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Summary

In this supplementary file we give details of the spectrum function, periodogram, and the problem

of spectral kernel smoothing. We describe a case study illustrating the strengths of the SR method.

Details on the design of the simulation study in the main paper, including choice of parameter

values used, are provided. In addition, the bootstrap algorithm for estimation of p-values for the

nonparametric hypothesis test is also described. A brief summary of the smoothing, detrending

and tapering approaches applied here to the time series analysed is included. Additional figures

that could not be placed in the main paper due to space limitations are included here. References

to these figures and corresponding explanations can be found in the main paper.
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1. The Spectrum Function and Kernel Smoothing

Consider a discrete-time, real-valued stationary time series {xt}t measured at unit intervals of

time. Assume, without loss of generality, that {xt}t has mean zero and autocovariance function

γ(u), u ∈ Z = {0,±1± 2, . . . }. The spectrum f(ω) of {xt}t is defined as the Fourier transform of

the autocovariance function γ(u), i.e., f(ω) = (1/2π)
∑∞

u=−∞ γ(u) e
−iωu, ω ∈ [0,π]. As it is an

even function ofω, periodic with period 2π, it suffices to consider the interval [0,π]. The spectrum

function f(ω) decomposes the variance of the time series into its frequency components, and thus

a peak in the spectrum indicates an important contribution to the variance of the process at the

frequency corresponding to the peak (see, e.g., Chatfield, 2003, for an introduction to spectral

analysis). Consider realizations x1, . . . , xn of the process {xt}t taken at equal time intervals of

length ∆. For simplicity assume that n is even and define ñ = n/2. The periodogram is the

Fourier transform of the empirical autocovariance function and can be written as

I(ωk) =
∆

2πn











n∑

t=1

xt e
−iωkt∆











2

. (1.1)

The frequencies ωk = 2πk/n∆, k = 1, . . . , ñ, are called Fourier frequencies (or harmonics) and

are multiples of the fundamental frequency 2π/n∆. The periodogram (1.1) is an asymptotically

unbiased but inconsistent estimator of the spectrum. A consistent estimator is obtained through

smoothing techniques such as kernel density smoothing (e.g., Parzen, 1962). We consider the

following kernel estimator for f(ω)

f̂b(ωk) =

∑n−1
j=−ñ Kb(ωj −ωk) I(ωj)
∑n−1

l=−ñ Kb(ωl −ωk)
, (1.2)

where I(0) = 0, and I(ω
−k) = I(ωk), i.e., possible boundary effects are accounted for by periodic

smoothing (Lee, 1997). The function Kb in (1.2) is such that Kb(·) = b−1K(·/b), where the

kernel K is a symmetric probability density function with mean zero and unit variance, and

the bandwidth b is a nonnegative parameter that controls the amount of smoothing imposed

over I(ω). The choice of b is crucial to obtaining a good estimator f̂b(ω) of f(ω). Härdle and
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Bowman (1988) and Davison and Hinkley (1997) have shown that the optimal value is such that

b = cn−1/5 for some positive constant c. Lee (1997) proposes to choose b so as to minimize the

risk function

R̂(b) =

ñ−1∑

k=0

{

I(ωk) − f̂b(ωk)
}2

−
1− 2Wb

2

ñ−1∑

k=0

I(ωk)
2 ,

with Wb = Kb(0)/
∑n−1

j=−ñ Kb(ωj). R̂(b) is an asymptotically unbiased estimator of the inte-

grated mean square error R(b) = E

[

∑ñ−1
k=0

{

f(ωk) − f̂b(ωk)
}2

]

. Lee (1997) and Stoica and

Sundin (1999) report a very good performance of this choice of b for peridogram smoothing. In

practice, the optimal value of b is found numerically by evaluating R̂(b) over a grid of values for

c and choosing the one that minimizes R̂(b). In all applications considered we have used the grid

{
1, 2, . . . , 103

}
× 10−3. The kernel function used was K(x) = (1/

√
2π)e−x2/2, x ∈ (−∞,∞).

