et al., 2006) + - - -

CG11175 centrosome organization (Dobbelaere et al., 2008) - - + -
IM10 defense response; humoral immune

response; Toll signaling pathway
(Uttenweiler-Joseph
et al., 1998)

- 0 +

CG13162 centrosome duplication; mitotic
spindle organization

(Goshima et al., 2007) 0 - - -

CG9919 N/A 0 0 ++

CG15234 N/A 0 0 - -
CG13806 N/A - - ++

The functions are described by GO terms. In the relative expression column, the signs of “-”, “0”, “+” indicate
relatively under-, intermediate-, and over-expressed among the three conditions of E2F+, Cabut+, and control,
with “- -” or “++” suggesting consistently under- or over-expressed in the replicates. “+ -” suggests both under-
and over-expressed replicates are observed.

Here we provide further detail on some novel interactions with clear links to the cell cycle.

Interactions associated with priority gene cluster C15(7): Cluster C15(7) contains seven genes and are impli-
cated in five differential interactions from the control consistent between E2F+ and Cabut+. Two genes in
C15(7) are XRCC1 and kuk known to have cell cycle related function:
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XRCC1 is involved in the repair of DNA damage and interacts with several E2F transcriptional targets
including PCNA (Ravi et al., 2009)

kuk is involved in cell aging (Brandt et al., 2008), nucleus organization and nuclear breakdown at mitosis
(Hampoelz et al., 2011)

The targets (children) of C15(7) include the following genes that may be implicated in cell cycle:

RanGap is involved in mitotic spindle assembly and segregation. The ran GTPase regulates mitotic spindle
assembly (Kalab et al., 1999)

RpA-70 is involved in DNA-dependent DNA replication (Mitsis et al., 1993)

tefu is the Drosophila homolog of human ATM, which is a kinase activated in response to DNA damage for
repair and cell cycle regulation (Sekelsky et al., 2000)

CG13745 is the fly homolog of FANCI, a components of the Fanconia Anemia Complementation Group I,
involved in DNA replication and the response to DNA damage (Kondo and Perrimon, 2011)

C221(16) – DnaJ-60: DnaJ-60 is an uncharacterized gene encoding a protein with a DNA-J domain, which is a
characteristic domain in chaperone proteins that assists in protein folding (Iliopoulos et al., 1997)

C32(2) – skl: skl binds to the Inhibitor of Apoptosis (IAP) family of proteins to block their anti-apoptotic effects
(Bergmann et al., 2003)

C39(34) – l(3)s2214: Sas-4 (l(3)s2214) is essential for centrosome organization, specifically centriole replication
during the G2-phase of the cell cycle (Basto et al., 2006)

C380(4) – CG11175: Rcd6 (CG11175) is essential for centrosome organization, specifically recruitment of peri-
centriolar material during centrosome replication (Dobbelaere et al., 2008)

C188(5) – IM10: IM10 is involved in fly defense and immune response via the Toll signaling pathway (Uttenweiler-
Joseph et al., 1998)

C39(34) – CG13162: ana3 (CG13162) is essential for centrosome assembly and duplication (Goshima et al.,
2007)

3 Supplementary Methods

3.1 The asymptotic null distribution of the heterogeneity statistic
Here, we prove the asymptotic null distribution of the heterogeneity test statistic χ2

d
to be chi-squared as stated

in the main text. The was loosely introduced in a couple of textbooks (Steel et al., 1997; Zar, 2010; Sheskin,
2011). The proof is based on the work of Lancaster (1949) and Irwin (1949). We first summarize their results on
partitioning a contingency table into a number of i.i.d. standard normal variables, and then give our proof for χ2

d
to be asymptotically chi-square distributed.

Chi-square partition of a contingency table

We summarize the theoretical result on partitioning the chi-square of an r × s contingency table to the sum of
independent chi-squares of 1 degree of freedom. Lancaster (1949) and Irwin (1949) laid the theoretical foundation
for chi-square partition of contingency table by applying two orthogonal transforms.

Lemma 1. A contingency table can be asymptotically partitioned into a matrix of independent standard normal
random variables, and the sum of their squares is the same as the chi-square of the original contingency table,
when the row and column variables have no associations.
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This lemma is proved in (Lancaster, 1949). We summarize the proof below with changed notation for consis-
tency within this paper.

