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Relationship between energy and cell morphology for HBMECs and HUVECs. 
 

 
 
Figure S1. Schematic illustration showing the different energy states for axial and radial 
alignment of different endothelial cell types.   We consider the energy associated with axial and 
radial alignment of an endothelial cell on a cylindrical surface.  For HBMECs the energy 
difference (∆E) between the two states (axial and radial) is less than the thermal energy (kT, 
where k is the Boltzmann constant and T is temperature) and hence there is no driving force for 
preferential alignment.  In contrast, the energy for radial orientation is larger than for axial 
alignment, resulting in an energy barrier for radial alignment.  As a result of this energy barrier, 
cells tend to align along the axial direction of the rod resulting in elongation and decreased 
circularity, as well as a small average orientation angle.  The results shown in Figure 2 suggest 
that the energy barrier is dependent on curvature or rod diameter, with the energy barrier 
increasing with decreasing diameter.  
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Rod assay 

 
Figure S2.  Confocal microscope images of HBMECs and HUVECs on large and small diameter 
glass rods.  HBMECs on a 170 µm diameter rod:  (a) ZO-1 (red), DAPI (blue); (b) actin 
(green), DAPI (blue);  (c, d) corresponding unwrapped images.  HBMECs on an 11 µm 
diameter rod:  (e) ZO-1 (red), DAPI (blue);  (f) actin (green), DAPI (blue);  (g, h) 
corresponding unwrapped images; (i) cross-section ZO-1 (red), actin (green), DAPI (blue).  
HUVECs on a 228 µm diameter rod:  (j) VE-cadherin (red), DAPI (blue); (k) actin (green), 
DAPI (blue);  (l, m) corresponding unwrapped images.  HUVEC on a 13 µm diameter rod:  (n) 
VE-cadherin (red), DAPI (blue);  (o) actin (green), DAPI (blue);  (p, q) corresponding 
unwrapped images; (r) cross-section VE-cadherin (red), actin (green), DAPI (blue).   
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Endothelial cell morphology in 2D 
 

 
 
Figure S3.  Fluorescence images of confluent monolayers of HBMECs and HUVECs in 2D. 
HBMECs: (a) ZO-1 (red), DAPI (blue); (b) actin (green), DAPI (blue).  HUVECs: (c) VE-
cadherin (red), DAPI (blue);  (d) actin (green), DAPI (blue).   
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Morphological Data 

 
 
Figure S4.  Cell area and perimeter for HBMECs and HUVECs on rods with different diameter 
and in 2D. 
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Finite size effects in orientation angle 

The orientation angle of a cell is defined as the angle between the cell long axis (ℓ) and the rod 
axis (Figure S5).  On large rods where the perimeter is much larger than the long axis of the cell 
(πd >> ℓ), the cell can adopt any orientation angle between 0˚ and 90˚.  For a uniform 
distribution of orientation angles, the average value is 45˚.  If there is an energy barrier (see 
Figure S1) to wrapping around the perimeter of the vessel then the cells will be preferentially 
aligned along the vessel axis and the average orientation angle will be less than 45˚.  However, 
when the rod perimeter is less than the long axis of the cell (πd ≤ ℓ), then large angles are 
prohibited and the maximum allowed orientation angle is less than 90˚, and hence the average 
angle is also less than 45˚.   
 

 
Figure S5.  Schematic illustration showing how the finite size of a rod can limit the distribution 
of orientation angles of an endothelial cell.   
 
The influence of curvature and finite size effects on the average orientation angle can be seen in 
scatter plots of cell length and orientation angle for individual cells on a given rod diameter 
(Figure S6).  HBMEC cells span the full range of allowed angles on large diameter (499 µm) 
glass rods.  For the range of cell lengths, approximately 40 - 80 µm, all orientation angles are 
allowed and the average angle is about 45˚.  On small diameter (18 µm) rods, the HBMECs span 
the full range of allowed angles, however, for the longer cells higher orientation angles are 
prohibited.  HUVEC cells on large diameter (530 µm) rods exhibit the full range of orientation 
angles, although the frequency at smaller angles is significantly higher due to curvature driven 
alignment.  On small diameter rods (13 µm) the HUVECs exhibit orientation angles considerably 
lower than the allowed range, illustrating the effect of curvature on cell alignment.  In summary, 
the decrease in average orientation angle for HBMECs at small diameters is due to a finite size 
effect and not due to the influence of curvature.  In contrast, the decrease in angle for HUVECs 
is due to curvature.   
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Figure S6.  Cell length and orientation angle for HBMECs and HUVECs on small and large 
diameter rods.  (a) HBMECs on 18 ± 0 µm (SE) glass rods (N = 66), (b) HBMECs on 499 ± 0 
µm (SE) rods (N = 76), (c) HUVECs on 13 ± 0 µm (SE) rods (N = 39), and (d) HUVECs on 530 
±1 µm (SE) rods (N = 92).  The solid lines represent ℓsinθ = πd where d is the average rod 
diameter.  A cell of length ℓ can adopt any orientation angle θ  on a rod of diameter d as long as 
ℓsinθ ≤ πd. When the cell length is larger than πd then all orientation angles are allowed, 
however, when ℓ ≤ πd then some angles are prohibited.  This finite size effect leads to a change 
in the distribution of orientation angles and a decrease in the average orientation angle.  SE is the 
standard error. 
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Human dermal microvascular endothelial cells (HMVECs). 
 