Section 2 in the main paper refers the use of three smoothing parameters, b, b† and b‡, for

the bootstrap resampling of the kernel spectrum estimates. The two ‘extra’ parameters, b† and

b‡, are necessary for control of the variance and bias of the final spectral estimate. Essentially,

in order to control the variance of the kernel spectrum estimate, the residuals ǫk in Section 2 of

the main paper are generated using an under-smoothed kernel spectrum estimate based on b†.

To control for the bias thus introduced, the bootstrap periodogram values are obtained using an

over-smoothed kernel spectrum estimate using b‡. The final boostrap spectral estimate, f̂∗b(ω) in

the main paper, is obtained by kernel smoothing of the bootstrap periodogram values using the

optimal smoothing parameter, b.

2. The Fast Fourier Transform Nonlinear Least Squares Method

The Fast Fourier Transform Nonlinear Least Squares (FFT-NLLS) method is a multicomponent

cosine estimation algorithm (see, e.g., Straume and others , 1991; Plautz and others , 1997). Time

series are first detrended using simple linear regression and then FFT is used to estimate the

spectrum function. The period, phase and amplitude of the largest spectral peak are used to
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initialise a one-component cosine fit to the data via NLLS. Upon convergence, approximate

nonlinear joint asymmetric confidence intervals are derived for all parameters. If the estimated

amplitude is significantly different from zero, then the two largest peaks in the estimated spectrum

are used to initialise a two-component cosine fit to the data. This procedure is repeated until at

least one cosine component in the fit has amplitude which is not statistically significantly different

from zero, as determined by the corresponding confidence interval. At this stage the algorithm

stops and the results from the penultimate iteration are used as the most statistically accurate

characterization of the data. The retrieved period length is that of the cosine component in the

fit with the largest amplitude.

3. Motivating Example

In this section we analyse in detail a case study which highlights the robustness of the SR method

while demonstrating the reason behind the occasional erratic behaviour of the FFT-NLLS routine

observed in the simulation studies described in the main paper.

Synthetic mRNA data is generated according to the established mathematical model described

in Section 4 of this Supplementary Material. The parameters in the model are chosen so as to

produce asymmetric cycles matching those often encountered in practice, and such that the pe-

riod is within the circadian range. The data is displayed in Figure 1(a). The true period length

is approximately 22h and data points are taken at an hourly rate. The data is non-sinusoidal,

with the level of mRNA rising sharply, reaching its peak within approximately four hours, to

then decrease slowly over a time span of between six to nine hours. The plot in Figure 1(b)

shows the autocorrelation function (ACF). This has a clear oscillatory behaviour, with the first

positive peak around the true value of the period, 22h. Figure 1(c) displays the output of the SR

method. The top panel represents the distribution of the spectrum estimator f̂b(ω) in Section

2 of the main paper. Two clear peaks can be seen, one at approximately 22h, the largest, and
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Fig. 1. Case Study. (a) Dynamics of synthetic mRNA data. Markers represent synthetic hourly obser-
vations. (b) ACF for synthetic mRNA data. (c) SR method output. Top panel displays the estimated
distribution of the spectrum function estimator. Solid line represents the mean of the bootstrap sample of
spectrum functions, dashed lines represent the 95% pointwise confidence intervals. Bottom panel shows
the distribution of the boostrap sample of period length estimates corresponding to the two largest peaks
in the spectrum.

one at approximately 11h, corresponding to the peak/trough pattern. The bottom panel shows

the distribution of the estimators of the frequencies corresponding to the two largest peaks in

the spectrum as determined by the SR method. These are tightly concentrated around the corre-

sponding peaks in the spectrum function. The SR period length estimator, p̂ = argmaxω f̂b(ω),

retrieves an estimated period length of 21.72h, with 95% confidence interval [21.28h, 22.22h].

The FFT-NLLS outputs a period length estimate of 13.79h, with corresponding 95% confi-

dence interval [13.33h, 14.25h], clearly far from the true value of the period. Table 1 presents

the details of the Fourier representation in the FFT-NLLS output. The results are ordered by
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decreasing value of the amplitude estimate of each sinusoidal component in the fit. In addition,

the actual order in which each component is added to the fit is also included. It shows that, at

the first iteration, when a single cosine curve is fit, the correct period length is found. The fit

with two cosine terms then captures the second peak in the spectrum function. However, as the

algorithm tries to accommodate the non-sinusoidal shape of the oscillation, additional, spurious

terms are also included. In this case, the result is the inclusion of two sinusoidal components with

large amplitudes, with period lengths 13.79h and 13.88h, but whose effect in the overall Fourier

fit is essentially null as a result of the opposing phases.

