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1 SIF retrievals

We use SIF data derived from spectral radiance measurements by the GOME-2 instrument onboard

the Eumetsat’s MetOp-A platform launched in October 2006. Details can be found in [1]. GOME-

2 measures in the 240–790 nm spectral range with relatively high spectral resolution (∼0.2–0.4 nm),

signal-to-noise ratio (∼1000–2000), and a footprint size of 40×80 km2. SIF retrievals are performed

in the 715–758 nm spectral window overlapping the second peak of the SIF emission. The retrieval

method disentangles SIF from the spectral signals of atmospheric absorption and scattering and of

surface reflectance which affect the measured top-of-atmosphere radiance. The retrievals are quality-

filtered and binned in a 0.5◦ lat-lon grid. GOME-2 data between 2007 and 2011 have been used in this

work.

Fig. S1 presents SIF retrievals from GOME-2 and GOSAT’s Fourier Transform Spectrometer (FTS)

data over the northern temperate region. NDVI from the MODIS MOD13C2 product is also shown

for reference. The retrieval approach applied to the GOSAT data is described in Guanter et al. [2].

The retrieval of SIF from GOSAT data is much simpler than that for GOME-2 thanks to the very

high spectral resolution of the GOSAT’s FTS (∼0.025 nm), which allows to use narrow fitting win-

dows (hence simpler modeling of the background surface reflectance) and to resolve individual solar

Fraunhofer lines (i.e. free from contamination by atmospheric absorption, mostly O2 in this spectral

range). GOSAT/FTS measurements consist of round field-of-views of about 10 km diameter separated

by hundreds of kilometers. The random component of the single-retrieval error is high, in the range of

50–100%, due to the narrow fitting window used for the retrieval and the relatively low signal-to-noise

ratio (∼100–300) of the FTS. Global composites of monthly SIF from GOSAT retrievals are typically

produced by averaging in 2◦ gridboxes. Despite the noise and the low spatial resolution of the GOSAT

SIF composites, we consider them to be highly accurate (free from systematic errors) due to the sim-

plicity of the retrieval approach based on narrow fitting windows and solely Fraunhofer lines. Therefore,
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Fig. S 1: Monthly composites (July 2009) of SIF retrievals from GOSAT/FTS and MetOp-A/GOME-2 mea-

surements. NDVI from the MODIS MOD13C2 product is also shown for reference. GOME-2 retrievals are for

a spectral fitting window centered around 740 nm (715–758 nm) and are gridded in 0.5◦ cells, whereas GOSAT

retrievals are for a narrow window at 757 nm and are gridded in 2◦ cells.

the good comparison between the spatial patterns in the GOSAT and the GOME-2 SIF supports the

consistency of the GOME-2 SIF data used in this work, and in particular of the outstanding SIF levels

observed at the Midwest US in the GOME-2 data (Fig. 1–2 of the main text). Slight differences in the

spatial patterns of GOSAT and GOME-2 SIF can be explained by the lower precision of the GOSAT

retrievals, which leads to noisier SIF composites, and the different overpass times (morning for MetOp-

A, noon for GOSAT) which makes the latitudinal differences in the solar flux received in the north and

the south to be greater for GOSAT than for GOME-2. The absolute SIF values differ for GOME-2

and GOSAT-FTS because of the different retrieval wavelengths and instantaneous illumination fluxes

associated to the overpass time of each satellite.

2 Model-based GPP data

We have used global GPP estimates from ensembles of data-driven and process-based models as follows:
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• Data-driven models are based on the calculation of GPP with empirical and semi-empirical

relationships between GPP and a series of diagnostic variables (e.g. vegetation parameters such

as the fraction of absorbed photosynthetically active radiation and meteorological variables such

as short-wave radiation or vapor pressure deficit). As representative of state-of-the-art data-driven

methods, we have used annual GPP estimates from 5 of the data-driven models described in Beer

et al. [3], namely MTE1, MTE2, ANN, KGB and LUE. These models differ with each other in

how the relationship between the diagnostic variables and GPP is expressed.

In addition, monthly GPP estimates from the MTE1 model, referred to as Max Planck Institute

for Biogeochemistry (MPI-BGC) model [4] in the main text, and from the MODIS GPP model

(MOD17) [5] are used in the comparison with flux tower GPP in Fig. 2 of the main text and

Fig. S4, respectively. The MPI-BGC GPP data set is produced through the global upscaling of

site measurements of carbon dioxide fluxes. This is based on a Model Tree Ensemble approach

for a statistical formulation of the relationship between GPP and vegetation parameters derived

from remote sensing data and meteorological variables from re-analysis products. MOD17 GPP is

derived from a production-efficiency approach consisting in the formulation of GPP as the product

of absorbed photosynthetically-active radiation derived from satellite and meteorological data and

tabulated light use efficiency.

