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S| Methods

Participants. One hundred three throwing athletes and 94 aged-
matched controls were recruited. Throwers were recruited into
three groups: (i) active (n = 9), (ii) former (n = 84), and (iii)
continuing (n = 10) throwers. Active throwers were recruited to
explore the location and magnitude of skeletal adaptation within
the humerus associated with overhand throwing and were in-
cluded if they were currently competing as a pitcher in Major
(MLB) or Triple-A level Minor (MiLB) League Baseball. For-
mer throwers were recruited at different time periods after the
end of their professional careers to explore the lifelong main-
tenance of the skeletal benefits conferred by elevated mechani-
cal loading during youth. They were included if they (i) had
played in at least one game of MLB as a pitcher or catcher
during their professional career and (ii) had not participated in
any baseball games or participated more than three times per
year in any throwing activity since leaving professional baseball.
Pitchers and catchers were included because college-level players
at these positions previously have been shown to have equivalent
side-to-side differences in humeral bone properties (1). Former
throwers were divided into decades of years detraining (i.e., the
number of years since they stopped throwing) for analyses.
Continuing throwers were recruited to explore the benefit of
mechanical loading continued into later adulthood and were
included if they (i) had played in at least one game of MLB as
a pitcher during their professional career, (ii) were aged 65-80y,
and (iii) threw a minimum of three times per week for at least
20 y after the cessation of their professional baseball career.

Throwers and controls were excluded if they reported a history
of (i) disease known to influence skeletal metabolism; (ii) taking
pharmacological agents known to influence skeletal metabolism;
(i) humeral fracture or stress fracture; (iv) fracture or stress
fracture of any other upper extremity bone within the past 2 y; or
(v) participating more than once per month for longer than 6 mo
in an athletic activity [including racquet sports, volleyball, foot-
ball (at the quarterback position), discus throw, javelin, shot-put,
and bowling] or vocation (such as general contracting or other
manual labor) that primarily involved unilateral use of an upper
extremity (other than baseball in throwers). Active throwers were
recruited from a local Triple A-level MiLB baseball team. For-
mer and continuing throwers were recruited from the contiguous
United States via self-referral after distribution of study flyers.
Controls were recruited from the local Indianapolis region. All
assessments were performed in Indianapolis, IN, except for the
assessment of throwing biomechanics in a MLB player, which
was performed in Birmingham, AL. Study procedures were
approved by the Institutional Review Boards at Indiana Uni-
versity and St. Vincent’s Birmingham, and all subjects provided
written informed consent before participation.

Strain Within the Humerus During Throwing. Muscle and gleno-
humeral joint forces at the time of maximal joint torques during
a fastball pitch performed by a professional MLB player were
calculated using a musculoskeletal model developed from high-
resolution CT images of the bones and color cryosection images
of the arm muscles obtained from the Visible Human Male
dataset (2). The calculated loads were applied to a finite element
(FE) model of the humerus of the professional MLB/MiLB
player to calculate diaphyseal tensile and shear strains (Fig. S1).

Thirteen degrees of freedom described the positions and ori-
entations of seven bones (clavicle, scapula, humerus, radius, ulna,
carpal bones, and the hand) in the musculoskeletal model. The
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model was actuated by 42 muscle subregions, which represented
the actions of 26 muscle groups in the upper limb. Each muscle—
tendon actuator was represented as a three-element muscle in
series with tendon. The inertial properties and muscle-tendon
parameters assumed in the model were based on data published
by Garner and Pandy (3). The path of each muscle was calcu-
lated using a computational algorithm based on the obstacle-set
method (4). The modeled muscle paths were validated by quan-
titatively comparing moment arms calculated in the model against
measurements obtained from cadaver specimens (2).