Table 1. Case Study. Elements of FFT-NLLS output and the order in which they are added to the fit, by

decreasing order of amplitude.

Order Period Amplitude Phase
5 13.79 470.33 2.63
6 13.88 438.90 -4.10
1 21.59 209.37 0.75
2 10.77 99.69 0.91
3 33.46 71.72 0.73
4 65.60 58.97 5.72

4. Design of Simulation Studies

In this section we describe the details of the simulation studies comparing the SR and FFT-NNLS

methods and whose results are presented in Section 3 of the main paper.

4.1 The Delayed Negative Feedback Loop Model

LetM denote the abundance of mRNA molecules and P the abundance of the corresponding pro-

tein. The Itô stochastic differential equations (SDEs) for the distributed delay negative feedback

loop (DNFL) model are given by (Monk, 2003; Heron, Finkenstädt and Rand, 2007)

dM= ζM(t)dt+ σM(t)dWM

dP= ζP(t)dt+ σP(t)dWP ,

(4.3)
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where

ζM(t)=
v1k1

(k1 + P(t))hc
−

v2M(t)

k2 +M(t)

ζP(t)=αg (M(t)) − δPP(t)

σM(t)=

[

v1k1

{k1 + P(t)}
hc

+
v2M(t)

k2 +M(t)

]1/2

σP(t)= {αg (M(t)) + δPP(t)}
1/2 ,

are drift and volatility functions, respectively, and WM and WP are independent Wiener pro-

cesses (see Heron, Finkenstädt and Rand, 2007, for a detailed derivation of the drift and volatility

functions in (4.3)). Here g (M(t)) =
∫∞
0
M(t− s)φ(s)ds, where φ(·) is some probability density

function defined on the set of positive real numbers. To determine the true period of the oscilla-

tions we consider the ordinary differential equation (ODE) model counterpart. This is obtained

by setting σM(t)=σP(t)= 0 in (4.3) above. The model resembles the clock model developed

by Goldbeter (Goldbeter, 1991) with the difference that the intermediate steps between mRNA

translation and synthesis of nuclear protein (represented by P in (4.3)) are replaced by the delay

function g (M(t)) in (4.3). Our initial choice of parameters is similar to the setting in Goldbeter

(1991).

For each replicate, the SDE model is used to generate random data with intrinsic noise for

which a period estimate is obtained. To determine the true period, p, a long ODE is run, and the

mean peak distance is computed after convergence is achieved. We first use the iterative Euler

method to obtain discrete realisations of the stochastic process at small time intervals of length

1/10h. The synthetic data is then generated by sampling values at a given level of coarseness or

sampling frequency, sf. The latter is a function of the sample size, n, and the number of cycles,

nc, as follows: for periodic expression levels with period p, sf = (p× nc)/n.



8 M. J. Costa and others

4.2 Outliers

The definition of outlier used in this paper is motivated by biological rather than distributional

arguments. Hence, the boxplots in the main paper are constructed in a slightly different way. The

three central lines composing the box correspond to the usual 25th, 50th and 75th percentiles of

the simulated distribution of log10(SqE) for both the SR method and the FFT-NLLS routine ex-

cluding all the so-called outliers. However, the whiskers now correspond to the observed minimum

and maximum of log10(SqE) associated with period estimates within the circadian range.

4.3 Sample Size Requirements and Consistency

For all the simulations in this section we use model (4.3) with φ being the gamma density function

with mean µ = 8 and variance σ2 = 8, and set hc= 4, v1 = 1.5, v2 = 1.3, k1 = 0.24, k2 = 0.2, α= 2,

and δP= 0.5, which results in sinusoidal shaped cycles with a true period p of approximately 24h.

