# **Supporting Information**

## Braiterman et al. 10.1073/pnas.1314161111

#### **SI Methods**

Subjects and Clinical Laboratory Tests. Normal subjects (Table 1) were healthy volunteers of mean age  $35.6 \pm 10.5$  y, provided informed consent, and were recruited from outpatient clinics and hospital staff from the Medical University of Warsaw. Each volunteer had no family history of Wilson disease (WD), liver disease, or a diagnosed neurodegenerative disease. Individuals with chronic inflammatory disease or infectious disease were excluded. All normal individuals were evaluated and found to lack six WD mutations prevalent in the Polish population. The protocols for the human study group were approved by the Bioethics Committee of the Institute of Psychiatry and Neurology.

Serum ceruloplasmin concentration was measured using p-phenylenediamine as the substrate (1). Serum copper concentration was determined by atomic adsorption spectroscopy. All biochemical investigations were performed at the same laboratory according to the same standardized procedures as previously reported (2, 3).

ATP7B Mutants. Generation of the full-length wild-type ATP7B N-terminally tagged with the green fluorescent protein (wtGFP) ATP7B (designated pYG7) in pAdLOX for adenovirus-mediated protein expression was described previously (4). QuikChange II XL Site-Directed Mutagenesis kit (Stratagene) was used with pYG7 as a template to create GFP-tagged mutants encoded by the plasmids designated pTZs 8R, 13g, 12R, and 21 (Table S2). The<sup>1858</sup>TGE<sup>860</sup>>AAA substitution in the A-domain was generated as a negative control (pYG85) for tyrosinase activation. The ORF of GFP was modified in wild-type (wtGFP) ATP7B to generate its monomeric form, A206K (5). The corresponding plasmid, pLB1080, was used as a template to create GFP-tagged mutants encoded by the plasmids AbM18, pTZs 17 and 25, pTuS46, and pAmrs 5, 24, 8, 23, 27, 36, and 37 (Table S2). All primers were from Integrated DNA Technologies (Table S2). Sequences of all mutated regions in each construct were verified.

All constructs were packaged into adenoviruses and purified as described previously (6). To verify that packaged viruses encoded the desired substitutions, adenoviral DNA was purified from infected HEK293A cells, PCR amplified and sequenced as described (7). The sequencing was performed by The Johns Hopkins University DNA Sequencing Facility.

**Cell Culture and Adenoviral Infection.** Two immortalized derivatives of Simian virus 40 (SV40)-transformed ATP7A-null cells (Menkes fibroblasts), designated YS and YST, were cultured as previously described (4, 8). For protein expression, YS cells were seeded in 10-cm tissue culture dishes containing six glass coverslips ( $22 \times 22 \text{ mm}$ ); plating densities were either  $1.5 \times 10^6$  or  $7.5 \times 10^5$ . Cells on coverslips were infected 2 or 3 d later, as described previously (7). WIF-B cells were seeded in 10-cm tissue culture dishes containing six glass coverslips ( $22 \times 22 \text{ mm}$ ); plating

- 1. Ravin HA (1961) An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 58:161-168.
- 2. Gromadzka G, et al. (2005) Frameshift and nonsense mutations in the gene for ATPase7B are associated with severe impairment of copper metabolism and with an early clinical manifestation of Wilson's disease. *Clin Genet* 68(6):524–532.
- Gromadzka G, et al. (2006) p.H1069Q mutation in ATP7B and biochemical parameters of copper metabolism and clinical manifestation of Wilson's disease. *Mov Disord* 21(2):245–248.
- Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289(5):G904–G916.

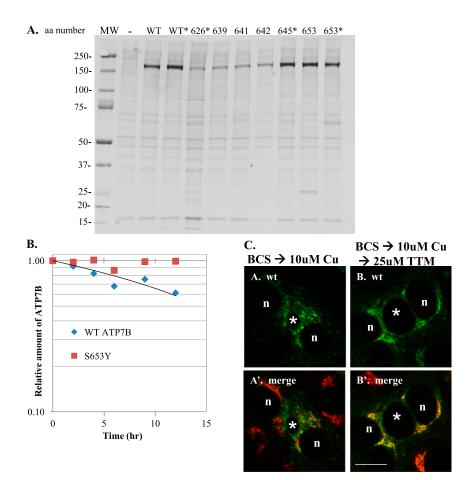
densities were  $7 \times 10^5$ , cultured as described previously (9, 10) and used ~9–12 d later, when maximal polarity was achieved. WIF-B cells were infected as previously described (8) with the following modifications. Aggregrates of virus were removed using 0.2 mm MILLEX GP filter units (Merck Millipore), infections were carried for 0.5 h and the infected cells were cultured overnight with 10  $\mu$ M bathocuproinedisulfonic acid (BCS). For each recombinant virus, expression of GFP-ATP7B was tested in YS cells as described previously (7).

**Tyrosinase Activation and Protein Expression.** Each ATP7B construct was tested for its Cu(I) transport activity in YST cells cotransfected with the construct and apo-tyrosinase, then assayed 24 h later as previously described (4, 8). Adenovirus-infected YS cell extracts for protein expression and steady-state half-life studies were harvested and processed as previously described (4, 7).