 

Figure S7.  Fluorescence images of confluent monolayers of human dermal microvascular 
endothelial cells (HMVECs) in 2D and on a 24 µm diameter rod. (a) HMVECs in 2D.  (b) 
HMVECs on a 24 µm diameter rod.  (c) Corresponding unwrapped image for (b).  VE-cadherin 
(red), DAPI (blue).   
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Comparison of morphology of HBMECs, HUVECs, and HMVECs. 
Assuming that HBMECs are representative of endothelial cells in brain micovessels, HUVECs 
are representative of non-brain large vessels, and HMVECs are representative of non-brain 
microvessels, then data from the rod assay using these cells lines allows us to compare the 
morphological response to curvature of brain and non-brain microvessels.  As shown in Figure 
S5, the inverse aspect ratio, circularity, and average orientation angle are very similar to 
HUVECs under all conditions.  On small (~ 20 µm) diameter rods, these three parameters are 
significantly lower for HMVECs and HUVECs compared to HBMECs, suggesting that only 
brain microvascular endothelial cells are programmed to resist elongation due to curvature. 

 

Figure S8. Cell morphological parameters for confluent monolayers of HBMEC, HUVEC and 
HMVECs in 2D and on large (~ 200 µm) and small (~ 20 µm) diameter glass rods.  Parameters 
include: inverse aspect ratio (IAR), circularity, and average orientation angle. HBMECs: 2D (N 
= 238), d = 216 ± 3 µm (SE) (N = 32), d = 25 ± 0 µm (N = 48).  HUVECs: 2D (N = 242), d = 
228 ± 0 µm (N = 46), d = 28 ± 0 µm (N = 75).  HMVECs: 2D (N = 64), d = 213 ± 5 µm (N = 
60), d = 26 ± 0 µm (N = 110).  *** P < 0.001.  Error bars represent standard error (SE)  .  
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Alignment of actin filaments 
To quantitatively analyze actin filament alignment, we determined the radial intensity 
distribution from fluorescence images using fast-Fourier transforms.  We compared HBMEC and 
HUVEC cells in 2D confluent monolayers and on rods under static and flow conditions.  
Fluorescence images of cells in 2D and on larger rods (d ≈ 200 µm) were cropped to be 141 x 
141 µm with a resolution of 0.44 µm per pixel.  Images of cells on smaller rods (d ≈ 10 µm) 
were cropped to be 41 x 41 µm with a resolution of 0.44 µm per pixel.  The input images were 
cropped to be square to ensure equal contributions from vertical and horizontal axes.   
We obtained the largest square image for each experimental condition, resulting in 5 cropped 
images for HUVEC and HBMEC cells in 2D, and 4 cropped images for HUVEC and HBMEC 
cells on large diameter rods (d ≈ 200 µm), and 5 cropped images for HUVEC and HBMEC cells 
on small diameter rods (d ≈ 10 µm).   
Control experiments.  To study how image area influences the radial distribution in the 
frequency domain, we cropped the image of HUVEC cells in 2D into 4 small squares, and 
compared the radial distribution in the frequency domain, and found that the relative change is 
less than 20%, smaller than the relative difference between cells in different conditions (e.g. 
HUVEC cells on large diameter rods under static conditions compared to small diameter rods 
under static condition).  To study how the resolution influences the radial distribution in the 
frequency domain, we compared the images of HUVEC cells in 2D at resolutions of 0.36 and 
0.44 µm per pixel.  The relative change in radial distribution in the frequency domain was less 
than 15%.   
The square images, f(x, y) (0 ≤ x, y ≤ N -1, N is the number of pixels for the image square) were 
transformed into the frequency domain using fft2 in MATLAB.  The FFT image was produced 
by shifting F(0, 0) to the middle using fftshift, and calculating the magnitude of F(u, v) - |F(u, v)| 
using the abs routine in MATLAB.   
The actin stress fibers in the fluorescence images can be considered as a superimposition of 2D 
intensity waves, whereas each pixel in the frequency domain (|F(u, v)|) can be considered as a 
single wave of intensities in frequency domain.  The intensity for each pixel in the frequency 
domain, |F(u, v)|, represents the strength of each single wave.  To characterize the directionality 
of the actin stress fibers in the fluorescence image, we divided the FFT image into 18 bins, each 
with an angular range of 10˚, and the intensities in each bin were added together, and divided by 
the total intensities of all bins (the center pixel or pixels excluded).  The intensity fraction of all 
bins was plotted as a bar graph.  If the actin stress fibers were uniformly distributed in the 
fluorescence image, each bin is expected to have an intensity fraction of about 5.6% (≈ 100/18) 
(see dotted line in bar graphs in Figure S7). 
The actin fiber alignment is determined from the parallel and perpendicular indices.  The parallel 
index represents the degree of alignment of actin fibers along the rod axis (vertical) and is 
defined by the sum of the intensities at 0 ± 10˚ (i.e. the sum of the intensities in the 0 - 10˚ and 
170 - 180˚ bins). The perpendicular index represents the degree of alignment perpendicular to the 
rod axis (horizontal) and is defined by the sum of the intensities at 90 ± 10˚ (i.e. the sum of the 
intensities in the 80 - 90˚ and 90 - 100˚ bins).  
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Figure S9.  Actin fiber alignment.  Fluorescence images of confluent monolayers of HBMEC 
and HUVEC cells in 2D, and on large (d ≈ 200 µm) and small (d ≈ 10 µm) diameter rods under 
static conditions. Also shown are fluorescence images of HBMECs and HUVECs on large 
diameter rods under shear stress (d ≈ 200 µm).  All images were saved at a resolution of 0.44 µm 
per pixel.  The FFT images show the distribution of intensity in reciprocal space, with the zero-
frequency pixel in the center.  The bar graphs show the radial intensity distributions.   
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Quantitative analysis of actin filament alignment 
For HBMEC and HUVEC cells in 2D the radial distributions show no preferential alignment – 
the parallel and perpendicular indices are about 11%, characteristic of a uniform distribution 
(100%/9).  For HBMECs on rods, both the parallel and perpendicular indices increase with 
decreasing diameter, indicating both parallel and perpendicular alignment of the actin filaments.  
In contrast, for HUVECs on rods, the parallel index increases significantly with decreasing 
diameter, showing strong axial alignment.  For HBMEC cells on large diameter rods (d ≈ 200 
µm), shear stress results a small decrease in the perpendicular index and a larger increase in the 
parallel index.  Similar results are observed for HUVECs.   
 