Proof. Let [pi j ] be a matrix of the cell population probabilities of an r × s contingency table following a multi-
nomial distribution. Let row probabilities pi · be the sum of row i of [pi j ], and column probabilities p· j the sum of
column j of [pi j ]. Our derivation is based on the non-association of the row and column variables, that is,

pi j = pi ·p· j

Let [ni j ] be an observed contingency table sampled from the above multinomial distribution with n independent
trials. Let matrix A = [ai j ] be the normalized version of [ni j ] defined as

ai j =
ni j − npi j√npi j

(S1)

where n =
∑

i j ni j .
Irwin (1949) defined the r × r row-Helmert matrix V by

Vi, j =



√
pi · i = 1

0 j > i, i , 1

−
√

p1·+···+pi−1·
p1·+···+pi ·

j = i, i , 1√
pi · p j ·

(p1·+···+pi−1· )(p1·+···+pi · )
j < i

(S2)

and the s × s column-Helmert matrix W by replacing pi · by p· j in V .
Lancaster (1949) and Irwin (1949) applied two orthogonal transforms to A using

E = V AW⊤ (S3)

and showed that as n → ∞, elements in r × s matrix E = [ei j ] are independent standard normal variables, except
that e11 = 0. We now define

χ2 =

r∑
i=2

s∑
j=2

e2i j

and also

χ2all =

r∑
i=1

s∑
j=1

e2i j , χ2row =

r∑
i=1

e2i1, χ2col =

s∑
j=1

e21 j

With pi j = pi ·p· j and via Stirling’s approximation, we have asymptotically

χ2all = χ
2
row + χ2col + χ

2 (S4)

which is proved on page 123 of (Lancaster, 1949) with an illustrating example on page 126 of the same paper.
If pi · and p· j are not estimated from the sample, we asymptotically have χ2all is chi-squared with rs− 1 degrees

of freedom, χ2 is chi-squared with (r − 1)(s − 1) degrees of freedom, χ2row is chi-squared with r − 1 degrees of
freedom, and χ2col is chi-squared with s − 1 degrees of freedom. The −1 in all above degrees of freedom is due to
e11 = 0.

Otherwise if pi · and p· j are sample row and column probabilities, we have χ2row = χ
2
col = 0 and χ2all = χ

2 is
chi-squared with (r − 1)(s − 1) degrees of freedom.

□

The interpretation of the four chi-squares are as follows. χ2all is due to all causes of variation from npi j , χ2row
due to row variation from npi · , χ2col due to column variation from np· j , and χ2 due to association or interactions
beyond ni ·n· j/n, where ni · and n· j are sample row and column sums of [ni j ].
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Heterogeneity of multiple contingency tables

Let K r × s contingency tables have sample sizes n1, . . . ,nK each. Let n = n1 + · · · + nK be the sum of the K
sample sizes. We define the pooled contingency table to be [ni j ] = [

∑K
k=1 ni j,k ], where ni j,k is the observed count

in cell (i, j) of contingency table k.
We first give a lemma on quadratic forms of i.i.d standard normal variables. A proof of this lemma can be

found in (Mathai and Provost, 1992).

Lemma 2. When x = [x1, . . . , xD]
⊤ is a vector of D i.i.d. standard normal random variables and D × D matrix

A is idempotent, the quadratic form x⊤Ax is chi-square distributed with rank A degrees of freedom.

With the two lemmas, we are ready to prove the following theorem regarding the asymptotic null distribution
of the heterogeneity statistic χ2

d
across K contingency tables.

Theorem 3 (Heterogeneity chi-square of K contingency tables). Under the null hypothesis of K homogenous non-
interacting r × s contingency tables, the heterogeneity statistic χ2

d
=

∑K
k=1 χ

2
k
− χ2pool is asymptotically chi-square

distributed with (K − 1)(r − 1)(s − 1) degrees of freedom.

Proof. By Lemma 1 and let Ak = [ai j,k ] be the normalized matrix of contingency table k, we can partition Ak to
residual matrix Ek = [ei j,k ] of independent standard normal random variables.