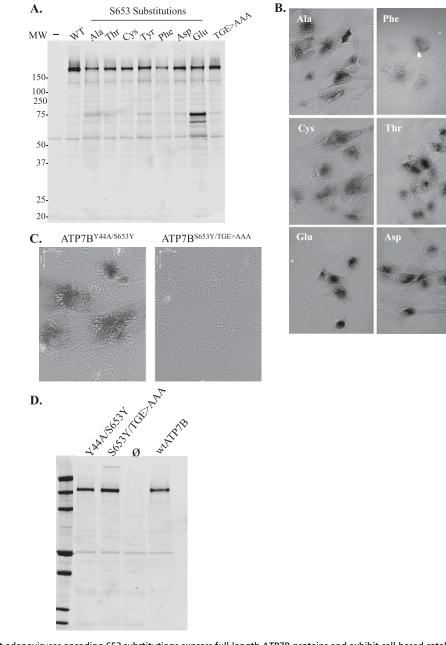
Indirect Immunofluorescence, Imaging, and Quantification (11). Primary antibodies were obtained from the following sources: mouse anti-TGN38, BD Biosciences; mouse anti-GFP, Clontech; and rabbit antiaminopeptidase N (APN #1637) (12). Secondary antibodies conjugated to Alexa 568 or 647 were from Invitrogen; those with Cy5 were from Jackson ImmunoResearch Laboratories. Immunolabeled WIF-B cells were analyzed using a 100× PLAN-APO, 1.4 NA oil-immersion objective on an LSM 510 META confocal microscope (Zeiss) or using a 40x PLAN-APO, 1.4 NA oil-immersion objective on a Zeiss Axiovert 200 M fluorescence microscope (Zeiss). For imaging, cells that expressed low levels of exogenous protein were selected. The distribution of the GFP-ATP7B variants was assessed relative to the organelle marker, TGN38. Apical surfaces were identified by the presence of either the apical marker, APN, or the phase-lucent circle corresponding to the biliary space in WIF-B cells. Experiments were repeated two or more times and confocal images of 8-20 cells evaluated per experiment. Images of 19-185 cells were acquired using Volocity software (Perkin-Elmer). The response to copper treatment was quantified by counting the total number of polar cells expressing GFP-ATP7B protein, those with ATP7B protein at the apical or basolateral surface (depending on the mutant ATP7B being expressed), and calculating the percent of the total with surface labeling.

Adaptive Poisson–Boltzmann Surface Calculations. The adaptive Poisson–Boltzmann surface (APBS) calculations (Fig. S4) were performed using the APBS Tools2 plug-in (13) within PyMOL. PDB2PQR (14) was used to convert the coordinate file system to PQR format using the AMBER99 force field (15, 16). The calculations performed had dielectric constants set to 2.0 (protein) and 78.0 (solvent), ion concentrations to 150 mM (radius of +1 = 2.0 and -1 = 1.8), probe radius to 1.4 Å and a system temperature of 310 K.

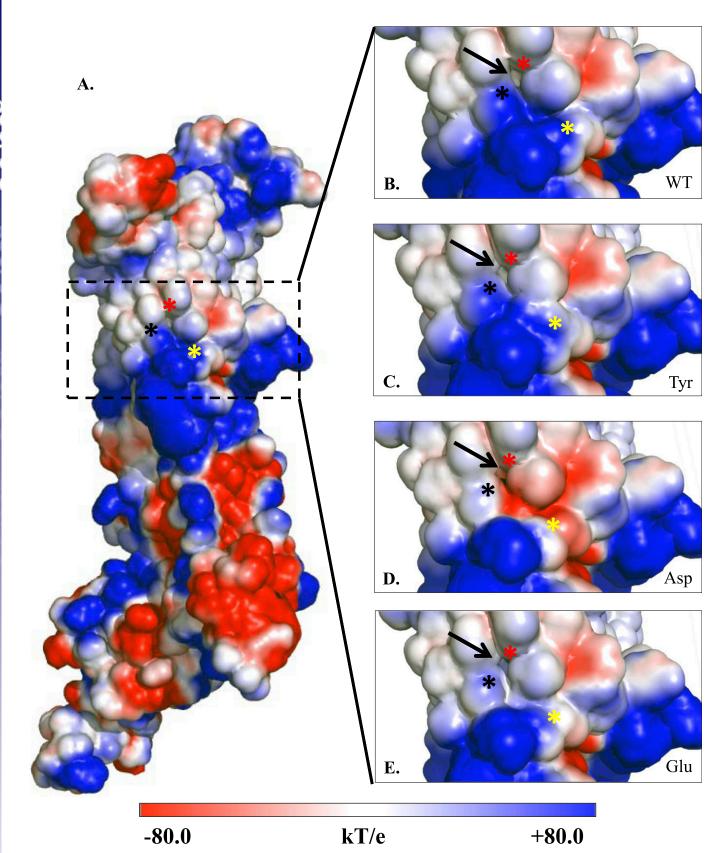
- Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. *Science* 296(5569):913–916.
- Bastaki M, Braiterman LT, Johns DC, Chen YH, Hubbard AL (2002) Absence of direct delivery for single transmembrane apical proteins or their "Secretory" forms in polarized hepatic cells. *Mol Biol Cell* 13(1):225–237.
- Braiterman L, Nyasae L, Leves F, Hubbard AL (2011) Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, *trans*-Golgi network retention, copper sensing, and retrograde trafficking. *Am J Physiol Gastrointest Liver Physiol* 301(1):G69–G81.
- Braiterman L, et al. (2009) Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296(2):G433–G444.


- Cassio D, Hamon-Benais C, Guérin M, Lecoq O (1991) Hybrid cell lines constitute a potential reservoir of polarized cells: Isolation and study of highly differentiated hepatoma-derived hybrid cells able to form functional bile canaliculi in vitro. J Cell Biol 115(5):1397–1408.
- Ihrke G, et al. (1993) WIF-B cells: An in vitro model for studies of hepatocyte polarity. J Cell Biol 123(6 Pt 2):1761–1775.
- 11. Ihrke G, et al. (1998) Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes. J Cell Biol 141(1):115–133.
- Barr VA, Hubbard AL (1993) Newly synthesized hepatocyte plasma membrane proteins are transported in transcytotic vesicles in the bile duct-ligated rat. *Gastroenterology* 105 (2):554–571.

- Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041.
- Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res* 32(Web Server issue):W665–W667.
- Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. *Biophys J* 88(4):2472–2493.
- DePaul AJ, Thompson EJ, Patel SS, Haldeman K, Sorin EJ (2010) Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. *Nucleic Acids Res* 38(14):4856–4867.


| EAX08892 1                           | MPEQERQITAREGASRKIL SKLSLPTR AWEP AMKKSFAF-DNVGYEGGLDGLG PSSqVATS-                                                                                                   | 60         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| XP 003809840 1                       | MPEQGRQITAREGASRKIL SKLSLPTR AWEP AM <b>KKSFAF-DNVGYEGGLDGLG PSS</b> q <b>VATS-</b>                                                                                  | 60         |
| XP_003314205 1<br>XP_003980404 1     | <pre>[194]MPEQERQITAREGASRKVS[6]RSVLTPTR[8]AYSP[41]SVHKQWSFrKSPGVRHSARPVS[6]PPSeEGEF-<br/>MLEQERQLTARVGAGWKIL SKHSLPAR VWEP[2]QQKQSFAF-DNVGYEGGLDSVC PSQ-T-TTg</pre> | 316<br>61  |
| ABM63504 1                           | IL SKLSLPTR AWEP[2]KQSFAF-DNVGYEGGLDSVC PPQ-TATS-                                                                                                                    | 42         |
| XP 002917723 1<br>XP 005387668 1     | [79]SSQQIL PKLSLPAR[1]-WKQ AMKQSFAF-DNVGYEGGLDNVC PSP-TITS-                                                                                                          | 26<br>125  |
| XP 005601247 1                       | MSEQERQITAREGAGPKIL SKLSLPAR[1]-WEP TMKQSFAF-DNVGYEDSLDGVC PSQ-TSTG-                                                                                                 | 59         |
| XP 004633164 1<br>XP 004577555 1     |                                                                                                                                                                      | 27<br>27   |
| <u>m 001077000</u> 1                 |                                                                                                                                                                      | 2.1        |
| EAX08892 61                          | MBD1<br>TVHILGMT CQSCVKSIEDRISNLKGIISMKVSLEQGSATVKYVPSVVCLQQVCHQIGDMGFEASIAEGKAASWP3RS                                                                               | 137        |
| XP_003809840_61                      | TVRILGMT COSCVKSIEDRISNLKGIVSMKVSLEOGSATVKYVPSVVCLOOVCHQIGDMGFEASIAEGKAASWP3RS                                                                                       | 137        |
| XP 003314205 317<br>XP 003980404 62  | PQRVLNGT[5]SQSCVKSIEDRISNLKGIVSMKVSLEQGSATVKYVPSVVCLQQVCHQIGDMGFEASIAEGKAASWP3RS<br>TISISGMT CQSCVKSIEGRISSLKGIVSIKVSLEQGSATVIYVPSVLSLPQVCRHVEDMGFEASITEGKAASWP3RS   | 398<br>138 |
| ABM63504 43                          | TIBILGMT CQSCVRSIEGRISSLKGIVSIKISLEQGNATVKYMPSILSLPQVCRHIEDMGFEASVAEGKAASWPSPS                                                                                       | 119        |
| XP 002917723 27<br>XP 005387668 126  | TVVVSGMT CQSCVQSIEGRISSLKGVVSIKVSLEQGSATVTYVPSILSLPQICHHIEDMGFEASVAEGKAASWP3RS<br>TISVLGMT CQSCVKSIEGRISSLKGIVNIKVSLEQSNATVKYVPSVISLQQVCHQIGDMGFEASVVEGKAASWP3RT     | 103<br>202 |
| XP_005601247 60                      | TISILGMT CQSCVKSIEGRISTLKGIVNINVSLERGSATVKYMPSVVSLPQVCRQIEDMGFTASTAEGKSVSWPSGS                                                                                       | 136        |
| XP 004633164 28<br>XP 004577555 28   | TISILGMT CQSCVKSIEGRISSLKGIVSIKVSLEQSNAVVKYVPSVISLQQVCHQIGDMGFEASIAEGKAASWP3RT<br>TIRILGMT CQSCVKSIEGRISSLKGIVSIKVSLEQGNATVKYVPSLMSLQQICHHVGDMGFEASVTEGKAASWP3RS     | 104<br>104 |
|                                      |                                                                                                                                                                      |            |
| EAX08892 138                         | MBD2<br>LPAQEAVVKLHVEGMTCQSCVSSIEGKVRKLQGVVRVKVSLSNQEAVITYQPYLIQPEDLRDHVNDMGFEAAIKSKVAPL                                                                             | 217        |
| XP 003809840 138                     | LPAQEAVVKLFVEGMTCQSCVSSIEGKVRKLQGVVRVKVSLSNQEAVITYQPYLIQPEDLRDHVNDMGFEAAIKNKVAPL                                                                                     | 217        |
| XP 003314205 399<br>XP 003980404 139 | LPAQEAVVKLEVEGMTCQSCVSSIESKVRKLQGVVRVKVSLSNQEAVITYQPYLIQPEDLRDHVNDMGFEAAIKNKVAPL<br>SSALEATVKLEVEGMTCQSCVSSIEGRLGKLQGVVRARVSLGTQEAVITYQPYLIQPQDLRDHVNDMGFEAVIKNRVAPV | 478<br>218 |
| ABM63504 120                         | SPGLEAVVRLAVEGMTCQSCVSSIEGKLGKLQGVARVRVSLSTQEAVITYQPYLIQPQDLRDHVNDMGFEAVIKNRVAPV                                                                                     | 199        |
| XP 002917723 104<br>XP 005387668 203 | SSGLEAVVKLAVEGMTCQSCVSSIEGKLGKLQGVVRVRVSLGTQEAVITYQPYLIQPQDLRDHVNDMGFEAVIKNRVAPV<br>SSAQEAVVKLEVEGMTCQSCVSSIEGKLRKLQGVVRVKVSLSTQEAVITYQPYLIQSEDLRDHVSDMGFEAAIKNKVAPL | 183<br>282 |
| XP_005601247 137                     | SSALEAMVKLEVEGMTCQSCVSSIEGKIGKLQGVVRVRVSLSNQEAVITYQPFLIRPQELRDHVNDMGFEAVIKNKVPPL                                                                                     | 216        |