 
Figure S10.  Parallel and perpendicular indices for actin fiber distribution.  Data obtained from 
analysis of the radial intensity distributions for confluent monolayers of HBMEC and HUVEC 
cells in 2D, on large and small diameter rods under static conditions, and on large diameter rods 
under shear stress (SS).  The average index for no preferential orientation is 11.1 (100%/9). 
HBMECs: (2D static) image number = 5; (211 µm static) d = 211 ± 14 µm (SE), image number 
= 4; (11 µm static) d = 11 ± 0 µm (SE), image number = 5; (251 µm SS) 251 ± 2 µm (SE), image 
number = 3.  HUVECs: (2D static) image number = 5; (197 µm static) d = 197 ± 14 µm (SE), 
image number = 4; (13 µm static) d = 13 ± 0 µm (SE), image number = 5; (221 µm SS) d = 221 
± 12 µm (SE), image number = 3.  
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Cross-section velocity profile in a microfluidic channel. 
 

 
 
Figure S11.  Cross-section velocity profile (m/s) around 200 µm diameter glass rods located 100 
µm above the bottom of a microfluidic channel. 
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UNWRAP User Document 
This MATLAB application takes a set of confocal microscope z-stack images of fluorescently 
labeled cells in a 3D cylindrical geometry and creates an unwrapped 2D image from the “tube” 
surface (Figure 1).  The application works best for a confluent monolayer of cells on a 
cylindrical surface.  The application can accommodate up to three channels (e.g. R, G, B), for 
example a junctional protein, a cytoskeleton protein, and a nuclear stain.  This code has been 
tested for MATLAB R2013b in Windows 7, and should work on other similar platforms. 
 

 
Figure 1. Workflow of the UNWRAP application. 

 
To make best use of this tutorial, download the folder “UNWRAP” from the Searson Group 
website (http://www.jhu.edu/searson/).  In the working folder “UNWRAP”, there are two sample 
image folders (“images1” and “images2”) and the application MATLAB file (UNWRAP.m), see 
Figure 2.  The MATLAB script (UNWRAP.m) can also be generated by copying the code from 
this document (see MATLAB Code).  The sample images include a confocal z-stack image of 
cells on a complete cylinder (“images1”) and on a partial cylinder (“images2”).  
 

 
Figure 2.  Contents in the working folder “UNWRAP”. 