3D MR images (Magnetom Verio; Siemens Medical Solutions)
of muscles attaching to the arm were obtained from the pro-
fessional MLB/MILB player using a Dixon volumetric interpolated
breath-hold examination T1-weighted sequence with the following
parameters: repetition time/echo time 7.14/3.68 ms, slice thick-
ness 4 mm, field of view 337 x 399 mm, matrix 292 x 384 pixels,
bandwidth 123 Hz, and ﬂig) angle 20°. The resulting voxel size
was 1.04 x 1.04 x 4 mm’. All 42 muscle subregions in the
model were segmented using image-processing software (Amira,
Visualization Sciences Group), and the volume of each muscle
was calculated directly from the MR images. 3D joint angles at
the shoulder and elbow during a fastball pitch by the pro-
fessional MLB/MILB player were measured at the American
Sports Medicine Institute (Birmingham, AL), and inverse dy-
namics was used to calculate the corresponding net joint torques,
as previously described (5). The net joint torques were decom-
posed into individual muscle forces by minimizing the sum of the
squares of all muscle stresses subject to the physiological bounds
imposed by each muscle’s force-length-velocity properties (3, 6).

The muscle forces and joint reaction forces then were applied
to an FE model of the humerus of the professional MLB/MiLB
player. The geometry of the player’s humerus was segmented
from CT data (obtained as described below in Quantitative
Computed Tomography) and was converted into 3D solid models
(Geomagic v10; Geomagic). Each element within the FE mesh
(quadratic tetrahedral, average length = 3.1 mm) was assigned
a Young’s modulus based on the X-ray attenuation values (in
Hounsfield units) and apparent density using calibration func-
tions derived from a five-material CT phantom (Mindways
Software, Inc.) placed below the subject at the time of scanning (7).

The muscle and joint reaction forces were applied to the FE
model as nodal point loads. The muscle insertion sites were scaled
to the geometry of the humerus and were adjusted to lie on the
bone surface. The location of the glenohumeral joint reaction
force was calculated as the intersection of the joint reaction force
vector passing through the center of the humeral head. A series of
nodes at the center of the olecranon of the distal humerus were
kinematically constrained to model the reaction force at the el-
bow joint. Three nodes on the medial and lateral aspects of the
distal humerus were constrained to model ligament forces. A
single node at the glenohumeral joint center was used to affix
linear spring elements to model the passive soft tissue restraint. A
linear stress analysis was used to calculate the maximum principal
strain and von Mises stress at each node using Abaqus v11.1
(Dassault Systemes). Results from elements within a 4-mm ra-
dius of the nodal boundary conditions were ignored to avoid
errors resulting from boundary effects.

Shoulder Muscle Strength and Range of Motion. Bilateral concentric
shoulder external and internal rotation torques and the bilateral
range of shoulder internal and external rotation were assessed in
former and continuing throwers and their controls, as previously
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described (1). Shoulder muscle strength and range of motion
were not assessed in active throwers, because study visits were
performed on player rest days during the baseball season.

Dual-Energy X-Ray Absorptiometry. Dual-energy X-ray absorpti-
ometry (DXA) (Discovery-W; Hologic, Inc.) was used to obtain
whole-body (minus the head), hip, and lumbar spine areal bone
mineral density (g/cm?). Whole-body scans also provided meas-
ures of whole-body lean mass (kg), percent fat mass (%), whole-
arm bone mineral content (g), and areal bone mineral density
(g/em?) and lean mass (kg).