| XP 004633164 105<br>XP 004577555 105 | LSAQEAVVKLEVEGMTCRSCVSSIEGKLRKLHGVVRVRVSLSNKEAVVTYQPYLIQPEDLRDHVSDMGFEAAIKNKVAPL<br>LSPQEAVVKLEVEGMTCQSCVSSIEGKIGKLQGVVRVRVSLGNQEAVITYQPYLIQPEDLREHVIDMGFEAAIKNKTTPL | 184<br>184 |
| <u></u>                              | C                                                                                                                                                                    |            |
| EAX08892 218                         | S GPIDIERLQSTNPKRPLSSANQNFNNSETLG HQGSHVVTLQLRIDGMHCKSCVLNIEENIGQLLGVQSIQVSLEN                                                                                       | 294        |
| XP 003809840 218<br>XP 003314205 479 | SLGPIDIERLQSTNPKRPLSSANQNFNNSETLG HQGSHVVTLQLRIDGMHCKSCVLNIEENIGQLLGVQSIQVSLEN<br>SLGPIDIERLQSTNPKRPLSSANQNFNNSETLG HQGSHVVTLQLRIDGMHCKSCILNIEENIGQLLGVQSIQVSLEN     | 294<br>555 |
| XP 0033980404 219                    | SLGPIDIGRLQRINFRFLSGANQARNNSFLG HQGSHVVIQLARDGMACRSCIIMIEENIGQLBGVQSIQVSLEN<br>SLGPIDIGRLQRINFRFLSGTQNINNSETLG HQGSRVVILQLRVDGMHCKSCVLNIEENIGQLPGVQSIQVSLEN          | 295        |
| ABM63504 200                         | SIGPIDIGRLORTNPKMPLTSDNONLNNSETLG HQGSHVVTLQLPVDGMHCQSCVLNIEENIGQLPGVQNVQVSLEN                                                                                       | 276        |
| XP 002917723 184<br>XP 005387668 283 | S GPIDIGRLQRTNPKTPLASDNQNLNNSETSG HQGSHVVTLQLRIDGMHCKSCVLNIEENIGQLPGVQSIQVSLEN<br>S GPIDIGRLQSANPKRPSAFANQNLNNSETLG HQGSHTATVQLGIDGMHCQSCVLNIEGNIGQLPGVQHIQVSLEN     | 260<br>359 |
| XP 005601247 217<br>XP 004633164 185 | S_GPVDIGRLQSTNPKTPSASANQNSNNSETLG HQGSQLVTLQLRVDGMRCKSCVLHIEESIGRLPGVQNIQVSLEN                                                                                       | 293        |
| XP_004633164 185<br>XP_004577555 185 | SLGPIDVGRLQCANPKRPSAFANQNLNNSETLG HQGSHMATVQLGTEGMHCQSCVLNIEGNLSQLPGVQHIQVSLEN<br>SLGPIDIARLQRANLKRPPVSTNQNCNNSETSG[5]NPVSQGATLNLRVDGMHCKSCVLNIEENIGQLAGVQNIQVSLEN   | 261<br>266 |
|                                      | , MBD4                                                                                                                                                               |            |
| EAX08892 295                         | KTAQVKYDPSCTSPVALQRAIEALPPGNFKVSLPDGAE-GSGTIHRSSSSHSPGSPPR NQVQGTCSTTLIAIAGMTC                                                                                       | 370        |
| XP 003809840 295<br>XP 003314205 556 | KTAQVQYDPSCTSPVALQRAIEALPPGNFKVSLPDGAE-GSGTIHRSSSSHSPGSPPR NQVQGTCSTTLIAGMTC<br>KTAQVQYDPSCTSPVALQRAIEALPPGNFKVSLPDGAE-GSGTIHRSSSSHSPGSPPR NQVQGTCSTTLIAGMTC         | 370<br>631 |
| XP 003980404 296                     | RIAQVQFDPSRVTPGALQRAIEALPPGNFQVSLPDGAA-GSGTINRPSTHLASAPAPA[4]TRMQGLCSTVVLAIGGMTC                                                                                     | 375        |
| ABM63504 277<br>XP 002917723 261     | RTAQVQYDPSCVTAGALQRAIEALPPGNFKVSLPAAAA-GSETGVRFSACAAPAPAPR TPAPGRCDTVMLAIVGMTC<br>RMAQVQYDPSRVTAGALQRAIEALPPGNFKVSLPDGAE-GSGTGSWSSNRVTPAPDPR TQAPGVYETVVLAIAGMTC     | 352<br>336 |
| XP 005387668 360                     | KTAEVQYDPSCVTPVSLQRAIEALRPGNFKVSLPDGAG-GSGAGDESSACHAPDSPGG SHLQGQCSSLVLSITGMTC                                                                                       | 435        |
| XP 005601247 294<br>XP 004633164 262 | RTAQVQYDPSRVSPGDLQRAIEALPPGHFKVSLPDGTE-GSGAINGSSTRHSPSPLQR TQVQGTCRTVVLAIAGMAC<br>KTAEVQYDPSCVTPVSLQRAIEALPPGNFRVSLPGGAR-GR-AGGESSSCHAPGSPER SQLQGPGSSLVLSITGMTC     | 369<br>336 |
| XP_0045577555 267                    | RTAEVQTDESCVTFV5LQKATEALEPEGNEKV5LPGAEK-GK-AGDESSSCHAFGSEEK SQLQGGSSSV1BFTGMTC<br>RTAQVWYDPSRVTPVSLQKATEALEPEGNEKVFLPDGAEvSG-TENRTSSGYSPGSPQR NQVQGACSTMMLAIAGMTC    | 342        |
| EAX08892 371                         | ASCVHSIEGMISQLEGVQQISVSLAEGTATVLYNPSVISPEELRAAIEDMGFEASVVSESGSTNPLGNHSAGNSMVQTTD                                                                                     | 450        |
| XP 003809840 371<br>XP 003314205 632 | ASCVHSIEGMISQLEGVQQISVSLAEGTATVLYNPSVISPEELRAAIEDMGFEASVVSESQSTNPLGNHSAGNSMVQTTG<br>ASCVHSIEGMISQLEGVQQISVSLAEGTATVLYNPSVISPEELRAAIEDMGFEASVVSESQSTNPLGNHSAGNSMVQTTG | 450<br>711 |
| XP 003980404 376                     | ASCVQSIEGLLSREGVRVSVSLTEGTGVVLYDPSVINPEGLRAAVEEMGFKASVVSENCYSNHVGNRSTGNSTVHTTA                                                                                       | 455        |
| ABM63504 353<br>XP 002917723 337     | ASCVQSIEGLISQREGVQQISVSLAEGTAVVLYDPSIIGPEELRAAVEEMGFETSVLSENGVSNHVGNHSAGNSSAHTTA<br>ASCVQSIEGLISQREGVQQMSVSLAEGTGVVLYDPAIINPEELRAAVEEMGFETSVISGNCYSNHVGNHSAGNSSACPAA | 432<br>416 |
| XP_005387668 436                     | VSCVQSIESVLSQREGVQRIAVSLAAGTATVVYDPSIISPEDLRAAVEDMGFEASVVPENHSTNHVESHSAANAVLQTLG                                                                                     | 515        |
| XP 005601247 370<br>XP 004633164 337 | ASCVQSIEGLISQREGVQRVSVSLAKGTGTVLYDPSVTNPEELRAAVEDMGFEVSVISENGSSNHVGNHTVENSMVQTAA<br>ASCPQSIEGVLSRREGVQQISVSLAGGTATVLYDPSVISPEELRAAVEDMGFEASVVPEN%SINHADNHTAENAMLQTPG | 449<br>416 |
| XP 004577555 343                     | MSCAQSIEGVISQREGVQISVSIAEGTGTVFYEPSVISPEEIRAAVEDMGFEASIVPGIGFDSHCGRRAAGSSTVQTKN                                                                                      | 422        |
|                                      | MBD5                                                                                                                                                                 |            |