Since the behaviour of the SR estimator depends both on the sampling frequency and the

number of cycles covered, as described in Section 3 in the main paper, we design our simulation

study on the consistency properties of the SR estimator so that it covers several scenarios corre-

sponding to different values of sampling frequency. The sample size, n, is set to be n = (p×nc)/sf,

where as before sf is the sampling frequency, in hours, and nc the number of cycles. We vary

sf ∈ {1h, 2h, 4h, 5h}, and nc ∈ {2, 4, 8, 16, 32}. For each value of n the MSE of the SR estimator

is obtained as described in Section 3 in the main paper. The results can be found in Figure 2,

where boxplots of log10(SqE) of period estimates obtained for synthetic mRNA time series using

the SR method are displayed.

4.4 Non-sinusoidal Cycles and Noise

In model (4.3) the level of asymmetry can be controlled through the set of parameters v1,

k1, v2, and µ, the mean of the gamma density φ in (4.3). For mild asymmetry levels we set
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Fig. 2. Consistency. Boxplots of log10(SqE) for period estimates obtained from synthetic mRNA dynamics
using the SR method. (a) sf = 1h. (b) sf = 2h. (c) sf = 4h. (d) sf = 5h.

v1 = 0.5, k1= 0.2hc, v2 = 0.3,µ=7, a moderate level corresponds to v1 = 1.5, k1 = 0.2hc, v2 = 0.3,

µ= 6, and severe level to v1 = 34, k1 = 0.003hc, v2 = 0.1, µ = 6. The other parameters are set to

σ2 = 8, hc= 5, k2 = 0.2, α= 2, and δP= 0.5 so that the period is approximately 24h. The dynam-

ics of synthetic mRNA and corresponding transcription functions for the different asymmetry

levels are represented in Figure 3.

To accomodate for a shoulder pattern in synthetic data we reformulate the mRNA dynamics

in model (4.3) as follows,

dM = ζM(t)dt+ σM(t)dWM , (4.4)

where ζM(t) = τ(t) − δMM(t), and σM(t) = {τ(t) + δMM(t)}
1/2. The function τ(t) in (4.4)
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Fig. 3. Non-sinusoidal Cycles. Dynamics of synthetic mRNA (top panels) and corresponding transcrip-
tion functions (bottom panels) for the different asymmetry levels. From left to right, mild asymmetry
level, moderate asymmetry level, and severe asymmetry level. Markers represent synthetic hourly mRNA
observations.

regulating transcription of mRNA is given by the following step function for t ∈ [0,p] (where p

is the desired period)

τ(t) =






τ1(t) = a sin (θ t) + a , 0 6 t 6 p/4
τ2(t) = b sin (θ t+ψ) + b , p/4 < t 6 p/2
0 , p/2 < t 6 p

(4.5)

and τ(t)= τ(t − kp), t ∈ (kp, (k + 1)p], k= 1, . . . ,N, where N is such that (N + 1)p is the

largest observed time point. The period of the functions τ1(t) and τ2(t) is defined by θ and

fixed to be lower than p/2. The latter ensures that a time span of length p/4 covers the peak in

the sine wave that generates the peaks in the mRNA level oscillations. Here we set p= 24h. We

assume that mRNA is degraded at a constant rate, δM. The level of the shoulder pattern can be

controlled through the ratio a/b. How far the two peaks in a cycle are apart is controlled by ψ.

We consider three different levels of shoulder pattern: mild, moderate and severe, in increasing

order of complexity. The sample size is set to n= 96 with hourly observations. A mild shoulder
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level is obtained by setting the parameters in (4.4)-(4.5) to a= 0.3, b= 0.1, ψ= 10 and δM= 0.3.

Choosing θ=π/5 yields a sine curve with a period of 10h. To increase the height of the shoulder

we simply increase the value of b in (4.5). Hence, a moderate shoulder level is defined by b= 0.15

and a severe shoulder level corresponds to b= 0.2. Figure 4 contains plots of the synthetic mRNA

data and the corresponding transcription functions.
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Fig. 4. Non-sinusoidal Cycles. Dynamics of synthetic mRNA (top panels) and corresponding transcription
rates τ(t) (bottom panels) for the different shoulder models. From left to right, mild shoulder level, mod-
erate shoulder level, and severe shoulder level. Markers represent synthetic hourly mRNA observations.

