Supplementary Information

Title:

The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release *in Vitro*

Tetsuro Shimakami¹, Masao Honda^{1*}, Takayoshi Shirasaki¹, Riuta Takabatake¹, Fanwei Liu¹, Kazuhisa Murai¹, Takayuki Shiomoto¹, Masaya Funaki¹, Daisuke Yamane², Seishi Murakami¹, Stanley M. Lemon², and Shuichi Kaneko^{1*}

¹Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan

²Lineberger Comprehensive Cancer Center and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA

*Corresponding author

Masao Honda, MD, PhD

Shuichi Kaneko, MD, PhD

Department of Gastroenterology, Kanazawa University Hospital

13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan

Tel: 81-76-265-2233; Fax: 81-76-234-4250

Masao Honda, email: mhonda@m-kanazawa.jp

Shuichi Kaneko, e-mail: skaneko@m-kanazawa.jp

Figure Legends for Supplementary Figures

Figure S1. Structures of Peretinoin, ATRA, 9-cis RA, and 13-cis RA

Figure S2. Full-length blots/gels for Figure 2B. In addition to Peretinoin, IFN α 2b was added to cells replicating HJ3-5 virus with the indicated concentrations. At 72 h after IFN α 2b treatment, the cell lysates were collected and subjected to western blot analysis using anti-core protein and anti- β -actin antibodies.

Figure S3. Effect of Peretinoin on protein expression directed by HCV IRES. (A) Schematic representation of HCV 5'-UTR-GLuc-HCV 3'-UTR RNA and cap-CLuc-polyA RNA (depicted left and right, respectively). (B) Both RNAs were transfected into Huh-7.5 cells that had been treated with the indicated concentrations of Peretinoin at 24 h prior to transfection. After transfection, the same concentrations of Peretinoin were added immediately, and the medium was collected and replaced every 3 h until 12 h. GLuc and CLuc activity was determined; GLuc activity was normalised to CLuc activity, and then the ratio was further normalised to that of DMSO-treated cells, which was set to 100%. Data represent the mean ratio \pm SD from 2 independent experiments at each time point.

Figure S4. Effect of Peretinoin on cellular IFN signalling. Huh-7.5 cells (A) and HCV (H77S.3/GLuc2A)-replicating Huh-7.5 cells (B) were treated with 10–40 μ M Peretinoin, accompanied with or without IFN α -2b (10 IU/mL). At 3 h later, the cell lysates were collected and subjected to western blot analysis with anti-pSTAT1, anti-STAT1, and anti- β -actin antibodies.

Figure S5. Reduction of LD signal by Peretinoin. Huh-7.5 cells were infected with HJ3-5 virus at an MOI of 1, and 72 h later, 250 μ M OA and 0.5 % DMSO or 250 μ M OA and 40 μ M Peretinoin were added. (**A**) At 72 h later, the cells were fixed and stained for nuclei, LDs, and HCV core protein, and each image was taken under exactly the same condition (nuclei, blue; LDs, green; HCV core protein, red) and then merged. (**B**) The signal intensity of nuclei, HCV core protein, and LDs from 5 cells, which were stained for HCV core protein and LDs, was quantitated as described in the Methods. Data shown represent mean signal intensity ± SD from 5 cells, and the difference was analysed statistically using Student's t-test. N.S., not significant.

Figure S6. Full-length blots/gels for Figure 3D.

Figure S7. Full-length blots/gels for Figure 4C.

Figure S8. Correlation between infectious virus titre and GLuc activity. Huh-7.5 cells were seeded in 48-well plates at a density of 4.0×10^4 cells/well. At 24 h later, the cells were infected with serial dilutions of the HJ3-5/GLuc2A virus. The medium was replaced with fresh medium every 24 h until 72 h. At 72 h later, GLuc activity was determined, and at the same time, the infected cells were fixed and stained for the FFU assay. The correlation between GLuc activity and FFUs/mL was examined. R², coefficient of determination.