Under the null hypothesis of homogeneous contingency tables, we assume the K conditions share the same cell
probabilities [pi j ], then the normalized pooled element

apool
i j =

ni j − npi j√npi j
(S5)

=

K∑
k=1

ni j,k − nk pi j√npi j
(S6)

=

K∑
k=1

√
nk
n

ni j,k − nk pi j√nk pi j
(S7)

=

K∑
k=1

√
nk
n

ai j,k (S8)

Thus we can represent the normalized pooled matrix Apool by the normalized matrices under the K conditions:

Apool =

√
n1

n
A1 + · · ·+

√
nK

n
AK (S9)

By Lemma 1, the row and column Helmert matrices V defined in Eq. (S2) and W are all identical given that the
contingency tables are all sampled from the same multinomial distribution with parameter [pi j ]. Thus the pooled
contingency table is also from the same population. Therefore the partitioned residual for Apool in cell (i, j) is

epool
i j = [vi1, . . . ,vir ]Apool[w j1, . . . ,w jr ]

⊤ (S10)

= [vi1, . . . ,vir ]

(√
n1

n
A1 + · · ·+

√
nK

n
AK

)
[w j1, . . . ,w jr ]

⊤ (S11)

=

√
n1

n
[vi1, . . . ,vir ]A1[w j1, . . . ,w jr ]

⊤ + . . . +

√
nK

n
[vi1, . . . ,vir ]AK [w j1, . . . ,w jr ]

⊤ (S12)

=

√
n1

n
ei j,1 + . . . +

√
n1

n
ei j,K (S13)
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When i > 1 or j > 1, the difference between the sum of individual condition residual squares and the square
of pooled residual for cell (i, j) is

χ2i j =e2i j,1 + . . . + e2i j,K − e2i j,pool (S14)

=e2i j,1 + . . . + e2i j,K −
(√

n1

n
ei j,1 + . . . +

√
n1

n
ei j,K

)2
(S15)

=[ei j,1, . . . ,ei j,K ]


I −

[√
n1

n
, . . . ,

√
nK

n

]⊤ [√
n1

n
, . . . ,

√
nK

n

] [ei j,1, . . . ,ei j,K ]⊤ (S16)

Since ei j,k (k = 1, . . . ,K ) are all i.i.d. standard normal asymptotically (Lemma 1) and

I −
[√

n1

n
, . . . ,

√
nK

n

]⊤ [√
n1

n
, . . . ,

√
nK

n

]

is idempotent with rank K − 1, by Lemma 2 the quadratic form χ2i j gives rise to a chi-square random variable with
K − 1 degrees of freedom.

When i = j = 1, e11,1 = · · · = e11,K = e11,pool = 0 (Lemma 1). Therefore χ211 = 0.
As ei j,k are independent across i, j, k, it implies all χ2i j are independent across i, j.
Let χ2

k,all, χ
2
k,row, χ2

k,col, and χ2
k

be as derived by Lemma 1 for contingency table k. Let χ2pool,all, χ
2
pool,row,

χ2pool,col, and χ2pool be as derived by Lemma 1 for the pooled contingency table. It follows that we can derive four
heterogeneity chi-square random variables as follows. Summing up χ2i j over all i and j, we obtain the heterogeneity
chi-square due to all causes of variations across conditions

χ2d,all =

K∑
k=1

χ2k,all − χ
2
pool,all =

r∑
i=1

s∑
j=1

e2i j,1 + . . . + e2i j,K − e2i j,pool ∼ χ2(K−1)(r s−1) (S17)

Summing up χ2i j over j, we obtain the heterogeneity chi-square due to differences between rows across conditions

χ2d,row =

K∑
k=1

χ2k,row − χ
2
pool,row =

r∑
i=1

e2i1,1 + . . . + e2i1,K − e2i1,pool ∼ χ2(K−1)(r−1) (S18)

Summing up χ2i j over i, we obtain the heterogeneity chi-square due to differences between columns across condi-
tions

χ2d,col =

K∑
k=1

χ2k,col − χ
2
pool,col =

s∑
j=1

e21 j,1 + . . . + e21 j,K − e21 j,pool ∼ χ2(K−1)(s−1) (S19)

Summing up χ2i j over i, j > 1, we obtain the heterogeneity chi-square due to interactions or associations across
conditions

χ2d =

K∑
k=1

χ2k − χ
2
pool =

r∑
i=2

s∑
j=2

e2i j,1 + . . . + e2i j,K − e2i j,pool ∼ χ2(K−1)(r−1)(s−1) (S20)

□

Corollary 4. The heterogeneity chi-square due to all causes of variations is the sum of the heterogeneity chi-
squares due to row, column, and association variations.