Quantitative CT. The bilateral humerii of active throwers and their
controls were imaged using a multislice helical CT scanner
(Phillips Brilliance 64; Philips Medical Systems) operating at
120 kV peak, 400 mA, 64 x 0.625 collimation, and pitch 0.6. Scan
volumes included the entire humerus and included phantoms
containing calcium hydroxyapatite standards embedded in water-
equivalent resin. Images were axially reconstructed with a 1.0-mm
slice width spaced 0.5 mm apart using a 768 x 768 matrix and
field of Vlew of <30 cm (reconstructed voxel size <0.39 x 0.39 x
1.0 mm?). Tomographic images at 5% increments of humeral
length were imported into ImageJ v1.45s (National Institutes of
Health) for analysis using customized macros. The outer bone
edge was segmented with a threshold of 700 mg/cm?; a threshold
of 300 mg/cm® was used to separate the cortical and subcortical/
trabecular bone compartments. Parameters obtained were cor-
tical volumetric bone mineral density (mg/cm ), cortical bone
mineral content (mg/mm) total area (cm?), cortical area (cm?),
medullary area (cm’ ) average cortical thickness (mm) polar
moment of inertia (cm ), and the minimum and maximum second
moments of area (cm*). The linear relationship between Houns-
field units and known densities of the calcium hydroxyapatlte
standards was exploited to determine voxel density (mg/cm?).
In all throwers (active, former, and continuing) and controls the
midshaft humerus in both upper extremities was assessed by
peripheral quantitative CT (pQCT) (XCT 3000; Stratec Medi-
zintechnik GmbH), as previously described (1). pQCT was per-
formed at the midshaft humerus in the detraining studies, rather
than at the location of greatest adaptation observed from the
QCT assessments in active throwers, because the pQCT studies
in former and continuing throwers preceded the QCT study in
active throwers. A tomographic slice (thickness = 2.3 mm; voxel
size = 300 pum; scan speed = 20 mm/s) was taken at 50% of
humeral length (midshaft) from a reference line placed through
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the radiohumeral joint. Tomographic slices were analyzed for
bone mineral density, structure, estimated strength, and muscle
cross-sectional area. Cortical mode 1 (threshold, 710 mg/cm?)
was used to obtain cortical volumetric bone mineral den51ty
(mg/em® ) bone mineral content (mg/mm), and area (cm?). Total
area (cm?), trabecular/subcortical bone mineral content (mg/mm),
and average cortical thickness (mm) were obtained by analyzmg
the slices using contour mode 1 (threshold, 710 mg/em?) to de-
fine the outer bone edge and peel mode 2 (threshold, 400 mg/cm?®)
to separate the cortical and subcortical/trabecular bone compart-
ments. Cortical thickness measurements used a circular rmg
model, and medullary area (mm?) was derived as total area minus
cortical area. Bone strength was estimated by the derivation of
density-weighted polar moment of inertia (cm ). The muscle
cross-sectional area (cm? ) was assessed by using contour mode
3 (threshold, —100 mg/cm?) to locate the skin surface and peel
mode 2 (threshold, 40 mg/cm?) to locate the subcutaneous
fat-muscle boundary. A 3 x 3 kernel filter to filter all voxels
between —500 and 500 mg/cm® followed by a 5 x 5 kernel filter
to filter all voxels between —500 and 300 mg/cm® (FO3FO05 filter)
was used to remove noise.

Statistical Analyses. Analyses were performed with IBM SPSS
Statistics (v20.0; SPSS Inc.) and were two-tailed with a level of
significance set at 0.05. Demographic and anthropometric char-
acteristics were compared between groups using independent-
sample ¢ tests (active throwers vs. controls and former throwers
vs. controls) or one-way ANOVA followed by Tukey pairwise
comparisons (continuing throwers vs. former throwers vs. con-
trols). Side-to-side differences between the throwing and non-
throwing arms in throwers were assessed by calculating abso-
lute (throwing — nonthrowing) and mean percent differences
[(throwing — nonthrowing)/nonthrowing x 100] and their 95%
confidence intervals (CI). A 95% CI not crossing zero was
considered statistically significant, as determined by single-
sample ¢ tests with a population mean of 0%. Similar analyses
were performed to determine side-to-side differences between
the dominant and nondominant arms in controls. Throwing ef-
fects on the arm were determined by comparing the absolute or
percent difference values between activity groups (throwers vs.
controls) using independent-sample ¢ tests (active throwers vs.
controls and former throwers vs. controls) or one-way ANOVA
followed by Tukey pairwise comparisons (continuing throwers vs.
former throwers vs. controls).

5]
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Fig. S1. Subject-specific musculoskeletal model of the upper extremity and CT-based finite-element model of the humerus during pitching. (A and D) An MLB
pitcher threw fastball pitches in an indoor biomechanics laboratory (A) to obtain 3D torques and joint angles at the shoulder and elbow (D). Peak shoulder
axial rotation and elbow varus torques were coincident and occurred toward the late cocking phase of the pitching motion (near maximum shoulder external
rotation range, which occurred 29 ms before ball release). Torques and joint angles during this phase of the pitching motion were used in the musculoskeletal
model. (B and E) MR images of the player’s upper extremity (B) were obtained to determine muscle volumes (E). (G and H) The subject-specific torques, angles,
and muscle volumes were introduced to the 3D musculoskeletal model of the upper limb developed by Garner and Pandy (2) (G) to calculate musculoskeletal