| EAX08892 451                         | ${\tt GTPTSVQEVAPHTGRLPANHAPDILAKSPQSTR-AVAPQKCFLQIKGMTCASCVSNIERNLQKEAGVLSVLVALMAGKAE}$                                                                             | 529        |
| XP 003809840 451<br>XP 003314205 712 | GTPTSVQEVAPHAGRLPANHAPDILAKSPQSTR-AVAPQKCFLQIKGMTCASCVSNIERNLQKEAGVLSVLVALMAGKAE<br>GTPTSVQEVAPHAGRLPANHAPDILAKSPQSTR-AVAPQKCFLQIKGMTCASCVSNIERNLQKEAGVLSALVALMAGKAE | 529<br>790 |
| XP 003980404 456                     | GGPVSVQGTAPHAGGLPKNHNPGSSSKSPQAST-AVAPQKCFLQITGMTCASCVSNIERNLQKEAGILSVLVTLMAGKAE                                                                                     | 534        |
| ABM63504 433<br>XP 002917723 417     | GVPVSVQEGAPHTEGLPGNHSPGRPSRSPPAST-SVTAQKCFLQITGMTCASCVSNIERKLQKEAGVVSVLVALMAGKAE<br>GVPASVQEVAPHAGGLPKSHDPGSSSKPPQAST-LGAPQKCFLQITGMTCASCVSNIERNLQKEAGILSVLVALMAGKAE | 511<br>495 |
| XP 005387668 516                     | DPPVSVQVVAPHARRPNRSHSPGYSSHIPQSTGtAAA-QKCFLQIKGMTCASCVSHIERNLQKEAGVLSILVALMSGKAE                                                                                     | 594        |
| XP 005601247 450<br>XP 004633164 417 | GSPLSVQEVAPYTGGPPQNHSSGRSSKSRQATA-TVAPQKCFLQVTGMTCASCVSVIEKNLQKEDGILSVLVALMAGKAE<br>DPPGAVPEVAPQGSRALRQPSPGSSSHSPQSTKtASASQKCFLQIKGMTCASCVSHIERNLQKEAGILSILVALMSGKAE | 528<br>496 |
| XP 004577555 423                     | AAPVSVSEPAVPDGEHPENHHPGCSSKAPPSTS-TVAPQKCFICIRGMTCASCVSNIERNLQKEAGILSVLVALMAGKAE                                                                                     | 501        |
|                                      | MBD6                                                                                                                                                                 |            |
| EAX08892 530<br>XP 003809840 530     | IKYDPEVIQPLEIAQFIQDLGFEAAVMEDYAGSDGNIELTITGMTCASCVHNIESKLTRTNGITYASVALATSKALVKFD<br>VKYDPEVIQPLEIAQFIQDLGFEAAVMEDYAGSDGNIELTITGMTCASCVHNIESKLTRTNGITYASVALATSKALVKFD | 609<br>609 |
| XP_003314205 791                     | VMYDPEVIQPLEIAPFIQDLGFEAAVMEDYAGSDGNIELTITGMTCASCVHNIESKLTRTNGITYASVALATSKALVKFD                                                                                     | 870        |
| XP_003980404 535<br>ABM63504 512     | VKYNPEVIQPLEIAQLIQDLGFEASVMENYTGSDGDLELIITGMTCASCVHNIESKLTRTNGITYASVALATSKAHVKFD<br>VKYHPDVIQPLEIAQLIQDLGFEATVLEQYAGSEGDLELIITGMTCASCVHNIESKLTRMAGITYASVALATSKAHVKFD | 614<br>591 |
| XP 002917723 496                     | VKYNPEVIQPLEVARLIQDLGFEATVMEDYTGTDGDLELIMGMTCASCVHNIESKLTRTNGITYASVALATSKAHVKFD                                                                                      | 575        |
| XP 005387668 595<br>XP 005601247 529 | VKYNPEVIQPPQIAQLIQDLGFEAAVMEDNAGSDGDVELVITGMTCASCVHNIESKLTRTNGITCASVALATSKARVKFD<br>VKYNPEVIQPLEIARLIQDLGFEATVMEDCTGSDGDIELIITGMTCASCVHNIESTLTRTNGITYASVALTTSKAHVKFD | 674<br>608 |
| XP 004633164 497                     | VKYNPEVIQPPKIAQLIQDLGFEAAVMEDDAGPDGDVELVITGMTCASCVHNIESKLTRTNGITYASVALATSKAHVKFD                                                                                     | 576        |
| XP 004577555 502                     | IKYNPEVIQPPRIAQLIEDLGFEAAVMEDLTGSDGDIELEUTGMTCASCVHNIESRLTRMNGITYASVALATSKAHVKFD                                                                                     | 581        |
| EAX08892 610<br>XP 003809840 610     | PEIIGPRDIIKIIEEIGFHALAQRNPNAHHLDHK SIKOWKKSFLCSLVFGIPVMALM YMLIPSNEPHQSMVLDHNII<br>PEIIGPRDIIKIIEEIGFHALAQRNPNGRHLDHMEIKQWKKSFLCSLVFGIPVMALM YMLIPSNEPHQSMVLDHNII    | 689<br>689 |
| XP 003314205 871                     | PEIIGPRDIIKIIEEIGFHASLAQRNPNARHLDHKMEIKQWKKSFLCSLVFGIPVMALMIYMLIPSNEPHQSMVLDHNII                                                                                     | 689<br>950 |
| XP 003980404 615<br>ABM63504 592     | PEMIGPRDIVKIIEEIGFHASPAQRNPNVHHLDHKVEIKQWKKSFLCSLMFGIPVMGLMIYMLVPSNEPHETMVLDHNIV<br>PEIIGPRDIVKVIEEIGFHASPAQRNPSAHHLDHKVEIKQWKKSFLCSLVFGIPVMGLMIYMLVPSSTPHESMVLDHNVI | 694<br>671 |
| XP 002917723 576                     | PEIIGPRDIVRIIEEIGFHAFPAQRNADAHHLDHKVEIKQWKKSFLCSLVFGIPVMGLMIYMLVPSNEPHESMVLDHNII                                                                                     | 655        |
| XP 005387668 675<br>XP 005601247 609 | PEIIGPRDIVKIIEEIGFHASLAQRRPNAHHLDHKMEIKQWRKSFLCSLVFGIPVMGLMIYMLIPSHESHETMVLDRNII<br>PEIIGARDIVKIIEEMGFHASPAQRNPNAHHLDHKAEIKQWKKSFLCSLVFGIPVMGLMIYMMIPSNEPHESMFLNHNII | 754<br>688 |
| XP_004633164 577                     | PEIIGPRDIVKIIEEIGFHASLAQRRPNAHHLDHKMEIKQWRKSFLCSLVFGIPVMGLMIYMLIPSHEPHEAMVLDHNII                                                                                     | 656        |
| <u>XP 004577555</u> 582              | PEVIGPRDIVKLIEEIGFQASLAQRNTNAHHLDHK EIKQWKKSFLCSLVFGIPVMGLM YMLIPSNGTHESMILDHNII                                                                                     | 661        |
|                                      | TM1                                                                                                                                                                  |            |
|                                      |                                                                                                                                                                      |            |