Proof. As it follows from Lemma 1 that

χ2k,all = χ
2
k,row + χ2k,col + χ

2 (S21)

χ2pool,all = χ
2
pool,row + χ2pool,col + χ

2
pool (S22)
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and with Eq. (S17), (S18), (S19), and (S20), we obtain

χ2d,all = χ
2
d,row + χ2d,col + χ

2
d (S23)

□

Approximation errors

As implied in Eq. (S20), there are two ways to compute the heterogeneity chi-square χ2
d

due to interactions or
associations. The first is to use the pooled marginals to estimate pi · and p· j and compute χ2

d,all, χ
2
d,row, and χ2

d,col.
Then using Eq. (S23), we get

χ2d = χ
2
d,all − χ

2
d,row − χ

2
d,col (S24)

By the above steps, we can avoid computing the two orthogonal transforms using the row- and column-Helmert
matrices.

The second way is to compute directly χ2
k

and χ2pool using their respective marginals to estimate pi · and p· j
for each contingency table. This is what has been used in the literature (Zar, 2010; Sheskin, 2011). However, this
method would not guarantee non-negativity of χ2

d
and therefore one must take the absolute value of Eq. (S20) by

χ2d =

������
K∑
k=1

χ2k − χ
2
pool

������ (S25)

Both strategies converge to the same result as sample size n → ∞. When sample size is small, the two methods
are highly correlated as demonstrated in Supplementary Fig. S4, where some negative χ2

d
appeared by the second

approach.
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Supplementary Figure S4. Correlation of two heterogeneity chi-square χ2
d

estimates at small sample sizes.
The horizontal axis is χ2

d
computed using Eq. (S24). The vertical axis is χ2

d
computed using Eq. (S20). The data

is from two 3×3 tables of 16 versus 8 samples drawn randomly from two identical equal probability multinomial
distributions. The two estimates are close but the one calculated using Eq. (S20) can be negative, though both are
asymptotically accurate.
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3.2 The chi-square test for change in working zone
It is often necessary, such as in differential gene interaction analysis, to require a parent set or the child to show
change in dynamic range or working zone. Such changes can be important for time course data when the dynamic
range of a random variable has shifted between two conditions. However, testing working zone change is beyond
testing for difference between means such as the t-test and its variants. This is due to the possibility that a random
variable with two different distributions can still have the same mean, for example, in the two histograms in
Supplementary Fig. S5. To test the working zone change of a discrete random variable Z of Q levels under K

0"
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7"
8"
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10"
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2"
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0" 1" 2"

Supplementary Figure S5. Working zone change of a random variable under two conditions. In the left
histogram, the variable has a mean of 1 with a valley-like distribution; in the right histogram, the variable has the
same mean of 1 but a ridge-like distribution. Thus the variable has different distributions, yet with same mean
under two conditions. A t-test on above two data sets will not detect mean difference and result in a p-value of 1.
But in reality the two variable have very different dynamic ranges or changed working zones.

conditions, we perform a chi-square test (Press et al., 2007) to compare the K histograms of Z by the statistic

χ2z =

K∑
k=1

∑
z

(nk (z) − n̄k (z))2

n̄k (z)
(S26)

where nk (z) is the observed frequency of Z = z in condition k, and n̄k (z) is the expected frequency of Z = z in
condition k under the null hypothesis of same distributions given by

n̄k (z) =
n1(z) + . . . + nK (z)

n1 + . . . + nK
nk (S27)

where nk is the total number of observations in condition k. It has been shown that under the null hypothesis of
identical distributions under the K conditions, χ2z is chi-square distributed with vz = K (Q − 1) d.f.