Legend continued on following page
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forces (muscle and joint reaction forces) (H). (C and F) High-resolution CT images of the player’s upper extremity (C) were obtained and converted into an FE
model (F). (/) The muscle and joint reaction forces from the musculoskeletal model were applied to the FE model to calculate tensile and shear strains.
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Fig. S2. CT images and strength measures of the humerii in the MLB/MILB player demonstrating the greatest difference between the throwing arm and the
nonthrowing arm. (A) In the reconstructed images, notice the more robust diaphysis with visibly broader diameter on the throwing side when viewed an-
teriorly (Left) and laterally (Right). (B) Cross-sectional images of the humerii in A at increments of 10% of humeral length revealed substantially greater total
and cortical bone areas and cortical thickness and smaller medullary area in the throwing arm at each increment. (C) Percent difference in torsional bone
strength in the throwing arm vs. the nonthrowing arm (indicated by density-weighted polar moment of inertia) at 5% increments along the diaphysis for the
humerii shown in A and B. The throwing arm was more than twice as strong, on average, as the contralateral nonthrowing arm and was more than 2.5 times
stronger in the distal diaphysis.
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Fig. S3. Mean (+ 95% Cl) percent difference between the throwing arm and the nonthrowing arm at 5% increments of humeral length in active throwers
normalized to the differences between the dominant arm and nondominant arm in controls in (A) cortical volumetric bone mineral density; (B) total bone
mineral content; (C) cortical bone mineral content; (D) trabecular/subcortical bone mineral content; (E) total cross-sectional area; (F) cortical cross-sectional
area; (G) medullary cross-sectional area; and (H) cortical thickness. Cls greater or less than 0% indicate differences between the throwing arm and the non-
throwing arm in active throwers that are greater or less, respectively, than the differences between the dominant arm and the nondominant arm in controls
(*P < 0.05; TP < 0.01; *P < 0.001, unpaired t test). Throwing had a minimal effect on cortical volumetric bone mineral density, had no effect on trabecular/
subcortical bone mineral content, reduced the medullary area, and increased the total and cortical bone mineral content, total area, cortical area, and cortical

thickness.
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Fig. S4. Mean (= 95% Cl) differences between the throwing arm and the nonthrowing arm in former throwers normalized to the differences between the
dominant arm and the nondominant arm in controls for (A) pQCT-derived total bone mineral content at the midshaft humerus; (B) DXA-derived whole-arm
areal bone mineral density; (C) DXA-derived whole arm bone mineral content; (D) DXA-derived whole arm lean mass; (E) pQCT-derived upper arm muscle
cross-sectional area; (F) glenohumeral external rotator strength; (G) glenohumeral internal rotator strength; (H) glenohumeral external rotation range; and (/)
glenohumeral internal rotation range. Cls greater or less than 0% indicate differences between the throwing arm and the nonthrowing arm in former
throwers that are greater or less, respectively, than the differences between the dominant arm and the nondominant arm in controls (*P < 0.05; P<0.01;*P<

Legend continued on following page
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0.001, unpaired t test). The benefit of throwing on areal bone mineral density and content were no longer present after 30-39 y detraining. The difference in
the whole-arm lean mass between the throwing arm and the nonthrowing arm was smaller in former throwers in the 30-39 and 50+ detraining groups than in
controls. The difference in the glenohumeral external rotation range between the throwing arm and the nonthrowing arm was smaller in former throwers in the
50+ detraining group than in controls.
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Fig. S5. Mean (+ 95% Cl) percent differences between the throwing arm and the nonthrowing arm in former and continuing throwers relative to the dif-
ferences between the dominant and nondominant arm in controls for pQCT-derived total bone mineral content and upper arm muscle cross sectional area;
DXA-derived whole arm areal bone mineral density; bone mineral content; whole-arm lean mass; and glenohumeral external and internal rotator strength and
rotation range. Cls greater or less than 0% indicate differences between the throwing arm and the nonthrowing arm in throwers that are greater or less,
respectively, than the differences between the dominant arm and the nondominant arm in controls (*P < 0.05; TP < 0.01). § indicates a significant difference
between former and continuing throwers (P < 0.05). Continuing throwers had (i) greater percent differences in total bone mineral content and whole-arm
areal bone mineral density and bone mineral content than either former throwers or controls; (i) greater percent differences in the external rotation range
than former throwers; and (iii) smaller percent differences in the internal rotation range than controls. Former throwers had smaller percent differences for
whole-arm lean mass than controls. Statistics were performed with one-way ANOVA followed by Tukey pairwise comparisons (continuing throwers vs. former
throwers vs. controls).
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Table S1. Demographic and anthropometric characteristics of active throwers and controls

