

1

Supporting Information

Use of supervised classifiers in step I-II and cross validation.

kNN. Cross-validated predictive accuracies were calculated on data by kNN using the R library “knnflex”.

Data classification was conducted by applying the kNN (k=10).

PLS. Projection to Latent Structure (PLS) was applied on processed data for dimension reduction using the

classical SIMPLS algorithm (1) as implemented in the R library “plsgenomics”.

SVM. The Support Vector Machines (SVM) method (2) was used for data classification using the “libsvm”

module of the R library “e1071”. Data classification was conducted by applying the SVM with linear kernel

on the first 5 components of PLS.

PCA-CA-kNN. Cross-validated predictive accuracies were calculated on data by combining established

methods. Principal Component Analysis (PCA) was applied on data for dimension reduction using the

standard R function “prcomp”. Canonical Correlation analysis (CA) was conducted using the standard R

function "cancor". The k-Nearest Neighbor (kNN) method was used for data classification using the R

library “knnflex”. The data were projected into a PCA subspace explaining 90.0% of the variance. The

resulting PCA score matrix was projected into the CA subspace. Data classification was conducted by

applying the kNN (k=10) on the components of the PCA-CA subspace.

Cross-validation is a statistical method of evaluating and comparing learning algorithms by dividing data

into two segments: one used to learn or train a model and the other used to validate the model. In typical

cross-validation, the training and validation sets must crossover in successive rounds such that each data

point has a chance of being validated against. The basic form of cross-validation is k-fold cross-validation,

and this is the form of cross-validation used in KODAMA.

In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) sized segments or

folds. Each of these k subsets serves in turn as a test set. For each of these k test sets, a classifier is trained on

the remaining k-1 folds (the training set). The trained classifier is then used to classify the samples in the test

set, and the accuracy is calculated. The combined value of the accuracy over the k test sets, which is based on

the prediction of all samples one time each, is the cross-validated estimate of that error. Leave-One-Out

Cross-Validation (LOOCV) is a special case of k-fold cross-validation where k equals the number of samples

in the data. In other words in each iteration, nearly all the data except for a single sample are used for

training and the model is tested on that single sample. An accuracy estimate obtained using LOOCV is

2

known to be almost unbiased but it has high variance, leading to unreliable estimates (3).

A large k is seemingly desiderable, since with a larger k there are more performance estimates, and the

training set size is closer to the full data size. As k increases, however, the overlap between training sets also

increases, leading to less precise, less fine-grained measurements of the performance metric. In the other

hand small k speeds up the computation velocity of the cross-validation but the training sets are far to

represent the full data.

In KODAMA, we implemented the 10-fold cross-validation because it makes classifications using 90% of

the data, making it more likely to be generalizable to the full data; it has been shown to be sufficient to

achieve stable values of the accuracy (4). These competing factors have all been considered and k=10 seems

to be a good compromise.

Optimization of the φ, T, M, and ε parameters.

Except for the choice of the classifier to use, KODAMA has three different parameters that can slightly

affect the analysis: the number of samples φ to select in the maximization of the cross-validated accuracy

part, the number of Monte Carlo (MC) steps, T, and the number of iteration of steps I-III, M.

We optimized these three parameters on the basis of the results achieved on three different datasets using

KODAMA with kNN as classifier. The first dataset was generated with 3 clusters and 5 dimensions. The

number of data points for each cluster is 50. Each cluster is created from a different multivariate normal

distribution with a different covariance matrix of the features (5). Each covariance matrix was randomly

generated with values that range between 0 and 1. The second dataset is the Swiss-roll with 1000 data points

described by the following parametric equations: x=u×cos(u), z=u×sin(u); where u varies between 1.5π and

4.5π, and y varies between 0 and 21. The third dataset is a spiral with 200 data points defined by the

following parametric equation: x=cos(u)×(u+a), y=sin(u)×(u+a); where u varies between π and 4π, and a is

a value from a Gaussian distribution with mean=0 and standard deviation =0.7.

The MC procedure optimizes the vector W by maximizing AW through a defined number T of iterations. At

each step AW can increase or at least remain equal. The parameter T defines the number of loops that MC

procedures does to optimize the cross-validated accuracy. In Fig. S4, we show how the accuracy AW evolves

during the MC procedure in the three different datasets. After 10 loops, the accuracy AW achieves the

maximum value and the characteristic of the dataset seems to not interfere with the maximization procedure.