• Process-based models or dynamic global vegetation models (DGVMs), are based on mathe-

matical representations of physiological and ecological mechanisms driving productivity among

other vegetation responses. The DGVMs in our ensemble of process-based models are part of the

Trendy activity1 intended to intercompare Trends in net land - atmosphere carbon exchange over

the period 1980–2010. We have use the CLM4C, CLM4CN, HYLAND, LPJ, LPJ-GUESS, OCN,

Orichidee, SDGVM, TRIFFID, and VEGAS models. Model outputs were available at different

spatial resolutions. The data from the LPJ, LPJ-GUESS, Orchidee and VEGAS models were

simulated at 0.5◦×0.5◦ resolution, CLM4C and CLM4CN at 2.5◦×1.875◦, and OCN, TRIFFID

and HYLAND other at 3.75◦× 2.5◦. All 10 models have been resampled to the 0.5◦ grid used for

the SIF measurements, the data-driven model ensemble and the NPP inventories.

Fig. S2 shows the median and the standard deviation of the annual GPP from the 5 data-driven

models from Beer et al. [3] and the 10 process-based Trendy models from Piao et al. [6], Sitch et al. [7]

that we have used in this study. The median of the annual GPP from the two model ensembles shows

similar absolute values, although there are some spatial differences, especially in North America. The

spread of GPP estimates is significantly smaller for the data-driven models than for the process-based

models.

1http://dgvm.ceh.ac.uk/node/9
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Fig. S 2: Median (top row) and mean absolute deviation (bottom row) of annual GPP estimates in North

America and Western Europe from the data-driven and process-based model ensembles used in this work. Details

about each model ensemble can be found in Beer et al. [3] and Piao et al. [6], Sitch et al. [7], respectively.

3 Comparison of flux tower-based GPP with model GPP, SIF and

vegetation indices

We used fourteen eddy flux sites from the FLUXNET network [8] (Table S1). Six of these sites are

located in crop fields in the US Corn Belt. The remaining eight stations include five crop sites and three

grassland sites located across Europe. Sites have been selected on the basis of landscape homogeneity in

the GOME-2 grid and on data availability in the period of interest (2007–2011). To determine landscape

homogeneity, we used land cover type data from the MODIS Collection 5 MCD12C1 product (Friedl

et al. [9]) and EVI data from the MODIS MOD13C2 product (Huete et al. [10]), both with spatial

resolution of 0.05◦. For a site to be selected for the study, the dominant vegetation cover type at the

flux site (either cropland or grassland) must represent more than 60% of the GOME-2 pixel area, and

the standard deviation of the EVI must be less than 0.10 (see Table S1). We used the Level 4 data

product for the six US crop sites from the AmeriFlux website2, and from the GHG-Europe database3

for the eight Europe sites. Monthly GPP values were used in our investigation. GPP is estimated by

partitioning the observed net flux into GPP and ecosystem respiration as discussed in Reichstein et al.

[11] and Papale et al. [12].

For each site, SIF was extracted based on the coordinates of the flux tower, and averaged to monthly

means when at least 5 SIF retrievals were available. Three US crop sites (US-IB1, Ne2-3, Ro1) are very

close to big cities. To avoid signal contamination from urban areas, we extracted SIF from a nearby pixel

fulfilling the homogeneity criteria. Given that flux measurements are usually representative of a large

area in homogeneous landscapes (i.e., US-IB1 is representative of central Illinois), we assumed that SIF

(or EVI and NDVI) from nearby grid boxes can represent the footprint of the flux towers. Monthly SIF

2http://ameriflux.ornl.gov/
3http://www.europe-fluxdata.eu/
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and GPP were averaged over the 2007–2011 observation period for each month to minimize uncertainties

due to the different spatial scales of the SIF retrievals and the flux tower data. This uncertainties occur

because both corn and soybean fields exist in the GOME-2 footprint for the US flux sites. A mixed

signal of corn and soybean is therefore sampled by the GOME-2 footprint, while the eddy covariance

tower measured flux either from corn or soybean for each year. Multi-year averaging may help reduce

this mismatch.
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Table S 1: Details of the flux tower sites used in this study. LC stands for Land Cover class, max(LC) stands for the percent of dominant vegetation

cover within the GOME-2 pixel, EVI is the MODIS Enhanced Vegetation Index, and σ(EVI) represents the standard deviation of EVI within the

GOME-2 pixel.