 
 
 
Instructions 
Step 1.  For the purpose of the tutorial, the sample image folder “images1” is used as the input 
for “UNWRAP”.  To analyze your own images, create your own image folder (e.g. “imagesX”) 
inside the working folder, then create a sub-folder (e.g. “z_stack”) inside your image folder, 
transfer the z-stack images for your cylindrical structure from the software associated with the 
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confocal microscope into your sub-folder (e.g. “z_stack”).  The z-stack images should be stored 
properly according to the following specifications (see Step 4):  (1) the z-stack images should be 
named sequentially as “common filename” + “numbers” + “.format” (e.g. “all_” + “001” + “.tif”, 
the numbers should have the same number of digits), (2) the cylindrical structure should be 
vertically oriented on the screen (important for the program to handle images properly).  An 
example of a z-stack image near the middle of the cylinder from the folder “images1” is shown 
in Figure 3. 
 

 
 
Figure 3.  An example of a z-stack image near the middle of the cylinder oriented vertically on the 
screen. 
 

Step 2.  In windows, use Notepad to create a text file (.txt) inside your image folder (e.g. 
“imagesX”) with name “scale.txt” and enter two numbers (separated by a carriage return): the 
first is the xy resolution (in units of µm/pixel) of each z-stack image, and second one is the 
spacing (in units of µm) between z-stack images (Figure 4).  Make sure the resolution 
information is saved correctly, otherwise you may get a distorted 3-D image in the following 
steps.  The hierarchy of your folder and files should be similar to the sample image folder 
“images1” or “images2” (i.e. a “scale.txt” file and a sub-folder of the image sequence inside your 
image folder).  
 

 
Figure 4.  The resolution information stored in file “scale.txt”.  In this example, 0.41 represents the 
xy resolution (0.41 µm/pixel), and 0.2 represents the spacing between z-stack images (0.2 µm). 
 

Step 3.  Open UNWRAP.m in MATLB (can simply double click the file, or open it through the 
MATLAB “file” tab in the top left corner), then left click run .  After running UNWRAP.m, a 
series of prompts will appear in the command window (Figure 5).  Enter the relevant information 
after each prompt and press enter.  Caution: you should type names that match exactly with your 
folder and file names; otherwise, program will fail.  Figure 5 shows an example of the screen for 
the sample image folder “images1”.  In case of a problem, press “Ctrl” + “C” in the Command 
Window and restart the program by clicking . 
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Figure 5.  Prompts appeared in the command window for sample image folder “images1”.  Names 
that need to be typed in for sample image folder “images1” are in red boxes. 

Step 4.  A sequence of numbers will appear in the Command Window while the program is 
reading all the input z-stack images and scale information from your image folder (“images1”).  
In about 30 seconds, a cross-section image will be displayed for the user to locate the user-
defined focal plane.  This is the first of two cross-section images (one at each end of the cylinder) 
that are used to define the focal plane of the cylinder for unwrapping.   The second cross-section 
image will appear in Step 5.  If your resolution information is correct and the z-stack images are 
stored properly (see Steps 1 and 2), you will get a circular cross-section image (Figure 6).  
 

 
Figure 6.  A cross section image of the cylindrical structure is shown on the screen. 
 

Step 5.  Create a rectangular region of interest (ROI) around the cross-section by moving your 
cursor to the top-left side of your circular cross-section image and holding your mouse and 
dragging to the bottom-right (see Figure 7 for an example).  The rectangular region of interest 
(ROI) MUST include the image circle.  If you are not satisfied with your initial ROI, adjust the 
rectangle by clicking the edge of it and dragging such that it contains the whole cross section of 
interest with an additional margin.  Double left click inside the rectangle and a zoomed-in image 
will be generated (Figure 7 and 8). 
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Figure 7.  A region of interest (ROI) of the cross section is created for the cylindrical 
structure. 
 

 
Figure 8.  A zoomed-in figure of the cross section image is generated according to a user 
selected region of interest. 

 
Step 6.  Maximize the zoomed-in image (Figure 9) and left click 10 – 20 points uniformly 
distributed on the circular cross-section (Figure 10a and 10b).  After each click, you will see a 
green cross “x” in the clicked position in the image.  If you want to change points, simply start 
over from Step 3.  After finishing selecting points, right click on the image.  A yellow fitted 



 18 

circle will be generated based on the input points you selected (Figure 11). This circle will be 
used as the first reference for unwrapping the cylindrical structure.   

 
Figure 9.  The zoomed-in figure is maximized for convenient point-clicking. 
 

 
Figure 10.  (a) Green “x” markers represent the positions the user should click to identify the cross 
section.  (b)  Green “+” markers are displayed on the screen as the user is clicking positions. 
 