**Fig. S1.** A multiple species sequence alignment of the N-terminal regulatory domain of ATP7B. Species are EAX08892: human; XP\_003809840: pigmy chimpanzee; XP\_003314205: chimpanzee; XP\_003980404: domestic cat; ABM63504: dog; XP\_002917723: giant panda; XP\_005387668: long-tailed chinchilla; XP\_005601247: horse; XP\_004633164: degus rodent; XP\_004577555: American pika, rabbit family. Identical amino acids are in red. The sequence before the left bracket shows the linker region for each of the metal binding motifs. Note that the regions linking one metal domain (of ~70 aa) to the next are more divergent (indicated in blue) than the region linking metal binding domain 6 (MBD6) to transmembrane segment 1 (TM1; indicated by closed brackets).


PNAS PNAS



**Fig. S2.** All 6 ATP7B mutants exhibit Cu(l) transport activity and normal protein characteristics. (*A* and *B*) YS cells on coverslips were infected with the indicated GFP-ATP7B adenovirus, cultured overnight in basal medium, and harvested into urea sample buffer. Denatured proteins were separated by SDS/PAGE, proteins transferred to nitrocellulose, and probed with polyclonal antibody against GFP to show full-length proteins. An asterisk designates the constructs encoding the monomeric version of GFP. In *B*, the relative amount of wt and S653Y ATP7B remaining after the addition of cycloheximide (90 µg/mL) is shown. (C) wtATP7B shows normal anterograde and retrograde trafficking. WIF-B cells were infected with wtATP7B, cultured overnight in 10 µM BCS, then incubated in 10 µM CuCl<sub>2</sub> for 1 h. One set (anterograde) was fixed and the other set (retrograde) switched to 25 µM ammonium tetrathiomolybdate (TTM) for an additional 2 h before fixation. Cells were stained with anti-TGN and imaged. (*A* and *A'*) In the presence of copper, GFP fluorescence shows no overlap with the TGN marker, whereas after copper chelation (*B* and *B'*) the two signals show strong overlap. (Scale bar, 10 µm.)



**Fig. S3.** Recombinant adenoviruses encoding 653 substitutions express full-length ATP7B proteins and exhibit cell-based catalytic activity. (*A*) YS cells infected with the indicated ATP7B adenovirus encoding the designated 653 substitution were processed as in Fig. S1. All constructs expressed full-length proteins except for ATP7BS653E, where proteolytic GFP fragments were routinely observed. (*B*) Each of the 653 substitutions in ATP7B activated tyrosinase as indicated by a black reaction product. (*C*) ATP7B S653Y/Y44A activated tyrosinase, as indicated by a black reaction product, whereas the GFP-ATP7B 858TGE860>AAA/Y44A double-mutant did not. Negative and positive controls were performed in parallel. (*D*) Cell extracts from YS cells infected with GFP-ATP7B adenoviruses encoding the second site mutations were processed as described in Fig. S2. (Magnification: *B* and *C*, 40×.)