To simulate data with measurement error we add a simple Gaussian term to the mRNA

dynamics of the ODE counterpart of the model in (4.3). The parameters in the model are the

same as in Section 4.3 of this Supplementary Material. We fix the sample size to n= 96 with

samples taken hourly. For each level of signal-to-noise ratio (SNR) the variance of the Gaussian

distribution, σ2 say, is determined as follows,

σ2 =
(1/n)

∑n
i=1M(ti)

SNR
.

The dynamics of synthetic mRNA for the different levels of SNR are represented in Figure 5.
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Increasing the value of SNR results in well defined, smooth oscillations. The values of SNR chosen

reflect those encountered in practice.
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Fig. 5. Non-sinusoidal Cycles. Dynamics of synthetic mRNA for different levels of SNR. (a) SNR = 1.6;
(b) SNR = 2; (c) SNR = 3. Markers represent synthetic hourly mRNA observations.

5. Bootstrap Estimate of p-value

The p-value of the nonparametric hypothesis test T2 (and also T1) described in Section 5 in the

main paper can be estimated using a simple bootstrap algorithm as follows:

1. Compute the value of the test statistic, s, the pooled mean µ̂0, and the variances σ̂2i0,

i= 1, 2.

2. Sample, with replacement, n1 + n2 values ǫ∗ij from {eij, j= 1, . . . ,ni , i= 1, 2}.
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3. Compute the simulated data sets y∗ij, j= 1, . . . ,ni , i= 1, 2, using appropriate model.

4. For each data set compute sample averages and variances, the hi’s, the pooled mean, and

finally the test statistic s∗.

5. Check whether (s∗)2 > s2 (if considering the general alternative HA : µ1 6= µ2).

Steps 2-5 are repeated R times. The p-value is then estimated by pv ≈ (1+# {s∗r > s})/(R+ 1).

6. Size and Power Study

We compare the three different tests T0, T1 and T2 based on size and power properties using

Monte Carlo studies. We consider a simple data generating process that follows the variance

heterogeneity assumption of T2. This is a realistic approach, from our experience, as it is often

the case that period estimates from different replicates within the same experiment have different

levels of precision.

Given sample sizes n1 and n2 we first generate a set of relative errors rij = ri + κij, j =

1, . . . ,ni, i = 1, 2, where the κij’s follow a normal distribution with mean zero and variance

σ2ri , for given ri and σ2ri . A set of weights wij is then defined as wij = 1/rij, and normalized

so that
∑

jwij = 1. We generate the yij’s using a distribution with mean pi, the true value

of the period, and variance given by νi/wij, where again the νi’s are chosen beforehand. We

chose a gamma distribution with mean and variance such that the conditions set above for the

distribution generating the yij’s are met. In all simulations the number of bootstrap replicates R

for p-value estimation is 499, and the number of Monte Carlo replicates M is 5,000.

To study the true size of each of the tests proposed in the main paper we estimate the empirical

distribution function (EDF) of the corresponding p-values under the null using a Monte Carlo

experiment. Given parameters ni, ri, σri and νi, i = 1, 2, two samples of synthetic data are

generated as described in Section 5 in the main paper, with pi = 24h, i= 1, 2. We then calculate
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the p-value of the test as described in the previous section. This process is repeated M times,

generating a sample of M p-values,
{
p1v, . . . ,p

M
v

}
, from which the EDF is estimated as follows,

F̂(x) =
1

M

M∑

m=1

I (pmv 6 x) , x ∈ (0, 1) .

Let F̂i be the EDF associated with test Ti, i= 0, 1, 2, and let α be the nominal significance level. If

the distribution of the test statistic is correct, the p-value should be distributed uniformly in [0, 1]

(U[0,1]). Thus, a plot of F̂i(α) against α should yield a 45o line. It turns out that these plots are not

very informative here as all three tests seem to perform equally well for all the different parameter

settings we considered. Davidson and MacKinnon (1998) propose the use of P-value Discrepancy

Plots, which plot F̂(α)−α against α, to assess and compare the performance of hypotheses tests.