Site ID Country Lat. Lon. IGBP Study max(LC) mean σ Vegetation type or Reference

(◦) (◦) class period (%) EVI EVI crop rotations

US-Bo1 USA 40.00 -88.29 CRO 2007 0.98 0.55 0.04 Corn Ryu et al. [13]

US-IB1 USA 41.85 -88.22 CRO 2007–2009 0.98 0.44 0.08 Soybean/Corn/Soyb. Allison et al. [14]

US-Ne2 USA 41.16 -96.47 CRO 2007–2010 0.94 0.56 0.07 Corn/Soybean/Corn/Corn Suyket et al. [15]

US-Ne3 USA 41.17 -96.43 CRO 2007–2010 0.95 0.57 0.07 Corn/Soybean/Corn/Soyb. Suyker et al. [15]

US-Ro1 USA 44.71 -93.09 CRO 2007–2010 1.00 0.49 0.10 Corn/Soybean/Corn/Soyb. Griffis et al. [16]

US-SFP USA 43.24 -96.90 CRO 2007–2009 1.00 0.55 0.03 Continuous corn –

DE-Gri Germany 50.94 13.51 GRA 2007–2010 0.58 0.44 0.04 Permanent grassland Hussain et al. [17]

FR-Lq1 France 45.64 2.73 GRA 2007–2010 0.79 0.57 0.04 Permanent grassland Klumpp et al. [18]

HU-Bug Hungary 46.69 19.60 GRA 2007–2008 0.94 0.35 0.03 Permanent grassland Naggy et al. [19]

BE-Lon Belgium 50.55 4.74 CRO 2007–2010 0.71 0.49 0.07 Winter wheat/sugar beet/ Aubinet et al. [20]

/winter wheat/seed potato

CH-Oe2 Switzerland 47.28 7.73 CRO 2007–2009 0.71 0.50 0.05 Winter wheat/rapeseed/ Dietiker et al. [21]

/winter wheat

DE-Geb Germany 51.10 10.91 CRO 2007–2010 0.97 0.46 0.08 Winter wheat/rapeseed/ Kutsch et al. [22]

/barley/sugar beet

DE-Seh Germany 50.87 6.44 CRO 2007–2010 0.60 0.45 0.07 Winter wheat/winter wheat/ Schmidt et al. [23]

/sugar beet/winter wheat

IT-Cas Italy 45.06 8.66 CRO 2007–2010 0.97 0.43 0.09 Continuous paddy rice Skiba et al. [24]
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Reflectance-based vegetation indices derived from satellite observations [e.g. 10, 25] provide infor-

mation about vegetation greenness (i.e. a combination of biomass, chlorophyll content and structural

effects) and have also been reported to be good indicators of gross primary production [e.g. 26]. The

data-driven GPP models combine these reflectance-based proxies for green biomass and canopy light

interception with meteorological inputs modulating photosynthesis at the ecosystem scale.

To complete the comparison of model GPP with fluorescence and tower-based GPP discussed in

the main text, we have also analyzed the relationship between flux tower GPP and the normalized

difference vegetation index (NDVI) [27], the enhanced vegetation index (EVI) [10], both extracted from

the MOD13C2 product, and the MERIS terrestrial chlorophyll index (MTCI) [28]. The NDVI is the

most widely used vegetation index in the last decades. The EVI is a modification of the NDVI intended

to improve the response of the NDVI for high green biomass levels and to reduce the sensitivity to

atmospheric effects. The MTCI is designed to provide a high sensitivity to chlorophyll content through

the sampling of the so-called red-edge window between the red and the near-infrared spectral regions.

Fig. S3 displays maps of the EVI, NDVI and MTCI for July 2009 and the same area as the GPP

and SIF maps shown in Fig. 2 of the main text (please, note that maximum monthly values instead

of July values are plotted in Fig. 2 of the main text, so this comparison is only approximate). The

data-driven GPP from the MODIS MOD17 product is also shown. The NDVI appears to be close to

saturation in the most densely vegetated areas of North America and Europe. This is not happening

for the EVI, which shows a somewhat higher signal in the midwest and the east coast of the US than

in Europe, in line with the spatial patterns of SIF and GPP MPI-BGC (Fig. 2 of the main text). No

significant differences between Europe and the US are observed in the MOD17 GPP data. On the other

hand, the spatial patterns of the MTCI at the US Corn Belt are the most similar ones to those of SIF.

