A FtsH

> MNRVFRNTIFYLLILLVVIGVVSYFQTSNPK<u>TENMSYSTFIKNLDDGKVDSVSVQP</u> VRGVYEVKGQLKNYDKDQYFLTHVPEGKGADQIFNALKKTDVKVEPAQETSGWVTF LTTIIPFVIIFILFFFLLNQAQGGGSRVMNFGKSKAKLYTEEKKRVKFKDVAGADE EKQELVEVVEFLKDPR<u>KFAELGAR</u>IPKGVLLVGPPGTGKTLLAKACAGEAGVPFFS ISGSDFVEMFVGVGASR<u>VRDLFENAKK</u>NAPCLIFIDEIDAVGRQR<u>GAGLGGGHDER</u> EQTLNQLLVEMDGFSANEGIIIIAATNRADILDPALLRPGRFDRQITVDRPDVIGR EAVLKVHARNKPLDETVNLKSIAMR<u>TPGFSGADLENLLNEAALVAAR</u>QNKKKIDAR <u>DIDEATDRVIAGPAKK</u>SRVISKKERNIVAYHEGGHTVIGLVLDEADMVHKVTIVPR <u>GQAGGYAVMLPREDRYFQTKPELLDKIVGLLGGRVAEEIIFGEVSTGAHNDFQR</u>AT NIAR<u>RMVTEFGMSEKLGPLQFGQSQGGQVFLGRDFNNEQNYSDQIAYEIDQEIQR</u>I IKECYERAK<u>QILTENRDKLELIAQTLLKVETLDAEQIKHLIDHGTLPERNFSDDEK</u> <u>NDDVK</u>VNILTKTEEKKDDTKE

В

Figure S1: Detection of FtsH in the DRM fraction by mass spectrometry and western blot analysis. (A) Amino acid sequence of FtsH from *B. subtilis.* The oligopeptides from FtsH that were identified in the sample by mass spectrometry analysis are underlined. **(B)** Detection of FtsH by western blot analysis in of the DRM and DSM fraction using polyclonal antibodies against FtsH. The signal was only detected in the DRM fraction. Arrow indicates the molecular weight marker of 71 KDa.

Figure S2: Proteins associated to the DRM fraction decreased in the absence of the flotillin homologs. (A) Western blot analysis using polyclonal antibodies against FtsH to detect the presence of FtsH in the DRM fraction of the wild type strain and the $\Delta floT \Delta yqfA$ mutant. Signal was only detected in the DRM fraction of the wild type strain. The arrow indicates the molecular weight expected for FtsH protein. (B) SDS-PAGE showing the pool of proteins associated with the membrane fraction that is resistant to detergent solubilization (DRM). The panel shows samples from the wild type strain and in the double $\Delta floT \Delta yqfA$ mutant. The protein pattern was analyzed by coomassie staining. Molecular weights are labeled on the right. The protein content of the DRM fractions decreases in the absence of the flotillin-like proteins FloT and YqfA.

Figure S3: FtsH-RFP is not subject to proteolytic cleavage. Western blot analysis using polyclonal antibodies against RFP to detect the expression and the molecular weight of the translational fusion FtsH-RFP ($MW_{FtsH} = 71 \text{ KDa} + MW_{RFP} = 26 \text{ KDa}$; Total 97 KDa). Negative control in the immunoblot assay is represented by wild-type cell extracts expressing no translational fusion (left lane). The right lane shows the immunoblot analysis extracts from the $\Delta ftsH$ *lacA*::P_{hp}-FtsH-RFP strain. The arrow indicates the molecular weight expected for FtsH protein. Coomassie staining of the SDS-PAGE is shown on the right for analysis of the protein content of the cell extracts.