To test whether the observed p-value discrepancies are the result of experimental error we use

the Kolmogorov-Smirnov test at the 5% significance level. We also compare each F̂i with a U[0,1]

distribution using the Anderson-Darling test statistic, A2
M (Anderson and Darling, 1952). If its

value is greater than the 5% critical value of 2.492 (Stephens, 1974) we reject the null hypothesis

that F̂i is U[0,1], i.e., that the test Ti attains the correct nominal size. For the simulations we take

ni ∈ {8, 16}, νi ∈ {0.05, 0.08}, and σri ∈ {0.1, 0.2}, while fixing r1 = r2 = 0.5 and p1 = p2 = 24

hours. The chosen values reflect real experimental conditions. We consider the following grid for

α, {0.002, 0.004, . . . , 1}. Results can be found in Figures 6(a)-6(d) and Table 2.

Now let δ=p2−p1, i.e., the difference in the mean period between the two groups. For each

value of δ the power of the test is estimated via a Monte Carlo study similar to that used to

estimate the EDFs under H0. After a sample of M p-values is obtained, the power of the test at

level α is the proportion of times that p-value 6 α, i.e., the proportion of times the test rejects the

null hypothesis. Following Davidson and MacKinnon (1998) we compare power against true size

rather than nominal size by plotting the EDFs of the p-values under both the null and alternative

hypotheses. At each Monte Carlo replication, two sets of synthetic data, one satisfying the null

hypothesis and the other not, are generated using the same sequence of random numbers to
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reduce experimental error. The grid chosen for α is the same as for the size study. The plots in

Figure 6(e) and 6(f) show estimated power curves corrected for true size for different values of δ

whilst fixing νi = 0.08, ri = 0.5, and σri = 0.1, i = 1, 2.

Table 2. Size and Power simulation study. Results from Anderson-Darling test, with values of A2
M for

each test and each scenario.

Test Scenario (νi,σri)
(0.05, 0.1) (0.08, 0.2)

ni = 8 ni = 16 ni = 8 ni = 16

T0 0.723 1.012 0.690 0.866
T1 0.881 1.112 1.296 1.133
T2 2.092 1.414 0.655 0.293

7. Tapering and Padding Time Series Data

The quality of the approximation for the distribution of the residuals in the multiplicative regres-

sion model described in Section 2 in the main paper can be improved by tapering and padding

the data (Dahlhaus and Janas, 1996; Lee, 1997). First, a fraction of the data at each end is

smoothed down to zero with, for example, a cosine tapering (or Tukey) window (Harris, 1997).

The ‘new’ data is then padded with zeros to the right of the last observed time point until the

desired sample size is met. The use of a tapering window avoids discontinuities at the boundaries.

If a taper is applied to the data, the definition of the periodogram changes slightly. For simplicity,

let n denote the length of the padded series. The periodogram becomes

I(ωk) =
∆

2π
∑

tw(∆t)
2











n∑

t=1

w(∆t) xt e
−iωkt∆











2

, (7.6)

where w(t) is the cosine tapering window (see Harris, 1997; Brillinger, 2001, for details). In the

main paper the term periodogram refers to the definition in (7.6).



16 M. J. Costa and others

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

Nominal size

S
iz

e
 d

is
cr

e
p

a
n

cy

n
i
 = 8,  ν

i
 = 0.05,  σ

r
i

 = 0.1

 

 
T

0

T
1

T
2

K
.05

(a)

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

Nominal size

S
iz

e
 d

is
cr

e
p

a
n

cy

n
i
 = 16,  ν

i
 = 0.05,  σ

r
i

 = 0.1

 

 
T

0

T
1

T
2

K
.05

(b)

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

Nominal size

S
iz

e
 d

is
cr

e
p

a
n

cy

n
i
 = 8,  ν

i
 = 0.08,  σ

r
i

 = 0.2

 

 
T

0

T
1

T
2

K
.05

(c)

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

Nominal size

S
iz

e
 d

is
cr

e
p

a
n

cy

n
i
 = 16,  ν

i
 = 0.08,  σ

r
i

 = 0.2

 