 



 19 

 

Figure 11.  A yellow fitted circle is shown as an overlay. 
Step 7.  Repeat steps 5 and 6 for the second cross section image.   
Step 8.  An unwrapped image of all channels (i.e. R, G, B) will appear on the screen as your 
result (Figure 12).  In the meantime, a sub-folder called “unwrapped_images” (Figure 13) and an 
“info.txt” file (Figure 14) will be generated inside your image folder (e.g. “images1”).  Inside the 
“unwrapped_images” folder, the unwrapped images are separated into different combinations of 
channels (RGB, RB, GB, B with 1 image alone, and 2 images side-by-side).  The “info.txt” file 
(Figure 13) will provide information regarding your cylinder including resolution (µm/pixel), 
cylinder diameter (µm), and cylinder length (µm). 
 

 
 
Figure 12.  An unwrapped image of the cylindrical structure is shown on the screen after Step 7.  
This image is also saved in the output folder “unwrapped_images”. 
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Figure 13.  All unwrapped images are stored in the “result” folder. 
 
 

 
 
Figure 14.  Information for your input cylindrical structure, including the resolution (0.41 µm/pixel), 
cylinder diameter (92.4 µm), the length of the cylinder in axial direction (209.9 µm). 
 

To apply this program to another image set, simply create a folder with the image sequence and 
“scale.txt” file in the same structure as described above, into the working folder (folder names 
can be different).  For example, a practice image folder named “images2” is provided in the 
working folder.  In the example in the “images2” folder, the z-stack represents only part of the 
cross section of a cylinder.  In this case, the points selected to define the cross section should 
only be located on the section of the cylinder that is imaged.  The information you need for this 
input folder is provided below (Figure 15).  
 

 
Figure. 15. Prompts in the command window for the sample image folder “images2”.  Input data is 
indicated by the red boxes. 

 
General Instructions 
For sample images, if something goes wrong, simply start over to Step 3 by clicking .  For your own 
input images, if something goes wrong, check your folder carefully according to Step 1 and 2. 
 
MATLAB Code 

% UNWRAP 
%   
% Mao Ye, Zhen Yang, and Peter C. Searson 
% Johns Hopkins University 
%   
% UNWRAP takes a series of z-stack images of a cylindrical object and unwraps  
% the image to create a set of 2D images for quantitative analysis.   
% The original images can contain up to three separate channels.  This  
% application is useful for unwrapping images of cylindrical objects such  
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% as small blood vessels. 
%   
% The main steps in the applications are: 
% • Specify data folder, image format and scale info 
% • Input a series of z-stack images (up to three channels) 
% • Isotropic resample of the 3D volume 
% • Crop the volume to focus on the cylinder 
% • Fit to a cylinder 
% • Unwrap the image on the surface of the cylinder to obtain a set of 2D 
images 
% • Save unwrapped images and info 
  
function UNWRAP() 
%% Specify data folder, image format and scale info 
s1 = input('input the folder name (e.g. images1): ','s'); 
SubjFolder = [s1, '/']; 
  
s2 = input('input the sub-folder name for z_stack images (e.g. z_stack): 
','s'); 
ImgFolder = [SubjFolder s2, '/']; 
  
s3 = input('input the format for z_stack images (e.g. tif): ','s'); 
ImgFmt = s3; % format of input z-stack images 
  
s4 = input('input the common filename of z_stack images (e.g. all_): ','s'); 
filename = s4; % common name of input images, CHANGE if filename is different! 
  
s6 = input('input the number of digits in the name of each z_stack image (e.g. 
3 for all_000.tif, 2 for all_00.tif): ','s'); 
digit = ['%0', s6, 'd'];% number of digits contained in names of input images, 
CHANGE if number of digits is different! 
  
s7 = input('input the start number for the image sequence (e.g. 0 for 
all_000.tif, 1 for all_001.tif): ','s'); 
start = 1; % if 0, name starts from "all_000.tif"; if 1, start from 
"all_001.tif", CHANGE if the start number is different! 
  
  
imageNames = dir(fullfile(ImgFolder,'images','*.tif')); 
imageNames = {imageNames.name}'; 
  
  
% information for picking two slices in y-direction (perpendicular to 
cylinder) 
slice_show1 = 100; % slice numberfrom one end (no need to change) 
slice_show2 = 100; % slice number from the other end (no need to change) 
  
% create a result folder if there's none 
RsltFolder = [SubjFolder 'unwrapped_images/']; 
if ~exist(RsltFolder); mkdir(SubjFolder, 'unwrapped_images'); end 
  
  
ImgName = [ImgFolder '*.' ImgFmt]; 
d = dir(ImgName); 
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SliceNos = 1 : (length(d));  
SliceNum = length(SliceNos); 
  
%image scale information 
A = load([SubjFolder 'scale.txt']); % first row: xy resolution (µm/px); 
second row: z-spacing between z-stack images (µm) 
yScale = A(1); 
zScale = A(2); 
zRatio = zScale/yScale;  % z resolution / xy resolution um/px 
  