A good compromise between computational time and quality of maximization is T=20. In several cases the

3

MC procedure reaches 100% accuracy before completing T iterations.

The parameter M is the number of times that maximization of the cross-validated accuracy part is repeated.

This part is repeated M times to average effects due to the randomness of the iterative procedure and sample

selection. Larger M value provides a better description of the distribution of the data. We calculated the

residual variance defined as r
2
(A200,AX), where A200 is the KODAMA dissimilarity matrix obtained with

M=200, and AX is the KODAMA dissimilarity matrix obtained with the different M value tested. The

differences between the results with M=100 and M=200 are low. We conclude that M=100 can be a good

approximation a larger M value (Fig. S4).

A subset N’=φN of samples is selected at the beginning of the maximization of the cross-validated accuracy

part. Each time that this part of the KODAMA is repeated a different subset of samples is used. The choice

of the number of samples to be used can affect the analysis. The residual variance between the Euclidean

distance of data points in the manifold and the KODAMA dissimilarity matrix is used to analyze the data in

the Swiss-roll and the spiral datasets. Davies-Bouldin Index (DBI) was used to analyze the results in the 3-

clusters dataset. With low φ values KODAMA cannot achieve a good representation of the manifold

embedded, whilst KODAMA suffers from problems relative to the “short-circuits” in the neighborhood

graph for φ approaching 1. These competing factors have all been considered and φ=0.75 seems to be a good

compromise (Fig. S4).

The problem of “short-circuits” emerges also if occasional proximities are taken as meaningful while

calculating the final KODAMA dissimilarity matrix using the Floyd’s algorithm. We have found that short

circuits can be removed by setting equal to zero all PM values below a certain threshold ε. Empirically, a

value of ε of 0.05 eliminates “short-circuits” without introducing fragmentation of the manifold.

Significance of the KODAMA result

The Shannon Entropy (H) (6) can be used to assess the significance of the KODAMA result on a high-

dimensional dataset. H is given by:

H = − v(i, j) × logv(i, j)
j

N

∑
i

N

∑

where v(i,j) is pM(i,j) divided by the sum of all the values in the matrix PM={pM(i,j)}. H values were

calculated using the function “entropy” in the R library “entropy”.

In terms of hypothesis testing, we proposed testing the null hypothesis that the available result can be

4

modeled as coming from a single multivariate Gaussian distribution. Our test statistic is the H of the PM

proximity matrix. Simulation of the test statistic is used to produce percentile-based p values. This test

assumes that there is no difference in H value between two groups of PM proximity matrices obtained from

two randomly formed datasets. In this test, KODAMA is performed on data from a single multivariate

Gaussian distribution generated with the same number of samples and variables, and the same covariance

matrix of the original data. From each proximity matrix, a H value is obtained. By repeating the procedure G

times, a null distribution of H values is obtained. H0 is then defined as a distribution of H values that are

expected to be insignificant. Statistical significance of KODAMA is then assessed by relating the H value of

the KODAMA performed on the original data to the distribution of the H values obtained from KODAMA

performed on the multivariate Gaussian distributions. The p value is calculated as the number of H values

from the distribution of random data that are smaller or identical to the H value from the original data

divided by G. The lower limit of the number G is dictated by the required statistical significance: for

instance, to attain a p <0.01 at least G=100 is necessary but may not be sufficient for a proper sampling of

the distributions tails.

We compared the H values obtained on 6 different datasets: Swiss-roll, Helicoid, Dini’s surface, 3-cluster,

and 2 different continuous distribution datasets (Test-1 and Test-2). The last two datasets are generated from

a single multivariate Gaussian distribution and they differ for the degree of correlation between variables. In

the first one, the variables are not correlated to each other, whilst the second one is generated using a

covariance matrix of the variables. The covariance matrix was randomly generated with values that range

between 0 and 1. Three hundreds samples were simulated with 10 variables for both datasets. In Fig. S5, we

show the KODAMA proximity matrix and the visualization with Multi-Dimensional Scaling of the

KODAMA dissimilarity matrix obtained for four of these datasets.

In Table S2, for each dataset we report the H values obtained form KODAMA proximity matrices and H

values obtained from the simulation on 100 datasets generated from a Gaussian distribution with the same

covariance matrix. Correctly KODAMA identify as not significant the results for Test-1 and Test-2 datasets,

and significant the results for the other datasets.

