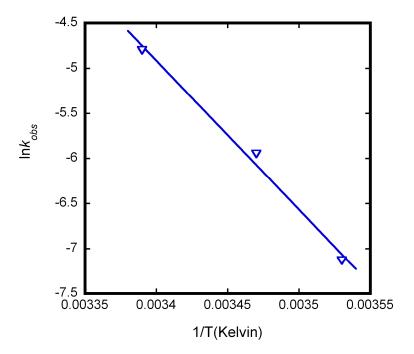
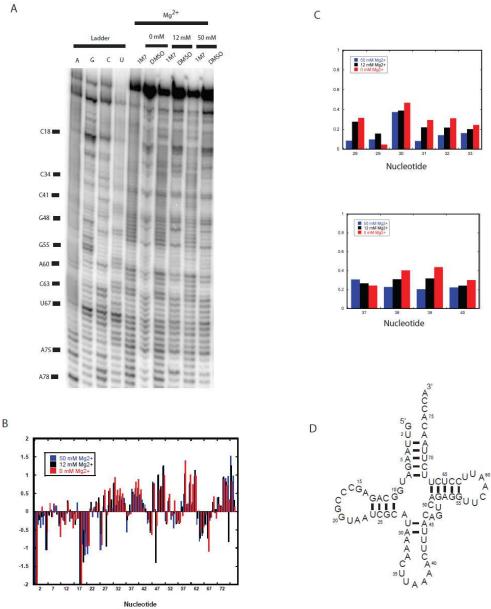
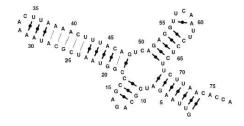
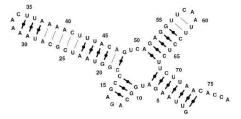
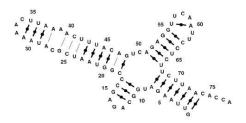


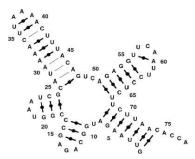
<u>Figure S1</u>. Magnesium acetate gives higher plateau charging values for hmt tRNA^{Leu}_{UAA} transcript compared to magnesium chloride. Reactions were performed at 1 μ M LARS-2 in the presence of either magnesium chloride (red symbols and traces) (or) magnesium acetate (blue symbols and traces) at 37°C at concentrations of either 20 mM Mg²⁺ (open symbols) or 55 mM Mg²⁺ (closed symbols).

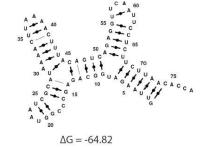
<u>Figure S2</u>. Aminoacylation plateau value is low at higher temperature (>37°C) for hmt tRNA^{Leu} because of structural instability and not because of RNA being damaged at these temperatures. Leucylation of hmt tRNA^{Leu}_{UAA} was performed at 45°C and at 20 mM $Mg(oAc)_2$, which resulted in a low plateau value for aminoacylation (0.25) (Open symbols and trace). A large aliquot was transferred to 21°C and aminoacylation monitored at 21°C (solid symbols and trace). Because the only difference that resulted in higher plateau value was a transfer to a lower temperature, we conclude that the tRNA was not damaged at 45°C but secondary and/or tertiary structure was severely perturbed at 45°C compared to 21°C.

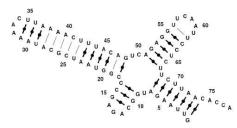





Figure S3. Log-linear plot of the rate constant against 1/T (Kelvin) for folding of the hmt tRNA^{Leu}_{UAA} transcript (see Figure 4). The slope is equal to $-E_a/R$, where E_a is the activation energy and R is the gas constant (8.314 Jmol⁻¹K⁻¹). The fit gives E_a of 13.7 × 10⁴ J-mol⁻¹ (32.8 kcal-mol⁻¹).

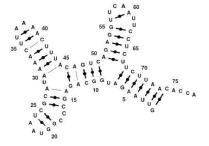

<u>Figure S4</u>. 1M7 SHAPE analysis at different Mg^{2+} concentrations. (A) SHAPE footprinting gel showing DMSO and 1M7 intensities at 0, 12 and 50 mM MgCl₂. (B) Absolute SHAPE reactivities at 0, 12 and 50 mM MgCl₂. (C) Absolute SHAPE reactivities of a subset of nucleotides at 0, 12 and 50 mM MgCl₂. Nucleotides 28, 31, 32, 33, 38, 39 and 40 show clear protections at increasing MgCl₂ up to 50 mM.


∆G = -67.68

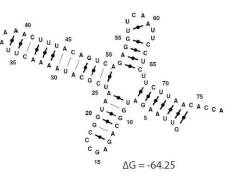

∆G = -65.42

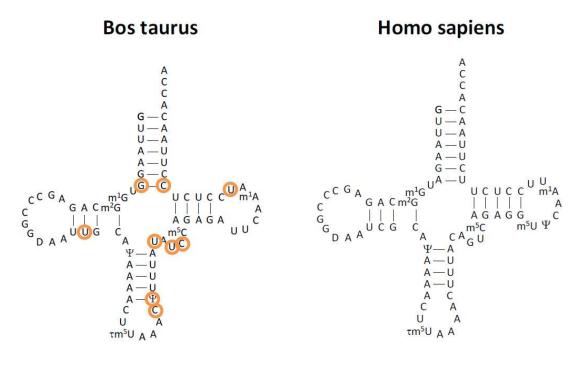


∆G = -65.36



∆G = -65.02




∆G = -64.75

∆G = -64.59

<u>Figure S5</u>. Predicted optimal (upper left) and sub-optimal secondary structures of hmt tRNA^{Leu}_{UAA} transcript tRNA. Structures were predicted using minimal energy criteria using MC-fold.

O Differences in sequence from Homo sapiens

<u>Figure S6</u>. Predicted native secondary structures (based on comparative sequence analysis) of human and bovine transcript tRNA^{Leu}_{UAA}. Differences in primary sequence are circled in the *Bos taurus* tRNA.