%% Input a series of z-stack images (up to three channels) 
% read one z-stack image to get the image size 
s = 1; 
FileName = [ImgFolder filename sprintf(digit, s) '.' ImgFmt];  
Img = imread(FileName); 
[Ny,Nx,Nc] = size(Img); 
  
% prepare 3D volume for 3 channels (RGB) 
RVol = zeros(Ny,Nx,SliceNum); 
GVol = zeros(Ny,Nx,SliceNum); 
BVol = zeros(Ny,Nx,SliceNum); 
  
% load z-stack images of a cylindrical 3D object 
display('read in slices. z = : ') 
for i = 1: SliceNum 
    s = start + SliceNos(i) - 1; 
    fprintf('%d\t', s) 
    if mod(s,5)==4 
        fprintf('\r') 
    end 
    FileName = [ImgFolder filename sprintf(digit, s) '.' ImgFmt]; 
    %display(s); 
    RGBImg = imread(FileName); 
    RVol(:,:,i) = RGBImg(:,:,1); 
    GVol(:,:,i) = RGBImg(:,:,2); 
    BVol(:,:,i) = RGBImg(:,:,3); 
end 
fprintf('\r\r') 
  
% normalize the image intensity to [0 1] 
RVol = double(RVol)/256; 
GVol = double(GVol)/256; 
BVol = double(BVol)/256; 
[Ny, Nx, Nz0] = size(RVol); 
  
%% Isotropic resample of the 3D volume 
Nz = round(Nz0*zRatio); % target dimension in z-direction after isotropic 
resampling 
% prepare empty isotropic 3D volumes  
IsoRVol = zeros(Ny,Nx,Nz); 
IsoGVol = zeros(Ny,Nx,Nz); 
IsoBVol = zeros(Ny,Nx,Nz); 
  
% resize slice by slice in y direction 
display('generate isotropic volume. y = : ') 
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for i = 1 : Ny 
    fprintf('%d\t', i) 
    if mod(i,5)==4 
        fprintf('\r') 
    end 
    % R channel 
    I = squeeze(RVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoRVol(i,:,:) = I; 
    % G channel 
    I = squeeze(GVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoGVol(i,:,:) = I; 
    % B channel 
    I = squeeze(BVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoBVol(i,:,:) = I; 
end 
fprintf('\r\r') 
  
%% Crop the volume to focus on the cylinder 
display('crop image') 
y = slice_show1; % pick a slice in y-direction 
  
hf = figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
[X,Y,I2,rect] = imcrop(I); 
  
% record the cropped rectangle 
zmin = rect(1); 
zmax = rect(1) + rect(3); 
xmin = rect(2); 
xmax = rect(2) + rect(4); 
  
% convert to positive integer 
zmin = max(1, floor(zmin)); 
zmax = min(Nz, ceil(zmax)); 
xmin = max(1, floor(xmin)); 
xmax = min(Nx, ceil(xmax)); 
  
% crop the 3d volume according to the rectangle 
IsoRVol = IsoRVol(:, xmin:xmax, zmin:zmax); 
IsoGVol = IsoGVol(:, xmin:xmax, zmin:zmax); 
IsoBVol = IsoBVol(:, xmin:xmax, zmin:zmax); 
[Ny,Nx,Nz] = size(IsoRVol); 
  
%% Fit to a cylinder 
  
LEFT = 1; MIDDLE = 2; RIGHT = 3; 
t = 0:pi/360:2*pi; 
  
display('fit circle on one end') 
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y = slice_show1; % pick a slice near one end of the cylinder 
  
hf = figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
imshow(I, 'initialmagnification',50) 
title(['slice y = ' num2str(y)]) 
hold on 
P = []; 
% pick points 
[x,y,Button] = ginput(1); 
while(Button == LEFT) 
    P = [P; [x y]]; 
    plot(x, y, 'g+'); 
    [x,y,Button] = ginput(1); 
end 
% fit circle 
% call the Circle Fit (Taubin method) from MatLab File Exchange   
CirPar = FUN_CircleFitByTaubin(P); 
% plot fitted circle 
X = CirPar(1) + CirPar(3)*cos(t); 
Y = CirPar(2) + CirPar(3)*sin(t); 
plot(X,Y,'y') 
hold off 
% record the parameters for the first circle 
CirPar1 = CirPar; 
  
  
display('fit circle on the other end') 
y = Ny-slice_show2; % pick a slice near the other end of the cylinder 
  
figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
imshow(I) 
title(['slice y = ' num2str(y)]) 
hold on 
P = []; 
% pick points 
[x,y,Button] = ginput(1); 
while(Button == LEFT) 
    P = [P; [x y]]; 
    plot(x, y, 'g+'); 
    [x,y,Button] = ginput(1); 
end 
% fit circle 
CirPar = FUN_CircleFitByTaubin(P); 
% plot fitted circle 
X = CirPar(1) + CirPar(3)*cos(t); 
Y = CirPar(2) + CirPar(3)*sin(t); 
plot(X,Y,'y') 
hold off 
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% record the parameters for the second circle 
CirPar2 = CirPar; 
  