Feature extraction methods

For each feature extraction methods, the number of dimensions in the output space was chosen a priori equal

to number of classes minus one if the number of classes is major than two, two otherwise.

Multi-Dimensional Scaling (MDS) was performed using the function “cmdscale” in the R library “stats”.

Diffusion Maps (DM) (7) was performed using the function “diffuse” in the R library “diffusionMap”.

5

The parameter “eps.val” controls the degree of localness in the diffusion weight matrix. We used the default

function to optimize “eps.val”. Isometric Feature Mapping Ordination (ISOMAP) (8) was performed using

the function “ISOMAP” in the R library “vegan”. We performed ISOMAP optimizing the suitable

neighborhood size through estimating the “quality” of the corresponding mapping, i.e. how well the high-

dimensional structure is represented in the embedded space, measured by the residual variance. Principal

Component Analysis (PCA) (9) was performed using the function “prcomp” in the R library “stats”. Locally

Linear Embedding (LLE) (10) was performed using the function “lle” in the R library “lle”. The optimal

number of neighbours was calculates by using the algorithm proposed by Kayo (11) described in the function

“calc_k” in the R library “lle”. Random Forest (RF) (12) was performed using the function “randomForest”

in the R library “randomForest”. The number of trees was 2000. A higher number of trees should increase

the performance of RF. We optimize this parameter a posteriori on the basis of the results obtained. MDS

was applied on one minus the proximity matrix achieved by RF (13). Sammon's Non-Linear Mapping

(Sammon) (14) was performed using the function “sammon” in the R library “MASS”. We leaved unchanged

the default parameters. Stochastic Proximity Embedding (SPE) (15) was performed using the function “spe”

in the R library “spe”. We leaved unchanged the default parameters. t-Distributed Stochastic Neighbor

Embedding (t-SNE) (16) was performed using the function “tsne” in the R library “tsne”. We defined the

perplexity parameter on the basis of the number of data points. Tree preserving embedding (TPE) (17) was

performed using the function “tpe” in the R library “tpe”.

The performance of each feature extraction method was analyzed by estimating the relative class overlap

using the Davies-Bouldin Index (DBI) (18), a function of the ratio of the sum of within-cluster scatter to

between-cluster separation, as implemented in the function “DBIndex” in the R library “RDRToolbox”. DBI

is defined as

DBI =
1

nc
max

σi +σ j

d(ci,c j)











i=1,i≠ j

n

∑

where nc is the number of clusters, σi is the average distance of all samples in cluster i to their cluster center

ci, σj is the average distance of all samples in cluster j to their cluster center cj, and d(ci,cj) is the distance of

cluster centers ci and cj. Small values of DBI correspond to clusters that are compact, and whose centers are

far away from each other.

Clustering methods

High-Dimensional Data Clustering (HDDC) (19) was performed using the function “hddc” in the R library

“HDclassif”. Models and parameters were chosen on the base of the maximization of the BIC criterion.

6

Spectral Clustering (SC) (20) was performed using the function “specc” in the R library “kernlab”. Radial

Basis kernel function was used. Spectral clustering based on k-nearest neighbor graph (SCKNN) (21).

Clustering was performed using the function “specClust” in the R library “kknn”. The number of neighbors

considered was 15. Hierarchical Clustering (HC) (22) was performed using Euclidean distance and Ward’s

method of aggregation. Clustering was performed using the function “hclust” in the R library “stats”. k-

medoids clustering (23) was performed using the function “pam” in the R library “cluster”. k-means

clustering was performed using the function “kmeans” in the R library “stats”. The maximum number of

iterations allowed was 100, and 100 random sets were chosen. Affinity Propagation (AP) (24) was performed

using the function “apclusterK” in the R library “apcluster”.

Adjusted Rand Index (ARI) (25) was used to compare the performances of different methods. ARI is

frequently used in cluster validation since it is a measure of agreement between two partitions. ARI was

calculated using the function “adjustedRandIndex” of the R library “mclust”.