Figure S4: Subcellular localization of the protease FtsH using the translational fusion FtsH-RFP. Fluorescence micrographs of a field of exponentially growing cells labeled with the translational fusion FtsH-RFP (false colored in red). The fluorescence signal shows high concentration in the midcell and lower concentration in certain foci across the cellular membrane. Cells were grown in liquid shaking MSgg at 30°C and cells were harvested in the middle of the exponential phase (approx. 8h of incubation). Arrows indicate detailed fields that are magnified in panels B and C. Asterisks in panels B and C show the midcell position of the signal FtsH-RFP in some cells. The expression of FtsH-RFP was controlled by an IPTG-inducible promoter (induction with 1mM IPTG).

Figure S5: Subcellular localization of the flotillin-like protein FloT using the translational fusion FloT-YFP. Fluorescence micrographs of a field of exponentially growing cells labeled with the translational fusion FloT-YFP (false colored in red). The fluorescence signal shows the typical distribution in foci across the cellular membrane with a high concentration in the midcell. Cells were grown in liquid shaking MSgg at 30°C and cells were harvested in the middle of the exponential phase (approx. 8h of incubation). Arrows indicate detailed fields that are magnified in panels B and C. Asterisks in panels B and C show the midcell position of the signal FloT-YFP in cells.

В

Figure S6: Subcellular localization of the flotillin-like protein YqfA using the translational fusion YqfA-GFP. Fluorescence micrographs of a field of exponentially growing cells labeled with the translational fusion YqfA-GFP (false colored in green). The fluorescence signal shows the typical distribution in foci across the cellular membrane with a high concentration in the midcell. Cells were grown in liquid shaking MSgg at 30°C and cells were harvested in the middle of the exponential phase (approx. 8h of incubation). Arrows indicate detailed fields that are magnified in panels B and C. Asterisks in panels B and C show the midcell position of the signal YqfA-GFP in cells.

В

Α

Figure S7: There is no interference between the green and red fluorescence signal. Fluorescence micrographs and transmitted light images of *E. coli* strains grown in liquid shaking LB at 37°C for 24h. The strains expressed GFP (upper row) or RFP (bottom row) under the control of a constitutive promoter (P_c). scale bar is 5 µm. Fluorescence signal detected in the green and red channel are presented in GFP and RFP labeled columns, respectively. Transmitted light images are presented in the column labeled as BF.

Figure S8: Flotillins are permanently present at the midcell. Time-lapse fluorescence analysis of the distribution pattern of FloT-YFP and YqfA-GFP foci. Cells were grown in liquid shaking MSgg at 30°C for 8h. Exponentially growing cells were mounted on agarose-coated slides. The upper row shows the distribution of the FloT-YFP foci within the same cell for 6 min. The bottom row shows the distribution of the YqfA-GFP foci within the same cell for 6 min. This figure corresponds to figure 7 of the body of the paper. Fluorescence signal is quantified in relation to the background fluorescence using a color spectrum logarithmic scale, in which higher intensity of the fluorescence signal is represented in red tones (scale is presented on the right). Scale bar is 2 μ m.

Figure S9: Quantification of relative fluorescence intensity detected in the time-lapse fluorescence analysis of FloT-YFP. Time-lapse fluorescence analysis of the distribution pattern of FloT-YFP foci for a time period of 6 min. Each panel shows a detailed micrograph of the distribution of the FloT-YFP foci within the same cell at every point (in min). Fluorescence signal is quantified in relation to the background fluorescence, using a color spectrum logarithmic scale (spectrum scale is presented on the right). The relative fluorescence intensity values of each micrograph is represented in a graph (above each micrograph). X-axis represents the cell length and y-axis represents the value of relative fluorescence intensity detected. The midcell is marked with a red arrow. Scale bar is 1 μ m.

Figure S10: Quantification of relative fluorescence intensity detected in the time-lapse fluorescence analysis of YqfA-GFP. Time-lapse fluorescence analysis of the distribution pattern of YqfA-GFP foci for a time period of 6 min. Each panel shows a detailed micrograph of the distribution of the YqfA–GFP foci within the same cell at every point (in min). Fluorescence signal is quantified in relation to the background fluorescence, using a color spectrum logarithmic scale (spectrum scale is presented on the right). The relative fluorescence intensity values of each micrograph is represented in a graph (above each micrograph). X-axis represents the cell length and y-axis represents the value of relative fluorescence intensity detected. The midcell is marked with a red arrow. Scale bar is 1 μ m.