**Fig. 54.** APBS analysis reveals a pocket (black arrow) near Ser653. (A) APBS coloring of the wtATP7B static structure electrostatic potential was calculated according to Poisson–Boltzmann (1). The coloring (red, negative charge; blue, positive charge) range is:  $k_BT/e = -80$  to +80. APBS calculations were performed using the APBS tools2 plug-in as part of PyMOL. The boxed region highlights the region near Ser653 and Tyr713. (*B*) An expanded view of *A* shows the surface coloring with the residues of interest highlighted as colored asterisks: black (Ser653, C $\alpha$  is  $\sim$ 2 Å from the surface), red (Gly710, C $\alpha$  is  $\sim$ 4 Å from the surface), and Legend continued on following page

yellow (Tyr713, C $\alpha$  is ~1–2 Å from surface). (C–E) Expanded views of the Tyr653 (C), Asp653 (D), and Glu653 (E) models show changes in the exposure of positive and negative surface charges within the vicinity of the pocket (black arrow). Notice the predominance of red color (negative charge) in D, indicating the effect of charged side chains on the surface charges.

1. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041.

#### Table S1. Summary of ATP7B missense mutations found in the conserved region

| ATP7B mutation<br>identification (source) | WD mutations in second allele (source)                              | WD<br>phenotype*     | SIFT score<br>designation <sup>†</sup> | Reported disease-causing<br>status and other<br>findings (source)                                     | Conclusion of<br>this report |
|-------------------------------------------|---------------------------------------------------------------------|----------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|
| G626A (1, 2)                              | Y187Ifs; Q457X; H1069Q (2)                                          | H; late<br>onset H/N | Deleterious                            | Inconclusive (3) reduced<br>Cu transport activity (4)                                                 | Disease-causing<br>mutation  |
| H639Y <sup>‡</sup> (5)                    | None detected                                                       |                      | Deleterious                            |                                                                                                       | Inconclusive                 |
| L641S (6, 7)                              |                                                                     |                      | Tolerated                              |                                                                                                       | Inconclusive                 |
| D642H (6, 8–10)                           | Homozygous (10)                                                     | N; CLF(TX)           | Tolerated                              | Inconclusive (3)                                                                                      | Disease-causing<br>mutation  |
| M645R (11, 12)                            | Q111X; S932X; N932X; G869R;<br>T977M; H1069Q; V1216M;<br>T132P (12) | Н                    | Tolerated                              | Increased catalytic phosphorylation<br>likely because of decreased<br>de-phsophorylation activity (4) | Disease-causing<br>mutation  |
| S653Y (5)                                 | H1069Q (Table 1 and ref. 5)                                         | H/N                  | Deleterious                            |                                                                                                       | Disease-causing<br>mutation  |

CLF, chronic liver failure; H, hepatic; N, neurological; TX, liver transplant.

\*Phenotypes reported represent the range observed in the references cited.

<sup>1</sup>SIFT, a sequence homology based program which sorts intolerant from tolerant substitutions and then classifies them as tolerated or deleterious (13). This analysis is from The Roche Cancer Center Genome Database [see http://rcgdb.bioinf.uni-sb.de/MutomeWeb (14)].

<sup>+</sup>Laboratory studies revealed this individual had an unusual presentation of disrupted copper metabolism. The urine copper levels were normal, whereas both ceruloplasmin and serum copper levels were abnormally low, 2.46 mg/dL and 9.0 μg/dL, respectively, as was <sup>64</sup>Cu incorporation into ceruloplasmin, which was reduced 10-fold.

1. Figus A, et al. (1995) Molecular pathology and haplotype analysis of Wilson disease in mediterranean populations. Am J Hum Genet 57:1318-1324.

2. Todorov T, et al. (2005) Spectrum of mutations in the Wilson disease gene (ATP7B) in the Bulgarian population. *Clin Genet* 68:474–476.

3. Hsi G, et al. (2008) Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system. *Hum Mutat* 29:491–501. 4. Huster D, et al. (2012) Diverse functional properties of Wilson disease ATP7B variants. *Gastroenterology* 142:947–956.

5. Gromadzka G, et al. (2005) Frameshift and nonsense mutations in the gene for ATPase7B are associated with severe impairment of copper metabolism and with an early clinical manifestation of Wilson's disease. *Clin Genet* 68(6):524–532.

6. Vrabelova S, Letocha O, Borsky M, Kozak L (2005) Mutation analysis of the ATP7B gene and genotype/phenotype correlation in 227 patients with Wilson disease. *Mol Genet Metab* 86:277–285.

7. Cox DW, Prat L, Walshe JM, Heathcote J, Gaffney D (2005) Twenty-four novel mutations in Wilson disease patients of predominantly European ancestry. Hum Mutat 26:280.

8. Loudianos G, et al. (1996) Wilson disease mutations associated with uncommon haplotypes in Mediterranean patients. Hum Genet 98:640–642.

9. Zali N, et al. (2011) Prevalence of ATP7B gene mutations in Iranian patients with Wilson disease. Hepat Mon 11:890–894.

10. Moller LB, et al. (2011) Clinical presentation and mutations in Danish patients with Wilson disease. Eur J Hum Genet 19:935–941.

11. Shah AB, et al. (1997) Identification and analysis of mutations in the Wilson disease gene (ATP7B): Population frequencies, genotype-phenotype correlation, and functional analyses. Am J Hum Genet 61:317–328.

12. Margarit E, et al. (2005) Mutation analysis of Wilson disease in the Spanish population-identification of a prevalent substitution and eight novel mutations in the ATP7B gene. Clin Genet 68:61–68.

13. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863-874.

14. Kuntzer J, Maisel D, Lenhof HP, Klostermann S, Burtscher H (2011) The Roche Cancer Genome Database 2.0. BMC Med Genomics 4:43.

