Supporting Information for # Molecular recognition of fluorine impacts substrate selectivity in the fluoroacetyl-CoA thioesterase FIK Amy M. Weeks, Neil S. Keddie, Rudy D.P. Wadoux, David O'Hagan, and Michelle C.Y. Chang* ## **Supplementary Figures** | Table S1. Acyl-CoA numbering scheme for 1D NMRs and ¹ H/ ¹³ C HMBC crosspeaks | S2 | |---|----| | Figure S1. $^{1}H/^{13}C$ HMBC spectrum of (S)-2-fluoropropionyl-CoA in $D_{2}O$. | S3 | | Figure S2. $^{1}H/^{13}C$ HMBC spectrum of (R)-2-fluoropropionyl-CoA in $D_{2}O$. | S4 | | Figure S3. The catalytic triad of FIK-T42S | S5 | | Figure S4. Simulated steady-state kinetic data for FIK-T42S-catalyzed acetyl-CoA hydrolysis | S6 | | Figure S5. Time courses for hydrolysis of (RS)-2-fluoropropionyl-CoA. | S7 | | Figure S6. Taft plot for k_{cat} of various acyl-CoA FIK substrates | S8 | | Figure S7. Simulated steady-state kinetic data for FIK-catalyzed hydrolysis of (S)-and (R)-2-fluoropropionyl-CoA | S8 | | Literature Cited | S9 | ## **Supplementary Figures** Table S1. Acyl-CoA numbering scheme for 1D NMRs and $^1\mathrm{H}/^{13}\mathrm{C}$ HMBC crosspeaks. | Crosspeak numbering for HMBC spectra | | | | | | | | | |--------------------------------------|----------------------------------|----|-----------------------------------|----|-----------------------------------|----|-------------------------------|--| | 1 | H _{1"} C _{2"} | 10 | H _{10"} C _{11"} | 19 | H _{5"} C _{7"} | 28 | H ₂ C ₄ | | | 2 | H _{1"} C _{3"} | 11 | H _{10"} C _{2"} | 20 | H _{5"} C _{6"} | 29 | H_2C_6 | | | 3 | H _{1"} C _{11"} | 12 | H _{10"} C _{1"} | 21 | H _{6"} C _{7"} | 30 | H ₈ C ₄ | | | 4 | H _{1"} C _{10"} | 13 | H _{10"} C _{3"} | 22 | H _{6"} C _{5"} | 31 | H_8C_5 | | | 5 | H _{3"} C _{11"} | 14 | H _{11"} C _{10"} | 23 | H _{8"} C _{7"} | 32 | $H_{1}C_{2}$ | | | 6 | H _{3"} C _{10"} | 15 | H _{11"} C _{2"} | 24 | H _{8"} C _{9"} | 33 | $H_{1}C_{4}$ | | | 7 | H _{3"} C _{2"} | 16 | H _{11"} C _{1"} | 25 | H _{9"} C _{1RAc} | 34 | $H_{1'}C_{4'}$ | | | 8 | H _{3"} C _{1"} | 17 | H _{11"} C _{3"} | 26 | H _{9"} C _{8"} | 35 | $H_{2'}C_{1'}$ | | | 9 | H _{3"} C _{4"} | 18 | H _{5"} C _{4"} | 27 | $H_{2RAc}C_{1RAc}$ | 36 | $H_{3'}C_{4'}$ | | S2 Figure S1. $^{1}H/^{13}C$ HMBC spectrum of (S)-2-fluoropropionyl-CoA in $D_{2}O$. Figure S2. $^{1}H/^{13}C$ HMBC spectrum of (R)-2-fluoropropionyl-CoA in $D_{2}O$. **Figure S3.** The catalytic triad of FIK-T42S. In the FIK-T42S mutant (PDB ID: 3KVU), both Ser 42 and His 76 populate two different rotatmers, and Glu 50 is rotated relative to its position in the wild-type enzyme (*I*). Chain A, grey; chain B, slate; carbon, grey; nitrogen, blue; oxygen red. Figure S4. Simulated steady-state kinetic data for FIK-T42S-catalyzed acetyl-CoA hydrolysis. Data were simulated using the same K_D for both wild-type and mutant and using the acylation and deacylation rate constants measured using pre-steady-state kinetic analysis. Figure S5. Time courses for hydrolysis of (*RS*)-2-fluoropropionyl-CoA. (A) $50~\mu M.$ (B) $100~\mu M.$ (C) $200~\mu M.$ (D) $250~\mu M.$ Figure S6. Taft plot for k_{cat} of various acyl-CoA FIK substrates. 2-fluoropropionyl-CoA substrates are shown in red. Data shown in black are from (2). σ^* values for acyl-CoAs with a single α-substituent are from (3). The σ^* value for 2-fluoropropionyl-CoA was calculated by adding the values for the F and Me substituents as described in (4). Et, butyryl-CoA; Me, propionyl-CoA; H, acetyl-CoA; Br, bromoacetyl-CoA; Cl, chloroacetyl-CoA; F, fluoroacetyl-CoA; (S)-F, Me, (S)-2-fluoropropionyl-CoA; (R)-F, Me, (R)-2-fluoropropionyl-CoA; CN, cyanoacetyl-CoA. Figure S7. Simulated steady-state kinetic data for FIK-catalyzed hydrolysis of (\mathcal{S})- and (\mathcal{A})-2-fluoropropionyl-CoA. At constant K_D , the changes in the measured kinetic constants are sufficient to explain the difference in K_M between the two substrates. #### Literature cited - 1. Dias, M. V., Huang, F., Chirgadze, D. Y., Tosin, M., Spiteller, D., Dry, E. F., Leadlay, P. F., Spencer, J. B., and Blundell, T. L. (2010) Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FIK, *J. Biol. Chem.* **285**, 22495-22504. - 2. Weeks, A. M., and Chang, M. C. (2012) Catalytic control of enzymatic fluorine specificity, *Proc. Natl. Acad. Sci. U. S. A.* **109**, 19667-19672. - 3. Taft, R. W., Jr. (1952) Polar and steric substituent constants for aliphatic and *o*-benzoate groups from rates of esterification and hydrolysis of esters, *J. Am. Chem. Soc.* **74**, 3120-3128. - 4. Bowden, K., Chapman, N. B., and Shorter, J. (1963) The separation of polar and steric effects. Part III. The kinetics of the reactions of arylaliphatic carboxylic acids with diazodiphenylmethane, and of the acid-catalysed esterification of the acids in methanol, *J. Chem. Soc.* 1963, 5239-5247.