 
T

0

T
1

T
2

K
.05

(d)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Size

P
o

w
e

r

δ = 0.5, n
1
 = n

2
 = 32

 

 
T

0

T
1

T
2

(e)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Size

P
o

w
e

r

δ = 1.5, n
1
 = n

2
 = 32

 

 
T

0

T
1

T
2

(f)

Fig. 6. Size and Power simulation study. (a)-(d) P-value discrepancy plots for T0, T1 and T2 for different
parameter combinations. In all cases, ri = 0.5, i = 1, 2. Horizontal lines represent 5% critical value of
the Kolmogorov-Smirnov test, K.05. (e) - (f) Estimated power curves corrected for true size for different
values of δ (in hours). Other parameters in the data generating process are fixed to νi = 0.08, ri = 0.5,
σri = 0.1, i = 1, 2.
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8. Smoothing and Detrending of Time Series Data

Noisy data can be smoothed using a number of techniques. Here we consider non-overlapping

smoothing of time series. We first partition the time series into b non-overlapping blocks of

length l such that b× l = n, the length of the original, unsmooth time series. For each block b

we compute the mean of the l observations and set this as the ‘new’ observation.

Detrending of time series data can be accomplished by a two-step process. We first compute

the logarithm of the data. This serves to stabilize the amplitude of the oscillations across the

observed range and does not change the periodicity properties of any rhythms that might be

present. We then fit and remove a polynomial of degree d to the overall trend. We find that for

the applications considered here a cubic polynomial suffices.

9. Chronotherapy Study

Figure 7 shows plots of temperature recordings from four different locations on the skin of

a patient with metastatic colorectal cancer before, during and after treatment with intensive

chronotherapy with chronoIFLO4. Observations are taken every minute for approximately four

days. Plots of the ACF and estimated kernel spectrum distribution for the smoothed data are

presented in Figure 8. We can see that even for very noisy data the ACF, and consequently the

spectrum function, are able to recover the true value of the period length.

10. Human Gene Luminescence Data

Figure 9 shows plots of individual PER2:LUC time series replicates for both treatments, G1

and G2, and for the control group. There is a strong downward trend in the data which can

be removed by applying the logarithm transformation combined with polynomial detrending as

described in Section 8 of this Supplementary Material. Plots of the ACF and estimated kernel

spectrum distribution for both treatments and control are presented in Figure 10.
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Fig. 7. Chronotherapy Study. Skin temperature data collected over approximately three days (un-
smoothed) for a patient suffering from metastatic colorectal cancer before, during and after treatment
with intensive chronotherapy with chronoIFLO4. For each treatment stage replicate time series represent
data collected from different sites in the skin of the patients body.

11. Plant Luminescence Data

Figure 11 shows eight time series replicates of TOC1:LUC and CCA1:LUC protein activity in

Arabidopsis thaliana at 17◦C and 27◦C. An important biological question is whether the pre-

cision of the clock is indeed conserved under such a change in temperature. Plots of the ACF

and estimated kernel spectrum distribution for both CCA1:LUC and TOC1:LUC at 17◦C are

presented in Figure 12.
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Fig. 8. Chronotherapy Study. Autocorrelation functions and estimated distribution of spectrum functions
using the SR method for skin temperature data on replicate 2. In bottom panels, the solid line represents
the mean of the bootstrap sample of spectrum functions, and the dashed lines represent 95% pointwise
confidence intervals.
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Fig. 11. Plant Luminescence Data. (a) Eight replicate time series of normalized luminescence of
TOC1:LUC protein under constant red light and constant temperature of 17◦C. (b) Eight replicate
time series of normalized luminescence of TOC1:LUC protein under constant red light and constant
temperature of 27◦C. (c) Eight replicate time series of normalized luminescence of CCA1:LUC protein
under constant red light and constant temperature of 17◦C. (d) Eight replicate time series of normalized
luminescence of CCA1:LUC protein under constant red light and constant temperature of 27◦C. Data
sampled ZT 2-120, except for CCA1:LUC at 27◦C, where ZT 2-114. Replicate j is denoted by ‘rep j’,
j = 1, . . . , 8. Markers represent actual measurements taken every two hours.
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