### Table S2. Construct summary

SANG SANG

| Construct                          | Designation | ATP7B nucleotide change | Mutagenesis primers                                 |
|------------------------------------|-------------|-------------------------|-----------------------------------------------------|
| Wild-type GFP-ATP7B*               | pYG7        | None                    | None                                                |
| Wild-type mGFP-ATP7B* <sup>†</sup> | pLB1080     | None                    | F-CAGTCCAAGCTGAGCAAAGACCCCAACGAGAA                  |
|                                    |             |                         | R-GTGATCGCGCTTCTCGTTGGGGTCTTTGCT                    |
| ATP7B Patient missense sub         | stitutions  |                         |                                                     |
| G626A <sup>‡</sup>                 | pAbM18      | G1877C                  | F-CAAAATTATTGAGGAAATTGCCTTTCATGCTTCCCTGGCCC         |
|                                    |             |                         | R-GGGCCAGGGAAGCATGAAAGGCAATTTCCTCAATAATTTTG         |
| H639Y                              | pTZ13g      | C1915T                  | F- GAAACCCCAACGCTTATCACTTGGACCACAAG                 |
|                                    |             |                         | R- CTTGTGGTCCAAGTGATAAGCGTTGGGGGTTTC                |
| L641S                              | pTZ8R       | T1921C                  | F-CAACGCTCATCACTCGGACCACAAGATGG                     |
|                                    |             |                         | R-CCATCTTGTGGTCCGAGTGATGAGCGTTGGG                   |
| D642H                              | pTZ21       | G1924C                  | F-CCCCAACGCTCATCACTTGCACCACAAGATGGAAATAAAG          |
|                                    |             |                         | R-CTTTATTTCCATCTTGTGGTGCAAGTGATGAGCGTTGGGG          |
| M645R <sup>‡</sup>                 | pTZ17       | T1934G                  | F-CATCACTTGGACCACAAGAGGGAAATAAAGCAGTGGAAG           |
|                                    |             |                         | R-CTTCCACTGCTTTATTTCCCTCTTGTGGTCCAAGTGATG           |
| S653Y                              | pTZ12R      | C1958A                  | F- GCAGTGGAAGAAGTATTTCCTGTGCAGCCTGGTG               |
|                                    |             |                         | R- CACCAGGCTGCACAGGAAATACTTCTTCCACTGC               |
| S653Y <sup>‡</sup>                 | pTZ25       | C1958A                  | F- GCAGTGGAAGAAGTATTTCCTGTGCAGCCTGGTG               |
|                                    |             |                         | R- CACCAGGCTGCACAGGAAATACTTCTTCCACTGC               |
| Engineered mutations               |             |                         |                                                     |
| S653A <sup>‡</sup>                 | pAmr8       | T1957G T1959C           | F- GAAATAAAGCAGTGGAAGAAGGCCTTCCTGTGCAGCCTGGTGTTTGGC |
|                                    |             |                         | R- GCCAAACACCAGGCTGCACAGGAAGGCCTTCTTCCACTGCTTTATTTC |
| S653F <sup>‡</sup>                 | pAmr5       | C1958T T1959C           | F- AAATAAAGCAGTGGAAGAAGTTCTTCCTGTGCAGCCTGGTGTTTGGC  |
|                                    |             |                         | R-GCCAAACACCAGGCTGCACAGGAAGAACTTCTTCCACTGCTTTATTTC  |
| S653T <sup>‡</sup>                 | pAmr23      | T1957A                  | F- GAAATAAAGCAGTGGAAGAAGACTTTCCTGTGCAGCCTGGTGTTTGGC |
|                                    |             |                         | R- GCCAAACACCAGGCTGCACAGGAAAGTCTTCTTCCACTGCTTTATTTC |
| S653C <sup>‡</sup>                 | pAmr27      | C1958G T1959C           | F- GAAATAAAGCAGTGGAAGAAGTGCTTCCTGTGCAGCCTGGTGTTTGGC |
|                                    |             |                         | R- GCCAAACACCAGGCTGCACAGGAAGCACTTCTTCCACTGCTTTATTTC |
| S653D <sup>‡</sup>                 | pAmr24      | T1957G C1958A           | F- GAAATAAAGCAGTGGAAGAAGGATTTCCTGTGCAGCCTGGTGTTTGGC |
|                                    |             |                         | R- GCCAAACACCAGGCTGCACAGGAAATCCTTCTTCCACTGCTTTATTTC |
| S653E <sup>‡</sup>                 | pTus46      | 1957–1959 TCT > GAG     | F-GGAAATAAAGCAGTGGAAGAAGGAGTTCCTGTGCAGCCTGGTGTTTGGC |
|                                    |             |                         | R- CCAAACACCAGGCTGCACAGGAACTCCTTCTTCCACTGCTTTATTTCC |
| Y44A/S653Y <sup>§</sup>            | pAmr36      | C1958A                  | F- GCAGTGGAAGAAGTATTTCCTGTGCAGCCTGGTG               |
|                                    |             |                         | R- CACCAGGCTGCACAGGAAATACTTCTTCCACTGC               |
| $S653Y/TGE > AAA^{\P}$             | pAmr37      | C1958A                  | F- GCAGTGGAAGAAGTATTTCCTGTGCAGCCTGGTG               |
|                                    |             |                         | R- CACCAGGCTGCACAGGAAATACTTCTTCCACTGC               |

Sequences provided upon request.

\*Nucleotide numbering corresponds to "A" of ATG as nucleotide +1 of ATP7B in LB1080 and YG7 and encode NM\_000053.3 except for the polymorphisms S406A, V456L, R952K, and V1140A (1).

<sup>†</sup>Residue A206 of GFP changed to K to give monomeric GFP (2).

<sup>‡</sup>pLB1080 used as the template for mutagenesis, pYG7 was the template used for all other constructs.

<sup>§</sup>pLB1033 was used as the template for mutagenesis (3).

<sup>¶</sup>pYG85 was used as the template for mutagenesis (*Methods*).

1. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW (1995) The Wilson disease gene: Spectrum of mutations and their consequences. Nat Genet 9:210-217.

2. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913-916.

3. Braiterman L, et al. (2009) Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296(2):G433–G444.