This could be due to the fact that both SIF and the MTCI are most sensitive to canopy chlorophyll

content for the high levels of leaf-area index found at the peak of the growing season for the corn and

soybean crops in the US Corn Belt.

The same three indices have been compared with flux tower-based GPP estimates as we have done

with MPI-BGC GPP, process-based GPP from the Trendy models and SIF in Fig. 3 of the main text.

Results are shown in Fig. S4, in this case also including the European crop sites not included in Fig. 3

of the main text. Points to be noted are (i) the relatively bad comparison between GPP and both

EVI and NDVI for the US crops, (ii) the good correlation between EVI and GPP when the comparison

is performed for all three biomes, (iii) the lower values of EVI and MTCI at the grasslands sites,

which agrees with SIF and the tower-based GPP, but not with the data-driven GPP estimates, and

(iv) the good performance of the MTCI to track GPP in the US crops. These results, together with

the conclusions extracted from Fig. 3 of the main text, support our approach of selecting SIF as the

best input to upscale cropland GPP from the tower footprint to the regional scale. The relationship

GPP(SIF)=−0.10+3.72×SIF) is used for this upscaling.
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Fig. S 3: Maps of GPP from the MODIS MOD17 product, NDVI and EVI from the MODIS MOD13C2 product

and the MERIS MTCI for July 2009 and the same region of the GPP and fluorescence maps displayed in Fig. 2

of the main text. Please, note that maximum monthly values instead of July values are plotted in Fig. 2 of the

main text, so the comparison is only approximate.

9



0 1 2 3 4 5 6
SIF (mW/m2/sr/nm)

0

5

10

15

20

G
PP

 f
lu

x 
to

w
er

 (
gC

/m
2 /d

)

US Corn Belt Europe croplands Europe grasslands

Combined fit

y=-0.10+ 3.72x
r2=0.79; p<0.01

US CB fit

y=-0.88+ 3.55x
r2=0.92; p<0.01

0 2 4 6 8 10 12
GPP MOD17 (gC/m2/d)

0

5

10

15

20

Combined fit

y=-0.21+ 1.33x
r2=0.71; p<0.01

US CB fit

y=-1.57+ 1.91x
r2=0.80; p<0.01

0 2 4 6 8 10 12
GPP MPI-BGC (gC/m2/d)

0

5

10

15

20

Combined fit

y=-0.12+ 1.19x
r2=0.79; p<0.01

US CB fit

y=-0.65+ 1.43x
r2=0.92; p<0.01

0.0 0.2 0.4 0.6 0.8
EVI

0

5

10

15

20

G
PP

 f
lu

x 
to

w
er

 (
gC

/m
2 /d

)

US Corn Belt Europe croplands Europe grasslands

Combined fit

y=-5.31+26.58x
r2=0.73; p<0.01

US CB fit

y=-4.06+24.15x
r2=0.76; p<0.01

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

0

5

10

15

20

Combined fit

y=-7.58+20.17x
r2=0.57; p<0.01

US CB fit

y=-6.10+19.55x
r2=0.69; p<0.01

0 1 2 3 4 5
MTCI

0

5

10

15

20

Combined fit

y=-4.53+ 3.99x
r2=0.69; p<0.01

US CB fit

y=-5.61+ 4.15x
r2=0.85; p<0.01

Fig. S 4: Similar to Fig. 3 of the main text but including the European cropland sites. Tower-based GPP is

compared with SIF, GPP MPI-BGC and GPP MOD17 (top) and with EVI, NDVI and MTCI data (bottom).
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4 Derivation of spatially-explicit crop GPP estimates

The monthly composites of SIF at 0.5◦ are scaled to GPP with the linear relationship derived from the

comparison of SIF with flux tower-based GPP shown in Fig. S4a (GPP(SIF)=−0.10+3.72×SIF). Model-

based GPP maps are generated as the median GPP per grid cell from the data-driven and process-based

model ensembles described before. We have estimated crop GPP from the total GPP in the grid box by

multiplying the total GPP by the fraction of cropland area in the gridbox described in Ramankutty et al.

[29] and downloadable from http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html.

As a result, we obtain the cropland GPP per unit total area, as shown in Fig. 6a of the main text.

Comparison of annual, area-integrated crop GPP estimated from SIF and the data-driven and process-

based models are provided in Table S2.

