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Figure S1. 2D C-"C correlation spectra of VLAAT-FPK4 in the DOPC/DOPG (4 : 1)
membrane in the gel phase. (a) 2D spectra of the equilibrated sample at 20 ms (red) and 300 ms
(blue) mixing. Inter-residue cross peaks are observed only for the same secondary structure and
not between different secondary structures. For A116 and T117, the a-helical inter-residue cross
peaks are stronger than the B-strand ones, whereas for L110 and A111, the B-strand inter-residue
cross peaks are stronger than the a-helix ones. (b) Overlay of the initial (black) and equilibrated
(red) spectra. The initial spectrum shows mainly a-helical chemical shifts for all labeled residues,

while the equilibrated spectrum shows primarily B-strand chemical shifts for N-terminal residues
(V107,L110, and A111).
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Figure S2. 2D "C-"*C correlation spectra of FPK4 in the gel-phase DOPC/DOPG (4 : 1)
membrane (246 K). (a) GVTAA-FPK4 spectrum with 500 ms mixing. (b) IGALV-FPK4
spectrum with 500 ms mixing. Inter-residue cross peaks were observed in both spectra, but no
cross peak between N-terminal and C-terminal residues is seen. Thus, if the peptide is
oligomerized in the DOPC/DOPG bilayer, then the packing is parallel.
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Fig. S3. 2D "*C-"H spin-diffusion correlation spectra of FPK4 in the DOPC/DOPG membrane at
293 K. (a) 2D spectrum of IGALV-FPK4 with 25 ms 'H spin diffusion. (b) 'H cross sections of
the 2D spectra with mixing times from 9-225 ms. The cross sections were integrated from "°C
chemical shifts of 37.8-59.0 ppm, corresponding to the B-strand Ca and Cp signals. (c)
Measured and best-fit buildup curves of water-peptide (blue) and lipid-peptide (red) spin
diffusion. (d) 2D spectrum of AAQV-FPK4 with 100 ms 'H spin diffusion. (¢) 'H cross sections
with mixing times of 9-400 ms. The cross sections were integrated from "*C chemical shifts of
51.5 to 54.0 ppm, corresponding to the a-helical Ca signals. (f) Measured and best-fit buildup
curves of water-peptide (blue) and lipid-peptide (red) spin diffusion. Clear lipid-peptide cross
peaks are observed for both conformations of the peptide, indicating that FPK4 is well inserted
into the DOPC/DOPG membrane.
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Fig. S4. FPK4 interaction with the DOPC/DOPG membrane. (a) 1D 31p static spectra at 293 K
with and without FPK4. (b) *'P MAS spectra with and without FPK4. The apparent linewidths
are ~30 Hz for the peptide-free membrane and ~130 Hz for the peptide-bound membrane. (c) *'P
transverse relaxation times (T,) of DOPC in the DOPC/DOPG membrane without and with the
peptide. The DOPG T, values are similar to the DOPC values in the same sample. The T, values
were measured using a Hahn-echo pulse sequence with a 'H decoupling field strength of 50 kHz.
(d) 2D *'P-"H correlation spectrum of the peptide-bound sample at 303 K, measured with a 'H
spin diffusion mixing time of 225 ms.
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Table S1. Residue-specific helicity (%) of FPK4 in DOPC/DOPG membranes based on the
NMR spectral intensities.

Residue  Cross peak Helicity Residue Cross peak  Helicity
G105 Ca-CO 0 Al16 Ca-Cp 54%
V106 Ca-Cp 0 T117 CO-Ca 53%
V107 CB-Cy 34% Al18 Ca-Cp 83%
1108 Ca-Cp 0 Al19 Ca-Cp 83%
G109 Ca-CO 0 Q120 Ca-Cp 100%
L110 Ca-CB 26% Vi21 Ca-Cy 85%
Alll Ca-CB 22% T122 Ca/B-Cy 66%
Al12 Ca-CB 18% Al123 Ca-Cp 57%
L113 Ca-CO 17% Al24 Ca-Cp 57%
Gl14 ND ND V125 Ca-Cp 100%
V115 ND ND

For each residue, resolved cross peaks in the 20 ms 2D "*C-"C correlation spectra were selected
for volume integration. A111 and A116 Ca-Cp cross peaks overlap and indicate a total helical
content of 38%. We interpolated the helicities of L110 and A112 to obtain the A111 helicity, and
the A116 helicity was the difference between the total helicity and the A111 helicity.
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