Non-linear datasets

The problem of non-linear dimensionality reduction is illustrated in Fig. 2A and in Fig. S6 for three-

dimensional data sampled from two-dimensional manifolds. The Swiss-roll is described by the following

parametric equations: x=u×cos(u), z=u×sin(u); where u varies between 1.5π and 4.5π, and y varies between 0

and 21. The Helicoid is described by the following parametric equation: x=p×cos(u); y=p×sin(u); z=u;

where u varies between -π and π, and p varies between -1 and 1. The Dini’s surface is described by the

following parametric equation: x=cos(u)×sin(v); y=sin(u)×sin(v); z=cos(v)+log[tan(v/2)]+u/5; with 0≤u≤4π

and 0.01≤v≤1.00 and constants a=1.0 and b=0.2. The spiral datasets described in Fig. 2B are defined by the

following parametric equation: x=cos(u)×(u+a), y=sin(u)×(u+a); where u varies between π and 4π, and a is

a value sampled from a Gaussian distribution with mean=0 and deviation standard between 0 and 2 (21

samplings). For each different Gaussian distribution, 100 different datasets were created. The parameter u

describes the position of a point in the body of the spiral. Lower u values correspond to data points located in

the center of the spiral whilst higher u values correspond to data points located in the external part. The

coefficient of determination, r
2
, between the first component of each method and the u values was used to

evaluate the performance of each method. A higher r2 means that the low dimensional embedding provides

an accurate description of the original data.

Missing values

Real life experiments can often generate missing values. No really satisfactory solution exists for missing

data, which is why it is important to try to maximize data collection. The main ways of handling missing

7

data in analysis are: i) omitting variables which have many missing values; ii) omitting samples which do not

have complete variables; and iii) estimating (imputing) what the missing value were. Obviously, estimating

associations using an incomplete dataset remains less efficient (i.e., imprecise), because part of the data is

not available. Sometimes data are missing in a predictable way that does not depend on the missing value

itself but which can be predicted from other data. KODAMA applies kNN imputation (26) on missing values

in the initial step of the algorithm. For each feature with missing values, kNN imputation finds the kNN

using a Euclidean metric, confined to the columns for which that feature is not missing. Each candidate

neighbor might be missing some of the coordinates used to calculate the distance. In this case, kNN

imputation averages the distance from the non-missing coordinates. Having found the kNN for a feature,

kNN imputation imputes the missing values by averaging those non-missing elements of its neighbors.

To evaluate the performance of kNN imputation applied on KODAMA, missing values were randomly

generated on simulated datasets. Different degrees of missing values were tested (i.e., 5%, 10%, 15%, 20%,

and 25%). We simulated 20 datasets for each degree of missing values. The datasets were generated with 3

clusters and 5 dimensions. The number of data points for each cluster is 30. Each cluster is created from a

different multivariate normal distribution with a different covariance matrix of the variables. Each

covariance matrix was randomly generated with values that range between 0 and 1. The performance of kNN

imputation was analyzed by calculating the residual variance r
2
(KI,K), where KI is the KODAMA

dissimilarity matrix of the data with the missing values estimated by kNN imputation, and K is the

KODAMA matrix of the original data. Fig. S9 shows the results.

Computational time complexity

We measured computational time experimentally on a desktop machine with a 3.06 GHz Intel Core 2 Duo

and with 4 GB of 1067 MHz RAM. We used the R version 3.0.2 (2013-09-25) -- "Frisbee Sailing".

The computational complexity of the KODAMA is dominated by the multiple iterations of the cross-

validation procedure and, thus, it depends proportionally on the product of the number of cross-validations

performed by the time complexity of the classifier used. Among the classifiers tested, the kNN classifier has

the lowest time complexity. The simplest kNN algorithm has a time complexity of O(n×m×f), where n and m

are the number of data points of the training and test set, respectively, and f is the dimensionality of the

dataset. In the case of a 10-fold cross-validation n=0.9×N’ and m=0.1×N’, where N’ is the overall number of

data points (N’=φN), and the time complexity of the kNN classifier is therefore O(0.09×N’
2
×f). A 10-fold

cross-validation performed with kNN classifier has thus a time complexity of O(0.9×N’
2
×f). KODAMA

consequently has a time complexity at most of O(0.9×M×T×N’
2
×f), where M is the number of times that the

8

maximization of the cross-validated accuracy is repeated, and T is the maximum number of MC iterations.

Running time (in seconds) of each classifier implemented in KODAMA (i.e., kNN, SVM, and PCA-CA-

kNN) was provided for different datasets, varying the number of samples and variables.

The time complexity of the SVM and PCA-CA-kNN classifiers is O(N’
2
×f×nc), where nc is the number of

classes present in the cross-validation.