% average the parameters of the two circles 
CirPar = (CirPar1 + CirPar2)/2; 
  
%% Unwrap the image on the surface of the cylinder to obtain a set of 2D 
images 
  
Rc = CirPar(3); % radius of the cylinder in the image 
% number of angles to sample around the cylinder axis 
dTheta = 1/Rc;  
MinTheta = 0; 
MaxTheta = 2*pi-dTheta; 
Theta = MinTheta : dTheta : MaxTheta; 
ThetaNum = length(Theta); 
  
% number of sample points along cylinder axis 
dHeight = dTheta*Rc; 
MinHeight = 1; 
MaxHeight = Ny; 
Height = MinHeight : dHeight : MaxHeight; 
HeightNum = length(Height); 
  
Rot = eye(3); 
t0 = [CirPar(2)  0  CirPar(1)]'; 
  
% smoothing parameter 
r = 2; %2 
s = (2*r+1)^3; 
sigma = 1; 
  
% prepare empty unwrap images for three channels 
IsoRGrid = zeros(HeightNum, ThetaNum); 
IsoGGrid = zeros(HeightNum, ThetaNum); 
IsoBGrid = zeros(HeightNum, ThetaNum); 
  
XX = zeros(HeightNum, ThetaNum); 
YY = zeros(HeightNum, ThetaNum); 
ZZ = zeros(HeightNum, ThetaNum); 
  
for it = 1 : ThetaNum % sample around cylinder axis 
    theta = Theta(it); 
    for ih = 1 : HeightNum % sample along cylinder axis 
        % compute the spatial coordinate of sample point p0 
        height = Height(ih); 
        p0 = [Rc*sin(theta) 
             height 
             Rc*cos(theta)]; 
        p0 = Rot*p0 + t0; 
        p0 = round(p0); 
        x0 = p0(1); y0 = p0(2); z0 = p0(3); 
         
        XX(ih,it) = x0; 
        YY(ih,it) = y0; 
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        ZZ(ih,it) = z0; 
         
        % coordinate span of p0's neighborhood 
        xspan = max(x0-r,1):min(x0+r,Nx); 
        yspan = max(y0-r,1):min(y0+r,Ny); 
        zspan = max(z0-r,1):min(z0+r,Nz); 
         
        if isempty(xspan)||isempty(yspan)||isempty(zspan) 
            IsoRGrid(ih,it) = 0; 
            IsoGGrid(ih,it) = 0; 
            IsoBGrid(ih,it) = 0; 
        end 
         
        % average pixel intensity in p0's neighborhood and assign to the 
        % correponding pixel in the unswrapped image 
        I = IsoRVol(yspan, xspan, zspan); 
        IsoRGrid(ih,it) = sum(I(:))/s; 
        I = IsoGVol(yspan, xspan, zspan); 
        IsoGGrid(ih,it) = sum(I(:))/s; 
        I = IsoBVol(yspan, xspan, zspan); 
        IsoBGrid(ih,it) = sum(I(:))/s; 
    end 
end 
  
%% Save unwrapped images and info 
RGBGrid1 = cat(3,IsoRGrid, IsoGGrid, IsoBGrid); 
RGBGrid2 = cat(3,repmat(IsoRGrid,1,2), ... 
    repmat(IsoGGrid,1,2), ... 
    repmat(IsoBGrid,1,2)); 
  
RGBGrid3 = cat(3,zeros(size(IsoRGrid)), zeros(size(IsoGGrid)), IsoBGrid); 
RGBGrid4 = cat(3,repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(zeros(size(IsoGGrid)),1,2), ... 
    repmat(IsoBGrid,1,2)); 
  
RGBGrid5 = cat(3,IsoRGrid, zeros(size(IsoRGrid)), IsoBGrid); 
RGBGrid6 = cat(3,repmat(IsoRGrid,1,2), ... 
    repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(IsoBGrid,1,2)); 
  
RGBGrid7 = cat(3,zeros(size(IsoRGrid)), IsoGGrid, IsoBGrid); 
RGBGrid8 = cat(3,repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(IsoGGrid,1,2), ... 
    repmat(IsoBGrid,1,2)); 
  
figure 
imshow(RGBGrid1) 
axis image 
  
% save unwrapped images 
imwrite(RGBGrid1, [RsltFolder 'unwrap1.png'], 'png'); 
imwrite(RGBGrid2, [RsltFolder 'unwrap2.png'], 'png'); 
imwrite(RGBGrid3, [RsltFolder 'unwrap_blue1.png'], 'png'); 
imwrite(RGBGrid4, [RsltFolder 'unwrap_blue2.png'], 'png'); 
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imwrite(RGBGrid5, [RsltFolder 'unwrap_rb1.png'], 'png'); 
imwrite(RGBGrid6, [RsltFolder 'unwrap_rb2.png'], 'png'); 
imwrite(RGBGrid7, [RsltFolder 'unwrap_gb1.png'], 'png'); 
imwrite(RGBGrid8, [RsltFolder 'unwrap_gb2.png'], 'png'); 
  