The above test can be applied to examine both parent and child working zone change. For parent set Π =
{Y1, . . . ,YM }, we create a compound discrete random variable whose levels are permutation of the individual parent
variable levels. We denote the parent working zone test statistic by χ2,πz with p-value pπz . For child X , we call the
child working zone test statistic χ2,xz with p-value px

z .

3.3 A discrete noise model and its estimation
We define a probabilistic noise model that changes a true ordinal discrete value to a noised version. The model
applies to discrete ordinal variables. The probability of observing a perturbed value decreases as it deviates further
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way from the true value. This model is designed to capture both variation in the original continuous variable and
quantization errors.

Let x ∈ [0,Q − 1] be the true value and x′ ∈ [0,Q − 1] be a noisy observation. Let θ be a noise level between 0
and 1. Specifically, we define the noise model by the conditional probability

P(x′ |x, θ) =

θ, x′ , x
1 − θ, x′ = x

x, x′ ∈ {0,1}, or

(
1 − |x′−x |∑2

u=0 |u−x |

)
θ, x′ , x

1 − θ, x′ = x
x, x′ ∈ {0,1,2} (S28)

where 0 ≤ θ ≤ 1 denotes the noise level.
For the purpose of comparative analysis of binary variable, the worst-case noise level θ is 0.5, not 1, as θ = 1

leads to preservation of all original interactions and the only nominal change is that the truth table values become
complementary to the original. In the yeast models all but one variable (Cdc2_Cdc13 in the fission yeast networks)
are binary. The worst-case noise for a three-level variable is about 0.7.

Given independent n noisy observations x1, . . . , xn of a discrete random variable, we estimate both the true
value and the noise level using maximum likelihood estimation. Let x̂ be the estimated value of x. Given x̂ = q,
we can prove by maximum likelihood principle that

θ̂(q) = 1 − |{i | xi = q,1 ≤ i ≤ n}|
n

(S29)

To obtain the best estimate of the truth value x̂, we enumerate all possible values q ∈ [0,Q − 1] to obtain the
corresponding θ̂(q), then select best x̂ by

x̂ = max
0≤q<Q

L(q, θ̂(q) | x1, . . . , xn ) = max
0≤q<Q

n∏
i=1

P(xi |q, θ̂(q)) (S30)

and the optimal estimate of θ is thus θ̂( x̂).
We estimate the noise level for each gene using replicates under the same condition to make sure the true value

is consistent. Then we estimate noise levels for all genes. The histogram of noise levels estimated for the fruit fly
data is shown in Supplementary Fig. S3.

3.4 Benchmarking on differential gene networks regulating yeast cell cycle
To benchmark the performance of CPχ2 method for detecting conserved and differential gene interactions, we
used two pairs of generalized logical network (GLN) models for yeast cell cycle published in the literature, against
the reconstruct-then-compare method.

Groundtruth differential yeast cell cycle network models

The first pair of GLN models (Li et al., 2004; Faure and Thieffry, 2009) is for the budding yeast cell cycle. Their
network topologies are shown in Supplementary Fig. S6. The generalized logical rules in each model are given
in Supplementary Fig. S7 and S8.

The second pair of GLN models (Davidich and Bornholdt, 2008; Faure and Thieffry, 2009) is for the fission
yeast cell cycle. Their network topologies are shown in Supplementary Fig. S9. The generalized logical rules
in each model are given in Supplementary Fig. S10 and S11. This first model (Davidich and Bornholdt, 2008)
has been drastically simplified from the original published model, by eliminating fictitious genes. Although this
model is simplified, it offers a contrast with the second fission yeast model and still provides a good example for
performance evaluation of our algorithms.

The four GLN models are obtained from the GINSim (Gonzalez et al., 2006) website (http://gin.univ-mrs.
fr), with modifications as described in the figure captions.

http://gin.univ-mrs.fr
http://gin.univ-mrs.fr
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Supplementary Figure S6. Two budding yeast cell cycle networks. The left one is based on (Li et al., 2004)
and the right one based on (Faure and Thieffry, 2009). Both are different from the originally published models in
the self-cycle at Cln3, which was added in our models to indicate that Cln3 will maintain its initial value during
the dynamical progression of the system.