We experimentally compare the time complexity of KODAMA with the other methods on datasets with 5

variables and different number of data points (i.e., 50, 100, 200, 500, and 1000) and on datasets with 50 data

points and a different number of variables (i.e., 50, 100, 200, 500, and 1000), respectively, as shown in

Table S3 and S4.

Running time of each classifier was also calculated for some of datasets tested (i.e., Swiss-roll, Lymphoma,

Metabolomic, Early-Type Galaxies, and The State of the Union). The results are shown in Table S5.

9

References

1. De Jong S (1993) SIMPLS: An alternative approach to partial least squares regression. . Chemom Intell Lab Syst

18:251-263.

2. Guyon I, Weston J, Barnhill S, & Vapnik V (2002) Gene Selection for Cancer Classification using Support Vector

Machines. Mach Learn 46:389-422.

3. Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat

Assoc 78:316-331.

4. Molinaro AM, Simon R, & Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling

methods. Bioinformatics 21:3301-3307.

5. Ripley BD (1987) Stochastic Simulation. (Wiley), p 98.

6. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379-423.

7. Coifman RR, et al. (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of

data: diffusion maps. Proc Natl Acad Sci USA 102(21):7426-7431.

8. Tenenbaum JB, de Silva V, & Langford JC (2000) A global geometric framework for nonlinear dimensionality

reduction. Science 290(5500):2319-2323.

9. Ringner M (2008) What is principal component analysis? Nature biotechnology 26(3):303-304.

10. Roweis ST & Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science

290(5500):2323-2326.

11. Kayo O (2006) Locally Linear Embedding Algorithm: Extensions and Application. (University of Oulu).

12. Breiman L (2001) Random Forests. Mach Learn 45:5-32.

13. Seligson DB, et al. (2005) Global histone modification patterns predict risk of prostate cancer recurrence.

Nature 435(7046):1262-1266.

14. Sammon JWJ (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comp C-18(5):401-409.

15. Agrafiotis DK (2003) Stochastic proximity embedding. Journal of computational chemistry 24(10):1215-1221.

16. van der Maaten LJP & Hinton GE (2008) Visualizing High-Dimensional Data Using t-SNE. J Mach Learn Res

9:2579-2605.

17. Shieh AD, Hashimoto TB, & Airoldi EM (2011) Tree preserving embedding. Proc Natl Acad Sci USA

108(41):16916-16921.

18. Davies DL & Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Machine Intell 1:224-

227.

19. Bouveyron C, Girard S, & Schmid C (2006) High-Dimensional Data Clustering. Comput Stat Data Anal 52:502-

519.

20. Ng AY, Jordan MI, & Weiss Y (2001) On Spectral Clustering: Analysis and an algorithm. Adv Neural Inf Proc

Syst 14:849-856.

21. Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell 22:888-905.

22. Eisen MB, Spellman PT, Brown PO, & Botstein D (1998) Cluster analysis and display of genome-wide

expression patterns. Proc Natl Acad Sci USA 95(25):14863-14868.

23. Kaufman L & Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis (Wiley, New

York) pp xiv, 342 p.

24. Frey BJ & Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972-976.

25. Hurbet L & Arabie P (1985) Comparing partitions. J Classif 2(1):193-218.

26. Troyanskaya O, et al. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics

17(6):520-525.

10

 Table S1. KODAMA adjustable parameters with default values.

Parameter Description Default

value

 φ Fraction of samples randomly taken at the beginning of step I 0.75

T Maximum number of MC iterations 20

M Repetitions of the iterative procedure in steps I-II-III 100

ε Threshold for not significant proximities 0.05

Table S2. H value obtained with KODAMA performed with kNN on six different datasets: Swiss-roll,

Helicoid, Dini’s surface, 3-clusters datasets, and two different homogenous datasets with correlation and

without correlation among the variables. Mean, standard deviation, and range of H values obtained with

KODAMA performed with kNN on 100 homogenous datasets created with the same covariance matrix are

reported. p values are also reported.

 H value

Mean St. dev. Min Max p value

Swiss-roll 11.391174 13.802700 1.38E-06 13.799552 13.805183 <0.01

Helicoid 10.942682 11.683730 3.44E-06 11.683730 11.683750 <0.01

Dini’s surface 10.921598 11.654730 3.75E-06 11.654720 11.654740 <0.01

3-clusters 11.260296 11.369976 2.76E-05 11.359756 11.384299 <0.01

Test-1 11.384031 11.376065 1.11E-04 11.345257 11.396324 0.73

Test-2 11.397000 11.394322 2.70E-05 11.380627 11.405440 0.69

Table S3. Running times (seconds) of each method performed on homogenous Gaussian datasets with 5

variables and different numbers of data points.