Characteristic Controls Active throwers
Subjects, n 8 9
Demographics
Age, y 27.1+38 27.9 +2.2
Estimated age of adolescent growth spurt, y 13.0+ 0.9 138+ 1.3
Age started throwing, y - 6.3 + 28
Years throwing before adolescent growth spurt - 7.5+29
Playing position during professional career (pitcher/catcher) - 9/0
Professional (MLB/MiLB) games played, n - 220 + 84
Professional (MLB/MIiLB) innings pitched, n - 693 + 326
Total years throwing - 212+ 2.5
Whole-body anthropometry
Height, m 1.91 £ 0.07 1.87 + 0.08
Mass, kg 102.1 + 11.2 922 +17.9
Body mass index, kg/m? 26.2 +4.6 279 £ 29
Areal bone mineral density, g/cm?™* 1.28 + 0.17 1.29 + 0.09
Lean mass, kgt 62.5 + 10.3 74.5 + 6.9*
Fat mass, %* 253+ 75 209 + 3.8
Regional anthropometry
Spine areal bone mineral density, g/cm?"* 1.22 £ 0.17 1.14 + 0.07
Hip areal bone mineral density, g/cm?'* 1.19 + 0.10 1.23 + 0.11

Data are mean =+ SD, except for frequencies. MLB/MiLB, Major/Minor League Baseball.

*P < 0.05 vs. controls, as determined by unpaired t test.
"Values corrected for whole-body lean mass.
*Obtained via dual-energy X-ray absorptiometry.
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Table S4. Demographic and anthropometric characteristics of continuing and former throwers and controls

Characteristic Controls Former throwers Continuing throwers
Subjects, n 18 16 10
Demographics
Age, y 73.7 £ 3.6 721 + 3.7 71.2 + 3.8
Estimated age of adolescent growth spurt, y 144+ 1.4 136+ 1.4 14.0 + 0.8
Age started throwing, y - 7.0+ 25 6.9 + 2.9
Years throwing before adolescent growth spurt - 6.6 + 2.6 7.7 +£2.6
Playing position during professional career, pitcher/catcher - 151 I
Professional (MLB/MiLB) games played, n - 461 + 228 500 + 212
Professional (MLB/MILB) innings pitched, n - 1,504 + 892 1,757 + 988
Age ceased throwing at professional level, y - 33.3+5.0 343 +5.5
Age ceased throwing, y - 333 +5.0 56.7 + 8.8*
Years throwing postprofessional career, y - - 246 + 4.4
Total years throwing - 263 +54 49.8 + 7.3*
Years detraining - 388 +5.38 14.5 + 9.0*
Whole-body anthropometry
Height, m 1.75 + 0.09 1.82 + 0.08 1.86 + 0.06
Mass, kg 85.6 + 14.3 100.3 + 14.3** 107.0 + 14.1**
Body mass index, kg/m? 27.7 £ 2.8 30.1 +3.6 30.8 + 3.2**
Areal bone mineral density, g/cm?"* 135+ 0.14 1.34 + 0.20 1.34 £ 0.19
Lean mass, kg* 51.3+79 62.6 + 7.1** 66.8 + 6.3**
Fat mass, %" 342 + 5.7 320+ 4.2 32.1 + 4.1
Regional anthropometry
Spine areal bone mineral density, g/cm?"* 1.24 + 0.21 1.20 + 0.16 1.23 £ 0.16
Hip areal bone mineral density, g/cm?™* 0.99 + 0.11 1.03 + 0.11 1.03 + 0.09

Data are mean + SD, except for frequencies. MLB/MiLB, Major/Minor League Baseball. Significance is indicated by asterisks: *P <
0.001 vs. former throwers, as determined by unpaired t test; **P < 0.05 vs. controls, as determined via one-way ANOVA followed by
Tukey post hoc comparisons.

"Values corrected for whole-body lean mass.
*Obtained via dual-energy X-ray absorptiometry.
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