Supporting Information for

Molecular recognition of fluorine impacts substrate selectivity in the fluoroacetyl-CoA thioesterase FIK

Amy M. Weeks, Neil S. Keddie, Rudy D.P. Wadoux, David O'Hagan, and Michelle C.Y. Chang*

Supplementary Figures

Table S1. Acyl-CoA numbering scheme for 1D NMRs and ¹ H/ ¹³ C HMBC crosspeaks	S2
Figure S1. $^{1}H/^{13}C$ HMBC spectrum of (S)-2-fluoropropionyl-CoA in $D_{2}O$.	S3
Figure S2. $^{1}H/^{13}C$ HMBC spectrum of (R)-2-fluoropropionyl-CoA in $D_{2}O$.	S4
Figure S3. The catalytic triad of FIK-T42S	S5
Figure S4. Simulated steady-state kinetic data for FIK-T42S-catalyzed acetyl-CoA hydrolysis	S6
Figure S5. Time courses for hydrolysis of (RS)-2-fluoropropionyl-CoA.	S7
Figure S6. Taft plot for k_{cat} of various acyl-CoA FIK substrates	S8
Figure S7. Simulated steady-state kinetic data for FIK-catalyzed hydrolysis of (S)-and (R)-2-fluoropropionyl-CoA	S8
Literature Cited	S9

Supplementary Figures

Table S1. Acyl-CoA numbering scheme for 1D NMRs and $^1\mathrm{H}/^{13}\mathrm{C}$ HMBC crosspeaks.

Crosspeak numbering for HMBC spectra								
1	H _{1"} C _{2"}	10	H _{10"} C _{11"}	19	H _{5"} C _{7"}	28	H ₂ C ₄	
2	H _{1"} C _{3"}	11	H _{10"} C _{2"}	20	H _{5"} C _{6"}	29	H_2C_6	
3	H _{1"} C _{11"}	12	H _{10"} C _{1"}	21	H _{6"} C _{7"}	30	H ₈ C ₄	
4	H _{1"} C _{10"}	13	H _{10"} C _{3"}	22	H _{6"} C _{5"}	31	H_8C_5	
5	H _{3"} C _{11"}	14	H _{11"} C _{10"}	23	H _{8"} C _{7"}	32	$H_{1}C_{2}$	
6	H _{3"} C _{10"}	15	H _{11"} C _{2"}	24	H _{8"} C _{9"}	33	$H_{1}C_{4}$	
7	H _{3"} C _{2"}	16	H _{11"} C _{1"}	25	H _{9"} C _{1RAc}	34	$H_{1'}C_{4'}$	
8	H _{3"} C _{1"}	17	H _{11"} C _{3"}	26	H _{9"} C _{8"}	35	$H_{2'}C_{1'}$	
9	H _{3"} C _{4"}	18	H _{5"} C _{4"}	27	$H_{2RAc}C_{1RAc}$	36	$H_{3'}C_{4'}$	

S2

Figure S1. $^{1}H/^{13}C$ HMBC spectrum of (S)-2-fluoropropionyl-CoA in $D_{2}O$.

Figure S2. $^{1}H/^{13}C$ HMBC spectrum of (R)-2-fluoropropionyl-CoA in $D_{2}O$.

Figure S3. The catalytic triad of FIK-T42S. In the FIK-T42S mutant (PDB ID: 3KVU), both Ser 42 and His 76 populate two different rotatmers, and Glu 50 is rotated relative to its position in the wild-type enzyme (*I*). Chain A, grey; chain B, slate; carbon, grey; nitrogen, blue; oxygen red.

Figure S4. Simulated steady-state kinetic data for FIK-T42S-catalyzed acetyl-CoA hydrolysis. Data were simulated using the same K_D for both wild-type and mutant and using the acylation and deacylation rate constants measured using pre-steady-state kinetic analysis.

Figure S5. Time courses for hydrolysis of (*RS*)-2-fluoropropionyl-CoA. (A) $50~\mu M.$ (B) $100~\mu M.$ (C) $200~\mu M.$ (D) $250~\mu M.$

Figure S6. Taft plot for k_{cat} of various acyl-CoA FIK substrates. 2-fluoropropionyl-CoA substrates are shown in red. Data shown in black are from (2). σ^* values for acyl-CoAs with a single α-substituent are from (3). The σ^* value for 2-fluoropropionyl-CoA was calculated by adding the values for the F and Me substituents as described in (4). Et, butyryl-CoA; Me, propionyl-CoA; H, acetyl-CoA; Br, bromoacetyl-CoA; Cl, chloroacetyl-CoA; F, fluoroacetyl-CoA; (S)-F, Me, (S)-2-fluoropropionyl-CoA; (R)-F, Me, (R)-2-fluoropropionyl-CoA; CN, cyanoacetyl-CoA.

Figure S7. Simulated steady-state kinetic data for FIK-catalyzed hydrolysis of (\mathcal{S})- and (\mathcal{A})-2-fluoropropionyl-CoA. At constant K_D , the changes in the measured kinetic constants are sufficient to explain the difference in K_M between the two substrates.

Literature cited

- 1. Dias, M. V., Huang, F., Chirgadze, D. Y., Tosin, M., Spiteller, D., Dry, E. F., Leadlay, P. F., Spencer, J. B., and Blundell, T. L. (2010) Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FIK, *J. Biol. Chem.* **285**, 22495-22504.
- 2. Weeks, A. M., and Chang, M. C. (2012) Catalytic control of enzymatic fluorine specificity, *Proc. Natl. Acad. Sci. U. S. A.* **109**, 19667-19672.
- 3. Taft, R. W., Jr. (1952) Polar and steric substituent constants for aliphatic and *o*-benzoate groups from rates of esterification and hydrolysis of esters, *J. Am. Chem. Soc.* **74**, 3120-3128.
- 4. Bowden, K., Chapman, N. B., and Shorter, J. (1963) The separation of polar and steric effects. Part III. The kinetics of the reactions of arylaliphatic carboxylic acids with diazodiphenylmethane, and of the acid-catalysed esterification of the acids in methanol, *J. Chem. Soc.* 1963, 5239-5247.