Figure S9. Intra- and extra-cellular infectivity assay after removing Peretinoin in extra-cellular medium. FT3-7 cells were transfected with HJ3-5/GLuc2A RNA, and 7 days later, 0.5% DMSO, or 20-40 µM Peretinoin, were added. At 72 h later, extra- and intra-cellular viruses were collected and used to infect naïve Huh-7.5 cells. Replication capacity was also determined by measuring secreted GLuc activity. To prepare intra-cellular infectious virus, cell pellets of HJ3-5/GLuc2A-replicating FT3-7 cells harvested after trypsinization were resuspended in complete medium, washed twice with PBS, and lysed by 4 cycles of freezing and thawing. The lysates were clarified by centrifugation at 2,300 \times g for 5 min prior to inoculation onto naïve Huh-7.5 cells. To remove Peretinoin in the medium derived from extra-cellular cultures, we centrifuged the medium containing Peretinoin in an SW41 rotor (Beckman Coulter Inc., Brea, CA) at 209,678 \times g for 1.5 h at 4 °C, and then the precipitated virus was re-suspended to fresh medium, with which we infected naïve Huh-7.5 cells. After 6 h inoculation of extra- and intra-cellular virus, medium containing virus was removed by extensive wash, and medium was replaced with fresh one every 24 h until 48 h. At 48 h after infection, we determined GLuc activity and used it as an indicator of the infectious virus titre. Intra- and extra-cellular infectivity was normalised to replication capacity at infection, and these were then normalised to those of DMSO-treated cells, which were set to 100%. The ratio of extracellular infectious virus to intracellular virus was calculated at the indicated conditions, and it was then normalised to DMSO-treated cells, which were set to 100%. Data show the mean ratio to that of DMSO-treated cells \pm SD from 3 independent experiments.

Figure S10. Effect of Peretinoin on the entry of HCV into cells. (A) Huh 7.5 cells were treated with the indicated concentrations of Peretinoin for 72 h, and then they were infected with HJ3-5 virus at MOI of 1. The infected cells were incubated 2 h at 4 and 37 °C, and medium containing virus was extensively washed and removed. At 3h later, total cellular RNA was extracted, and the amount of HCV RNA and 18S rRNA was quantitated by RTD-PCR. Relative HCV RNA abundance normalised to the amount of 18S rRNA is presented as fold change ± SD

compared to DMSO-treated cells at 37 °C from 3 independent experiments. (**B**) Huh-7.5 cells were treated with the indicated concentrations of Peretinoin for 48 h, and then, they were infected with serial dilutions of HJ3-5 virus. The infected cells were maintained without Peretinoin, and the infectious virus titer was determined at 72 h later. Data show the mean FFUs/mL \pm SD from at least 3 independent experiments.

Figure S11. Selection of Peretinoin-resistant HCV mutants or cells. Huh-7.5 cells were transfected with H77S.3/GLuc2A RNA. At 48 h later, Peretinoin was added at the indicated concentrations. The medium was collected and replaced with fresh medium every 24 h for 13–15 days. When the cells became confluent, they were passaged at a 1:3 ratio, and GLuc activity was determined every day. Two sets of experiments were performed independently, depicted as Sets 1 and 2. Data show the mean GLuc activity \pm SD from 3 different plates.

Supplementary Methods

RNA transcription

To synthesise cap-CLuc-polyA RNA, pCMVCLuc (New England Biolabs, Inc., Tokyo, Japan) was amplified by PCR using 2 primers (5'-TAA TAC GAC TCA CTA TAG GGC CAC CAT GAA GAC CTT AAT TCT TGC CGT T-3' and 5'-AGA CAC ACA AAA AAC CTA CAC ACA GAT GTA ATG-3'), and the resulting PCR product was used as a template for the following RNA transcription. Capped RNA was synthesised using a MEGAscript T7 Kit (Life Technologies, Carlsbad, CA) by following a modified protocol for capped RNA transcription. Synthesised RNA was purified using an RNeasy Mini Kit.

Antibodies for western blot analysis

The expression of phosphorylated STAT1 (pSTAT1) and STAT1 was evaluated by using rabbit anti-pSTAT1 and rabbit anti-STAT1 antibodies, respectively.

Secreted luciferase activity

The activity of secreted CLuc was determined using a BioLux *Cypridina* Luciferase Assay Kit.

Figure S1

Peretinoin

ATRA

9-cis RA

13-cis RA

6 h

DMSO

в

0

3 h

□no treatment

Peretinoin (µM)

∎ 30

12 h

∎40

9 h

∎20

∎10

Α

В

Figure S5

Α

В

B 1.E+06 1.E+05 1.E+04 1.E+03 NT DMSO 10 20 30 40 Peretinoin (µM)