% save unwrap info 
fid = fopen([SubjFolder 'info.txt'], 'w'); 
fprintf(fid, 'um per pixel: %f \n', yScale); 
fprintf(fid, 'cylinder diameter: %f \n', 2*Rc*yScale); 
fprintf(fid, 'cyliner length: %f \n', Ny*yScale); 
fclose(fid); 
  
  
end 
  
  
  
% The following routine is obtained from MATLAB file exchange. 
% http://www.mathworks.com/matlabcentral/fileexchange/22678-circle-fit-
taubin-method 
  
function Par = FUN_CircleFitByTaubin(XY) 
  
%-------------------------------------------------------------------------- 
%   
%     Circle fit by Taubin 
%      G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar 
%                  Space Curves Defined By Implicit Equations, With  
%                  Applications To Edge And Range Image Segmentation", 
%      IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) 
% 
%     Input:  XY(n,2) is the array of coordinates of n points x(i)=XY(i,1), 
y(i)=XY(i,2) 
% 
%     Output: Par = [a b R] is the fitting circle: 
%                           center (a,b) and radius R 
% 
%     Note: this fit does not use built-in matrix functions (except "mean"), 
%           so it can be easily programmed in any programming language 
% 
%-------------------------------------------------------------------------- 
  
n = size(XY,1);      % number of data points 
  
centroid = mean(XY);   % the centroid of the data set 
  
%     computing moments (note: all moments will be normed, i.e. divided by n) 
  
Mxx = 0; Myy = 0; Mxy = 0; Mxz = 0; Myz = 0; Mzz = 0; 
  
for i=1:n 
    Xi = XY(i,1) - centroid(1);  %  centering data 
    Yi = XY(i,2) - centroid(2);  %  centering data 
    Zi = Xi*Xi + Yi*Yi; 
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    Mxy = Mxy + Xi*Yi; 
    Mxx = Mxx + Xi*Xi; 
    Myy = Myy + Yi*Yi; 
    Mxz = Mxz + Xi*Zi; 
    Myz = Myz + Yi*Zi; 
    Mzz = Mzz + Zi*Zi; 
end 
  
Mxx = Mxx/n; 
Myy = Myy/n; 
Mxy = Mxy/n; 
Mxz = Mxz/n; 
Myz = Myz/n; 
Mzz = Mzz/n; 
  
%    computing the coefficients of the characteristic polynomial 
  
Mz = Mxx + Myy; 
Cov_xy = Mxx*Myy - Mxy*Mxy; 
A3 = 4*Mz; 
A2 = -3*Mz*Mz - Mzz; 
A1 = Mzz*Mz + 4*Cov_xy*Mz - Mxz*Mxz - Myz*Myz - Mz*Mz*Mz; 
A0 = Mxz*Mxz*Myy + Myz*Myz*Mxx - Mzz*Cov_xy - 2*Mxz*Myz*Mxy + Mz*Mz*Cov_xy; 
A22 = A2 + A2; 
A33 = A3 + A3 + A3; 
  
xnew = 0; 
ynew = 1e+20; 
epsilon = 1e-12; 
IterMax = 20; 
  
% Newton's method starting at x=0 
  
for iter=1:IterMax 
    yold = ynew; 
    ynew = A0 + xnew*(A1 + xnew*(A2 + xnew*A3)); 
    if abs(ynew) > abs(yold) 
       disp('Newton-Taubin goes wrong direction: |ynew| > |yold|'); 
       xnew = 0; 
       break; 
    end 
    Dy = A1 + xnew*(A22 + xnew*A33); 
    xold = xnew; 
    xnew = xold - ynew/Dy; 
    if (abs((xnew-xold)/xnew) < epsilon), break, end 
    if (iter >= IterMax) 
        disp('Newton-Taubin will not converge'); 
        xnew = 0; 
    end 
    if (xnew<0.) 
        fprintf(1,'Newton-Taubin negative root:  x=%f\n',xnew); 
        xnew = 0; 
    end 
end 
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%  computing the circle parameters 
  
DET = xnew*xnew - xnew*Mz + Cov_xy; 
Center = [Mxz*(Myy-xnew)-Myz*Mxy , Myz*(Mxx-xnew)-Mxz*Mxy]/DET/2; 
  
Par = [Center+centroid , sqrt(Center*Center'+Mz)]; 
  
end    %    CircleFitByTaubin 
  
 

 

 