 Number of data points

 50 100 200 500 1000

KODAMA
(kNN classifier)

109.199 244.892 512.025 1434.554 3563.039

KODAMA
(SVM classifier)

152.425 179.740 276.022 605.145 1482.877

KODAMA
(PCA-CA-kNN classifier)

120.799 246.311 497.037 1327.146 3162.133

DM 0.099 0.121 0.153 0.387 1.738

ISOMAP 0.451 1.289 6.713 85.160 783.752

PCA 0.002 0.001 0.004 0.002 0.001

LLE 2.421 5.441 12.950 62.539 309.378

RF 0.159 0.362 0.863 3.178 10.428

SAMMON 0.007 0.030 0.102 0.394 3.751

SPE 6.127 6.223 6.184 6.333 6.705

t-SNE 6.791 14.551 33.465 182.407 2453.518

11

Table S4. Running times (seconds) of each method performed on homogenous Gaussian datasets with 50

data points and different numbers of variables.

 Number of variables

 50 100 200 500 1000

KODAMA
(kNN classifier)

64.388 74.547 64.607 62.373 66.270

KODAMA
(SVM classifier)

162.551 182.134 194.097 254.174 264.176

KODAMA
(PCA-CA-kNN classifier)

102.248 79.182 76.313 62.370 98.220

DM 0.096 0.097 0.099 0.101 0.102

ISOMAP 0.318 0.321 0.318 0.324 0.324

PCA 0.003 0.004 0.006 0.011 0.019

LLE 3.342 3.832 4.701 7.715 11.898

RF 0.661 1.173 2.173 5.285 10.490

SAMMON 0.005 0.014 0.011 0.014 0.004

SPE 13.412 23.446 53.697 163.317 319.925

t-SNE 6.943 6.940 6.864 7.758 14.091

Table S5. Running times (seconds) of each method applied to Swiss-roll, Lymphoma, Metabolomic, ETGs

and State of the Union datasets.

S
w

is
s
-r

o
ll

L
y
m

p
h

o
m

a

M
e
ta

b
o

lo
m

ic

E
T

G
s

S
ta

te
 o

f
th

e

U
n

io
n

Data points 1000 62 873 260 84

Variables 3 4026 416 4 834

KODAMA
(kNN classifier)

3662.340 123.787 4133.893 690.069 164.217

KODAMA
(SVM classifier)

1019.067 1224.028 1922.688 297.947 421.516

KODAMA
(PCA-CA-kNN classifier)

3144.494 176.856 4560.366 659.273 193.041

DM 1.600 0.064 277.738 0.304 0.069

ISOMAP 519.844 0.486 414.901 12.816 0.871

PCA 0.006 0.113 1.261 0.001 0.048

LLE 311.742 57.809 1015.864 24.812 23.301

RF 8.111 61.781 229.911 1.131 18.357

SAMMON 2.850 0.008 2.295 0.133 0.024

SPE 6.439 1394.867 382.616 6.343 270.833

t-SNE 477.211 407.68 391.755 47.790 15.816

12

Table S6. Comparison among DBIs obtained with different feature extraction methods.

L
y
m

p
h

o
m

a

M
e
ta

b
o

lo
m

ic
s

E
T

G
s
 (
ε

e
)

E
T

G
s
 (
ε

e
/2
)

S
ta

te
 o

f
th

e

U
n

io
n

KODAMA 0.142 0.131 0.913 0.981 0.237

DM 0.246 0.612 0.934 0.993 0.580

ISOMAP 0.784 0.408 0.902 0.988 0.356

PCA 0.307 0.521 0.942 1.134 2.260

LLE 0.186 0.349 1.256 1.247 0.750

RF 0.370 0.411 1.475 1.825 0.688

SAMMON 0.570 0.522 0.947 1.139 1.090

SPE 0.531 0.529 0.959 1.142 1.090

t-SNE 1.367 0.331 3.584 3.112 2.423

Table S7. ARI values for different clustering methods applied to the Metabolomic data set.