Figure S11: Complementation of the $\Delta ftsH$ **mutant with a wild-type copy of** *ftsH* **restored biofilm formation.** Pellicle formation assay of different strains of *B. subtilis.* Pictures show a top view of the pellicles formed on the surface of MSgg liquid cultures incubated in 24-well plates at 30°C for 24h. Positive control is represented by the wild-type strain (WT) (left panel). $\Delta ftsH$ mutant shows no pellicle formation (second panel). Complementation of $\Delta ftsH$ mutant with a copy of *ftsH* induced by its own promoter partially restored biofilm formation (third panel). Complementation of $\Delta ftsH$ mutant with a Copy of *ftsH* restored wild-type levels of biofilm formation. Similar results were obtained when the $\Delta ftsH$ mutant was complemented with the translational fusion FtsH-RFP (right panel). IPTG was added to a final concentration of 1mM.

Extracellular matrix

Figure S12: Flow scheme of the regulatory circuit involved in extracellular matrix production. Arrows indicate activation of transcription and T bars indicate repression. AbrB and SinR are two regulatory repressors that independently repress the genes required for the production of amyloid fibers and exopolysaccharide production. Both exopolysacchride and amyloid fibers are important constituent of the extracellular matrix of the biofilm. Repression of AbrB and SinR expression is driven by the activation of the master regulator Spo0A~P.

Figure S13: Colony morphology assay of *B. subtilis* **NCIB3610 in the presence of a range of concentrations of the SpoVM protein.** The ability of *B. subtilis* 3610 to make biofilm in solid MSgg agar can be correlated to the amount of wrinkles that are present in the surface of the colony. Addition of small concentrations of SpoVM inhibited the formation of wrinkles, which is indicative of an inhibition of biofilm formation. Gradual decrease of the colonies of *B. subtilis*. Colonies were incubated in MSgg agar at at 30°C for 72h.

Figure S14: SpoVM inhibits biofilm formation. Biofilm formation assay of *S. aureus* SC-01 and *P. aeruginosa* PA14. 1ml of the culture was dispensed in polystyrene well plates and incubated overnight at 37° C. Biofilms were stained with crystal violet for better visualization. Addition of 50 nM of the peptide SpoVM inhibited the ability of both strains to form biofilm attached to the bottom of the well, evidenced by the absence of crystal violet dye after staining.

Table S1: Proteins associated with the DRM fraction in *B. subtilis*

Protein	Function	Functional Category	
FtsH	Metalloprotease	Cell shape	
MreBH	Actin-like protein		
MreC	Actin-associated protein		
EzrA	Tubulin-associated protein		
ОррА	Oligopeptide ABC transporter	Quorum sensing	
PrsA	Protease secretion chaperone.	Protease secretion	
FeuA	Iron-uptake system (binding protein)		
FeuB	Iron-uptake system (membrane protein)	Iron uptake	
PbpC	Penicillin-binding protein 3		
DacA	Penicillin-binding protein 5	Penicillin-binding proteins	
DacC	Penicillin-binding protein		
YxeB	Unknown. Similar to ABC transporter		
YwjA	Unknown. Similar to ABC transporter		
YknZ	Unknown. Similar to ABC transporter		
YwbM	Unknown	Unknown	
YcdA	Unknown		
YerH	Unknown		
YufN	Unknown	1	
AdcA	Lipoprotein	Transporter	
BdbD	Thiol-disulfide oxidorreductase	Protein folding	
Qox2	Quinol oxidase	Redox enzyme	
YxeM	ABC transporter	Transporter	
RbsB	ABC transporter	Transporter	
YkwC	Unknown		
YeeF	Unknown	Unknown	
YpuA	Unknown		

Table S1 (continuation): Proteins associated with the DRM fraction in *B. subtilis*

Amino acid sequence of the proteins listed in table S1. The oligopeptides that were identified in the samples by mass spectrometry analysis are underlined. The percentage coverage value obtained for each protein is shown in parenthesis.