The 1st budding yeast cell cycle model (Li et al., 2004)
Cln3 <- Cln3
MBF <- ((Cln3 | MBF) & !Clb1_2) | (Cln3 & MBF & Clb1_2))
SBF <- ((Cln3 | SBF) & !Clb1_2) | (Cln3 & SBF & Clb1_2))
Cln1_2 <- SBF
Cdh1 <- ((Cdc20_Cdc14 | Cdh1) & !(Cln1_2 | Clb1_2 | Clb5_6))

| (Cdc20_Cdc14 & Cdh1 & !((Cln1_2 & Clb1_2) | (Cln1_2 & Clb5_6)
| (Clb1_2 & Clb5_6)))

Swi5 <- ( (Mcm1_SFF | Cdc20_Cdc14) & !Clb1_2 )
| (Mcm1_SFF & Cdc20_Cdc14 & Clb1_2)

Cdc20_Cdc14 <- Clb1_2 | Mcm1_SFF
Clb5_6 <- ( (MBF | Clb5_6) & !(Sic1 | Cdc20_Cdc14) )

| ( MBF & Clb5_6 & !(Sic1 & Cdc20_Cdc14) )
Sic1 <- ((Swi5 | Cdc20_Cdc14 | Sic1) & !(Cln1_2 | Clb1_2 | Clb5_6) )

| ( ((Swi5 & Cdc20_Cdc14) | ((Swi5 | Cdc20_Cdc14) & Sic1))
& !((Cln1_2 & Clb1_2) | (Cln1_2 & Clb5_6) | (Clb1_2 & Clb5_6)))

| (Swi5 & Cdc20_Cdc14 & Sic1 & !(Cln1_2 & Clb1_2 & Clb5_6) )
Clb1_2 <- ((Clb1_2 | Clb5_6 | Mcm1_SFF) & !(Cdc20_Cdc14 | Cdh1 | Sic1))

| (((Clb1_2 & (Clb5_6 | Mcm1_SFF)) | (Clb5_6 & Mcm1_SFF))
& !((Cdc20_Cdc14 & Cdh1) | (Cdc20_Cdc14 & Sic1) | (Cdh1 & Sic1)))
| (Clb1_2 & Clb5_6 & Mcm1_SFF & !(Sic1 & Cdh1 & Cdc20_Cdc14))

Mcm1_SFF <- Clb1_2 | Clb5_6

Supplementary Figure S7. The logical rules for the first budding yeast cell cycle model. They are based on
(Li et al., 2004). The operator “&” stands for logical and, “|” for logical or, and “!” for logical negation. The
operator “<-” stands for assignment.
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The 2nd budding yeast cell cycle model (Faure and Thieffry, 2009)
Cln3 <- Cln3
MBF <- Cln3 & !Clb1_2
SBF <- Cln3 & !Clb1_2
Cln1_2 <- SBF
Cdh1 <- !(Cln1_2 | Clb5_6 | Clb1_2) | Cdc20_Cdc14
Swi5 <- ( (Mcm1_SFF | Cdc20_Cdc14) & !Clb1_2 )

| (Mcm1_SFF & Cdc20_Cdc14 & Clb1_2)
Cdc20_Cdc14 <- Clb1_2 | Mcm1_SFF
Clb5_6 <- (MBF | !Sic1) & !Cdc20_Cdc14
Sic1 <- (Swi5 & Cdc20_Cdc14) | !(Cln1_2 | Clb5_6 | Clb1_2)
Clb1_2 <- !(Cdh1 | Sic1 | Cdc20_Cdc14) | (Clb5_6 & Mcm1_SFF)
Mcm1_SFF <- Clb1_2 | Clb5_6

Supplementary Figure S8. The logical rules for the second budding yeast cell cycle model. The rules are
based on (Faure and Thieffry, 2009).
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Supplementary Figure S9. Two fission yeast cell cycle networks. The left one is a simplified version of
(Davidich and Bornholdt, 2008) and the right one is a modified version by Faure and Thieffry (2009). In the
simplified model from (Davidich and Bornholdt, 2008), fictitious edges were removed based on the logical rules
given in (Faure and Thieffry, 2009). A “Start” node in the originally published versions was also removed. In the
modified model, a self-repeating Cdc2_Cdc13_A node was added to make the two models contain exactly the
same set of nodes.

