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Part I: Experimental Section 
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Figure S1 Nitrogen adsorption isotherms and BET surface areas for various chemically synthesized 

doped graphenes. 
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Figure S2 Raman spectra and ID/IG ratios for various chemically synthesized doped graphenes. 
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Figure S3 The LSV curves obtained at RDE with different rotating rates (400 to 2,400 rpm) in O2-

saturated 0.1M KOH solution and the corresponding K-L plot (inset) on -0.3 V vs. NHE on the basis of 

RDE data. 
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Figure S4 (a,b) LSV of commercial 20% Pt/C at RDE with different rotating rates (400 to 2,400 rpm) 

in O2-saturated 0.1M KOH solution and the corresponding K-L plot (inset) on -0.3 V vs. NHE on the 

basis of RDE data. (c) Tafel plot and calculated exchange current density of Pt/C. 
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Figure S5 Electron transfer number (black) and the corresponding 2e– ORR pathway selectivity (blue) 

for various doped graphene electrocatalysts. 

 

Table S1 ORR exchange current density for different heteroatom doped graphenes. 

 N-G B-G P-G O-G S-G G 

Uon-set (V, vs NHE)a 0.035 0.029 –0.011 –0.017 –0.058 –0.145 

j0 (A/cm2) 3.0×10-9 7.6×10-9 7.7×10-11 6.3×10-11 3.5×10-12 9.5×10-12 

Jk@-0.3 V (mA/cm2) –2.29 –2.38 –1.82 –2.13 –1.45 –0.29 

Jk@-0.2 V (mA/cm2) –1.76 –1.79 –1.37 –1.66 –0.94 –0.19 

Jk@-0.1 V (mA/cm2) –0.86 –0.84 –0.48 –0.60 –0.24 –0.04 

a The on-set potential is defined as potential that corresponds to –0.005 mA/cm2 current density on LSV 
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Since it is difficult to obtain the exact free energy of OOH, O, and OH radicals in the 

electrolyte solution, the adsorption free energy ΔGOOH*, ΔGO*, and ΔGOH*, which correspond 

to OOH*, O*, and OH* adsorptions on graphene cluster models are defined as follows: 

 ΔGOOH*=(GOOH@G+GH2O(l)) – (GG+3GOH–) (S1a) 

 ΔGO*=(GO@G+GH2O(l)) – (GG+2GOH–) (S1b) 

 ΔGOH*=(GOH@G) – (GG+GOH–) (S1c) 

The free energy for each step in Eqs. 9 can be related to Eqs. S1 by: 

 Geq(9a:right)(U) = Geq(9b:left)(U) = ΔGOOH*(U) = ΔGOOH* – 3eU (S2a) 

 Geq(9b:right)(U) = Geq(9c:left)(U) = ΔGO*(U) = ΔGO* – 2eU (S2b) 

 Geq(9c:right)(U) = Geq(9d:left)(U) = ΔGOH*(U) = ΔGOH* – eU (S2c) 

At equilibrium potential U0 = 0.455 vs. NHE, since Geq(9a:left)(U
0) = Geq(9d:right)(U

0) = 0, the 

free energy change of the first step and the last step could be obtained from OOH* and OH* 

adsorption free energies: 

 ΔGeq(9a)(U
0) = ΔGOOH* – 3eU0  (S3a) 

 ΔGeq(9d)(U
0) = –ΔGOH* + eU0 (S3b) 

For X-graphene, since ΔGeq(9a)(U
0) = ΔGeq(9d)(U

0), then we have  

 ΔGeq(9a)(U
0) = 0.35 eV (S4a) 

 ΔGeq(9b)(U
0) = –0.13 eV (S4b) 

 ΔGeq(9c)(U
0) = –0.57 eV (S4c) 

 ΔGeq(9d)(U
0) = 0.35 eV (S4d) 

 ΔGX-G
OOH* = 1.72 eV (S4e) 

 ΔGX-G
OH* = 0.10 eV (S4f) 
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2.3 Exchange Current density 

According to reference [3], the exchange current density for a certain electrocatalytic 

process can be theoretically calculated as follows: 

 

RO

CCnFkj  10

0  (S5) 

where n is the electron transfer number, F is the Faraday constant, k0 is the standard rate 

constant, α is the transfer coefficient (a measure of the symmetry of the potential energy 

surface, ranging from 0 to 1), CO is the surface concentration of oxidant O and CR is the 

surface concentration of reductant R in the reaction O + 4e– → R. Simultaneously, the bulk 

concentrations (adjacent to the reacting surface) of CO
* and CR

* can be related to K at the 

equilibrium : 
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where ΔGmax(U
0) is the maximum value taken from ΔGeq(9a)(U

0), ΔGeq(9b)(U
0), ΔGeq(9c)(U

0), 

and ΔGeq(9d)(U
0), hence: 
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in which ΔGeq(9d)(U
0)=–0.977ΔGeq(9a)(U

0)+0.696eV. The coverage θ for reductant R can be 

expressed by: 

 
K

K

C

C

total

R




1


 (S8) 

where Ctotal is the sum of Co and CR, i.e. the total number of active sites. Therefore, the 

exchange current density can be calculated as follows: 

 
])1[( 10

0
  totalCnFkj

 (S9) 

(equation 10 in the paper), where the pre-factor ĵ0=nFk0Ctotal could be obtained by fitting the 

experimental data of the exchange current densities. Different α values correspond to 
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2.6 Activation Energies 

Table S4 ΔG, half-lives, and completion times of a unimolecular reaction at room temperature, 298 K.  

ΔG Half-Life 97% complete 

5 kcal/mol (0.22 eV) 5.7×10-5 sec 2.8×10-4 sec 

10 kcal/mol (0.43 eV) 2.8×10-3 sec 1.4×10-2 sec 

15 kcal/mol (0.65 eV)a 0.01 sec 0.05 sec 
a value taken from reference [8] 
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