Method ARI

KODAMA 0.769

k-means 0.330

high-Dimensional Data Clustering 0.358

Spectral Clustering 0.336

Spectral clustering (k-nearest neighbor graph based) 0.439

Hierarchical Clustering 0.305

k-medoids 0.317

Affinity Propagation 0.212

13

Fig. S1. Flowchart of the first part (steps I-III) of KODAMA.

14

Fig. S2. The KODAMA accuracy maximization procedure. Each point is colored according to the cluster it

belongs to; the circle represents the distance to the second nearest neighbor. AW values show how the relative

cross-validated accuracy increases during the iterative step. Vector W indicates the class. Vector ZW indicates

the predicted values of the classifier built on the base of the vector W.

15

Fig. S3. The averaging of each element p(i,j) of the M proximity matrices P is performed with the following

formula pM (i, j) = pg (i, j)
g=1

M

∑ m(i, j) where m(i,j) indicates the number of times that samples xi and xj are

present together in the same subdataset generated in step I. Thus, the resulting elements of the matrix

PM={pM(i,j)} (N×N) are averages ranging from 0 to 1.

16

Fig. S4. Parameter optimization. KODAMA was tested on three different datasets to optimize the values of

T, M and φ parameters. The increase in accuracy with increasing T or M, respectively, is shown. The best

value of the φ parameter is more dependent on the type of data.

17

Fig. S5. KODAMA was tested on four different datasets. The first two datasets (i.e, Swiss-roll and 3-

clusters) present a clear “organization” in the distribution of the data points. The last two datasets are

continuous distributions with correlations (i.e., Test-1) and without correlations (i.e., Test-2) among the

variables. In the first column the KODAMA proximity matrices obtained on the respective dataset are

reported. In the second column the MDS plot of the KODAMA dissimilarity matrix is shown.

18

Fig. S6. Comparison between different feature extraction methods on the Swiss-roll, Helicoid, and Dini’s

surface. The methods shown are DM, ISOMAP, PCA, LLE, RF, Sammon, SPE, and t-SNE. The color-

coding reveals how the data are embedded in two dimensions.

19

Fig. S7. Performance of achieving a low-dimensional representation from a manifold embedded in high

dimensional space as a function of the noise in the Swiss-roll and Helicoid datasets of 500 data points each.

KODAMA (in blue), ISOMAP (in yellow), and LLE (in red) were applied to Swiss-roll and Helicoid

datasets. The Swiss-roll is described by the following parametric equations in three dimensions:

x=(u+a1)×cos(u), z=(u+a2)×sin(u); where u varies between 1.5π and 4.5π, and y varies between 0 and 10.

The values a1 and a2 are from a Gaussian distribution with mean=0 and standard deviation between 0 and 2

(21 samplings). For each Gaussian distribution, we created 100 different datasets. The Helicoid is described

by the following parametric equation: x=p×cos(u); y=p×sin(u); z=u+a; where u varies between -π and π, and

p varies between -1 and 1. The value a is from a Gaussian distribution with mean=0 and standard deviation

between 0 and 1 (21 samplings). For each Gaussian distribution, we created 100 different datasets.

20

Fig. S8. Results of different methods applied to datasets with different degrees of separation among clusters.

21

Fig. S9. Results of different methods applied to datasets with different degrees of missing values.

22

Fig. S10. Comparison between DM, RF, Sammon, SPE, and t-SNE on the Lymphoma, Metabolomic, and

ETGs datasets. Data points are colored by their class.

23

Fig. S11. Metabolomic dataset. Different visualization of KODAMA dissimilarity matrix with MDS, t-SNE,

and TPE compared to visualization with Euclidean distance matrix with MDS, t-SNE, and TPE.

24

Fig. S12. Metabolomic dataset. Semi-supervised PCA-CA and KODAMA showing unsupervised gender

discrimination. PCA-CA-kNN classifier for KODAMA was selected by minimizing the H value. MDS was

used to visualize the results of KODAMA dissimilarity matrix.

25

Fig. S13. ETGs dataset. Comparison between KODAMA performed with kNN, PCA, ISOMAP, and LLE.

Color-coding indicates samples from the same class. The results of the other methods are shown in Fig. S10.

26

Fig. S14. First component of DM, ISOMAP, PCA, LLE, RF, Sammon, SPE, and t-SNE applied to the

selected addresses of American presidents, in chronological order.