Table S 2: Annual, area-integrated GPP estimates over the US Corn Belt (35–50◦N, -105–80◦E), Western

Europe (35–55◦N, -10–25◦E), India (23–33◦N, 70–90◦E), China (30–49◦N, 110–135◦E), South America (−40–

−20◦N, −45–−70◦E), and the globe from the median of the data-driven and process-based biogeochemistry

model ensembles and the scaled SIF. These regions match those used to produce Fig. 7 of the main text. Relative

∆GPP is calculated as SIF-based GPP minus model GPP over model GPP. Uncertainties are derived from the

standard deviation of the ensembles in the case of the GPP models and from the errors in the slope and intercept

in the linear regression in Fig. S4a for the scaled SIF.

Crop GPP (PgC y−1)

US CB WestEur India China SouthAm Global

GPP(Data-Driven) 1.1±0.2 1.3±0.3 0.8±0.3 0.73±0.16 0.95±0.15 17±4

GPP(Proc.-based) 1.3±0.5 1.5±0.6 0.9±0.4 0.9±0.3 1.2±0.4 20±9

GPP(SIF) 1.54±0.06 1.30±0.05 1.23±0.06 0.90±0.05 0.81±0.04 17.0±0.2

∆GPP(Data-Driven) 43% 0% 55% 24% −14% 3%

∆GPP(Proc.-based) 18% −14% 39% −1% −38% −12%

Crop area (106 km2) 1.2 1.3 1.0 0.9 0.7 16.5

5 NPP data from agricultural inventories

The SIF- and model-based crop GPP estimates have been compared with crop net primary productivity

(NPP) estimates derived from agricultural inventories to produce Fig. 5 of the main text. Large-

scale NPP estimates have been provided by the agricultural inventory data sets described in USDA-

NASS [30] and Monfreda et al. [31]. The USDA NPP inventory was estimated using a statistical

method that includes factors for dry weight, harvest indices, and root:shoot ratios multiplied by yield

data from the National Agricultural Statistics Service (NASS). This method has been documented and

published by Hicke and Lobell [32], Hicke et al. [33], Prince et al. [34]. U.S. county-level estimates

of croplands production (P, in units of MgCy−1) dataset is available in http://cdiac.ornl.gov/

carbonmanagement/cropcarbon/. Data from the three most recent years (2006–2008) was used for
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Fig. S 5: Crop NPP per harvested area in North America from the global inventory by Monfreda et al. for 2000

(a) and the USDA inventory (2006 and 2008) [33].

comparison. To derive the spatial distribution of cropland GPP, county-level NPP (kgCm−2y−1) was

collocated in ArcGIS to a layer of the cultivated area of the US during 2008–2012. To compute NPP, we

divide P by the total crop area of each county. The cultivated layer data is available from USDA NASS

database at http://www.nass.usda.gov/research/Cropland/Release/index.htm.. Regarding the

global inventory by Monfreda et al., it is based on the aggregation of 175 crop classes in a 5 min by

5 min grid following a method similar to the one proposed by Prince et al. [34] for the US. Monfreda

et al. data corresponds to the year 2000.

Both USDA-NASS and Monfreda et al. NPP data sets are derived from the crop yields, and have

units of per-harvested-areas (Fig. S5). NPP is converted from per-harvested-area to per-total-area units

through the multiplication by the fraction of harvested area as described in Monfreda et al. (Fig. S6).

The fraction of harvested area is calculated by summing the fraction of harvested area for each of

the 175 crop classes considered by Monfreda et al. (data available from http://www.geog.mcgill.ca/

~nramankutty/Datasets/Datasets.html).

The comparison of NPP from the USDA inventory with GPP from the SIF retrievals and the data-

driven and process-based models for the US Western Corn Belt is shown in Fig. 5 of the main text. The

same comparison for the NPP from Monfreda et al. for both the US and Western Europe is displayed

in Fig S7.
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Fig. S 6: Cropland area and net primary production data sets from Ramankutty et al. [29] and Monfreda et al.

[31] The fraction of cropland area expresses the ratio of cropland to total area in each 0.5◦ grid cell. The harvest

ratio is the ratio of harvested-to-cropland area. The fraction of harvested area has been calculated from single

fractions of harvested area provided by Monfreda et al. [31] for a total of 175 crop classes. The NPP per total

area is calculated as the product of the original per-harvested-area NPP data from Monfreda et al. by the fraction

of harvested area.
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Fig. S 7: Same as Fig. 5 of the main text but for the NPP data set from the agricultural inventory by Monfreda

et al. and showing results also for the Western Europe area (40–55◦N, -5–15◦E).
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