The 1st fission yeast cell cycle model (Davidich and Bornholdt, 2008)
SK <- SK
Cdc2_Cdc13 <- Cdc2_Cdc13
Ste9 <- PP | Ste9
Rum1 <- PP | Rum1
Slp1 <- Cdc2_Cdc13_A
Cdc2_Cdc13_A <- Cdc25
Wee1_Mik1 <- PP | Wee1_Mik1
Cdc25 <- Cdc25 | Cdc2_Cdc13
PP <- Slp1

Supplementary Figure S10. The logical rules for the first fission yeast cell cycle model. The rules are
simplified from (Davidich and Bornholdt, 2008).
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The 2nd fission yeast cell cycle model (Faure and Thieffry, 2009)
SK <- SK
Cdc2_Cdc13 <- 1, if(!Ste9 & !Slp1 & !Rum1 & (!Cdc25 | Wee1_Mik1))

2, else if(Cdc25 & !Wee1_Mik1 & !Ste9 & !Rum1 & !Slp1)
0, otherwise

Ste9 <- !(SK | Cdc2_Cdc13) | PP
Rum1 <- !(SK | Cdc2_Cdc13) | PP
Slp1 <- Cdc2_Cdc13 > 0 ## Cdc2_Cdc13 has 3 levels
Cdc2_Cdc13_A <- Cdc2_Cdc13_A
Wee1_Mik1 <- PP | !Cdc2_Cdc13
Cdc25 <- ((Cdc2_Cdc13==1) & !PP) | (Cdc2_Cdc13==2)
PP <- Slp1

Supplementary Figure S11. The logical rules for the second fission yeast cell cycle model. Based on (Faure
and Thieffry, 2009).

Data generation by model simulation

Using the four models, we simulated noisy data to cover all state transitions. For each model, trajectories were
obtained by exhaustive simulation in our GLN modeling software. During exhaustive simulation, each unvisited
state of the model is used as the initial state and the simulation run stops until an attractor cycle is detected. This
process is iterated until all states have been visited.

The first budding yeast cell cycle model (Li et al., 2004) has 1803 trajectories each of 2-8 time points. The
second budding yeast cell cycle model (Faure and Thieffry, 2009) has 1965 trajectories each of 2-13 time points.
The first fission yeast cell cycle model (Davidich and Bornholdt, 2008) has 496 trajectories each of 2-7 time points.
The second fission yeast cell cycle model (Faure and Thieffry, 2009) has 718 trajectories each of 2-8 time points.

Each yeast gene network, also called a circuit, represents dynamic interactions among 9 or 10 cell cycle genes.
The gold standard, or groundtruth, for the simulation studies is conserved and differential interactions in the two
network pairs. Each pair differs in either wiring or control logic, but may still share some identical interactions.
Altogether there are 20 pairs of interactions: 13 differential and 7 conserved in the two network pairs. For example,
interactions at Swi5 are conserved in the first pair of budding yeast networks because Swi5 shares the same logical
rule; interactions at Cdc25 are differential in the pair of fission yeast networks because Cdc25 uses different rules
across the two networks. These interactions, as the gold standard, are checked against those obtained from either
method in performance evaluation.

The input to comparative analysis is time courses or trajectories obtained from running each model using the
logical rules. For each circuit, we generated various numbers of simulated and noisy trajectories, each lasting 2-13
time points, to cover all states of the networks. Then we added different levels of noise to each trajectory using the
noise model defined in Eq. (S28).

Setup of three comparative analysis methods

On each pair of trajectory collections from two networks, we ran reconstruct-then-compare, differential correlation,
and CPχ2. The common setup for the three methods is as follows: a maximum of 6 parents per child was allowed;
self-regulation was enabled; a Markovian order of one was specified. The decision-making parameter was the
α-level (or maximum false positive rate) for both CPχ2 and reconstruct-then-compare. The parent selection is
made based on maximum statistical significance of the chi-square statistics. Key parameters are summarized in
Supplementary Table S3.

Besides the common setup defined above, the specific setup to each method are summarized as follows:

Reconstruct-then-compare (RTC). Here, each generalized truth table is reconstructed based on the p-value of chi-
squares of the contingency table under each condition; then truth-tables are compared to determine conserved
or differential interactions. Given two generalized truth tables T1,T2, parent sets π1, π2, p-values p1,p2, and
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Supplementary Table S3. Key parameters for comparative analysis of yeast cell cycle models. They are used
by all three methods – reconstruct-then-compare, differential correlation, and CPχ2.

Parameter Max # parents Markovian order Different topology Self-cycle

Value 6 1 Allowed Allowed

type I error α, the decision on the comparative interaction type t is made by

t =


Differential if (π1 , π2 or T1 , T2) and (p1 or p2 ≤ α),
Conserved otherwise,

(S31)

where the condition for differential implies truth tables must be different and at least one of them significant.

Differential correlation. This method uses differential correlation to evaluate heterogeneity across contingency
tables under multiple conditions. Parents of a child are selected based on p-value of chi-squares of each
condition. The option used in the program is -Y BY_EACH_COND, the same as the setup for CPχ2 (next). The
smallest superset of parents across all K conditions are used to compute correlation coefficient rk with the
child under condition k, such that these correlation coefficients are comparable. The differential correlation
across K conditions is defined by

dc =
1

2K

K∑
k=1

|rk − r̄ | (S32)

where r̄ is the average correlation coefficients over the K conditions. When K = 2, dc = |r1 − r2 |/2.

Given ∆0, parent sets π1, π2, the decision on comparative interaction type t is made by

t =


Differential if dc ≥ ∆0,
Conserved otherwise.

(S33)

Comparative chi-square analysis (CPχ2). Parents of a child are selected based on p-value of chi-squares of each
condition. The option used in the program is -Y BY_EACH_COND. Instead of comparing truth tables as in
reconstruct-then-compare, contingency tables are obtained to measure heterogeneity and homogeneity by the
p-values pd and pc . Given pd , parent sets π1, π2, and type I error α, the decision on comparative interaction
type t is made by

t =


Differential if pd ≤ α,
Conserved otherwise.

(S34)

Performance evaluation

We describe three metrics to evaluate the performance of a comparative analysis method. Let t denote the interac-
tion type and π1, π2 are parent sets for an interaction under two conditions, respectively. For a given interaction at
a node, the first input (t, π1, π2) is the detection result from a comparative analysis method, and the second input is
(t∗, π∗1 , π

∗
2 ) from the ground truth obtained directly from the original models.

The benchmarking metric is defined as

True positive if t = t∗ = Differential, π1 ⊂ π∗1 , π2 ⊂ π∗2 ,

False positive if t = Differential, t∗ = Conserved,

True negative if t = t∗ = Conserved,

False negative if (t = Conserved, t∗ = Differential) or (t = t∗ = Differential, (π1 1 π∗1 or π2 1 π∗2 )).
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3.5 Drosophila microarray data set
In our Drosophila microarray studies, 10 pupal wings from animals expressing E2F1 and its co-factor DP in the
dorsal wing, Cabut in the dorsal wing, or controls were dissected at time points 24 and 36 h APF. Gene overex-
pression was driven specifically in the dorsal wing using transgenic flies containing a wing specific Gal4 transcrip-
tional activator (Apterous-Gal4) and Gal4 responsive E2F1 and Cabut transgenes (Brand and Perrimon, 1993).
RNA was isolated using standard techniques (Trizol) (Buttitta et al., 2010), and cDNA synthesis was performed
with one subsequent round of T7-dependent linear RNA amplification using the commercially available Message
AmpTM kit from Ambion as described in (Reeves and Posakony, 2005). Amplified RNA was labeled in a sub-
sequent cDNA synthesis reaction according to Nimblegen protocols and hybridized to Nimblegen 4-plex 60-mer
Drosophila expression arrays (www.nimblegen.com). Hybridizations were repeated 4 times with independently
obtained biological replicates to ensure maximal confidence in data reproducibility.

NimbleScan software was used to scan the arrays and for quantile normalization (all arrays were normalized to-
gether). Gene calls were generated using the Robust Multichip Average (RMA) algorithm. Statistically significant
changes in gene expression were determined using ANOVA (adjusted p < 0.05).

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al.,
2002; Barrett et al., 2011) and are accessible through GEO Series accession number GSE30484 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30484).
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