FtsH (38.93 %)

MNRVFRNTIFYLLILLVVIGVVSYFQTSNPKTENMSYSTFIKNLDDGKVDSVSVQPVRGVYEVKGQLKNYD KDQYFLTHVPEGKGADQIFNALKKTDVKVEPAQETSGWVTFLTTIIPFVIIFILFFFLLNQAQGGGSRVMN FGKSKAKLYTEEKKRVKFKDVAGADEEKQELVEVVEFLKDPRKFAELGARIPKGVLLVGPPGTGKTLLAKA CAGEAGVPFFSISGSDFVEMFVGVGASRVRDLFENAKKNAPCLIFIDEIDAVGRQRGAGLGGGHDEREQTL NQLLVEMDGFSANEGIIIIAATNRADILDPALLRPGRFDRQITVDRPDVIGREAVLKVHARNKPLDETVNL KSIAMRTPGFSGADLENLLNEAALVAARQNKKKIDARDIDEATDRVIAGPAKKSRVISKKERNIVAYHEGG HTVIGLVLDEADMVHKVTIVPRGQAGGYAVMLPREDRYFQTKPELLDKIVGLLGGRVAEEIIFGEVSTGAH NDFQRATNIARRMVTEFGMSEKLGPLQFGQSQGGQVFLGRDFNNEQNYSDQIAYEIDQEIQRIIKECYERA KQILTENRDKLELIAQTLLKVETLDAEQIKHLIDHGTLPERNFSDDEKNDDVKVNILTKTEEKKDDTKE

MreBH (48.06 %)

MFQSTEIGIDLGTANILVYSKNKGIILNEPSVVAVDTTTKAVLAIGADAKNMIGKTPGKIVAVRPMKDGVI ADYDMTTDLLKHIMKKAAKSIGMSFRKPNVVVCTPSGSTAVERRAISDAVKNCGAKNVHLIEEPVAAAIGA DLPVDEPVANVVVDIGGGTTEVAIISFGGVVSCHSIRIGGDQLDEDIVSFVRKKYNLLIGERTAEQVKMEI GHALIEHIPEAMEIRGRDLVTGLPKTIMLQSNEIQDAMRESLLHILEAIRATLEDCPPELSGDIVDRGVIL TGGGALLNGIKEWLTEEIVVPVHVAQNPLESVAIGTGRSLEVIDKLQKAIK

MreC (52.41 %)

MPNKRLMLLLLCIIILVAMIGFSLKGGRNTTWPEKVIGDTTGVFQNIFHTPAEFFAGIFENINDLKNTYKE NERLREKLDGQTQYEAKLQELEEENKSLRDELGHVKSIKDYKPILATVIARSPDNWAKQVTINKGTQQNVA FDMAVTNEKGALIGKIKSSGLNNFT<u>SAVQLLSDPDRNNRVATKISGKKGSKGYGLIEGYDKEK</u>KRLKMTII ERKDKQDVK<u>KGDLIETSGTGGVFPEGLTIGEVTDIESDSYGLTKVAYVKPAADLTDLNNVIVVNRDVPTVD</u> TEEEGS

EzrA (52.85 %)

MEFVIGLLIVLLALFAAGYFFRKKIYAEIDRLESWKIEILNRSIVEEMSKIK<u>HLKMTGQTEEFFEK</u>WREEW DEIVTAHMPKVEELLYDAEENADKYRFKKANQVLVHIDDLLTAAESSIEKILREISDLVTSEEKSREEIEQ VRERYSKSRKNLLAYSHL<u>YGELYDSLEKDLDEIWSGIKQFEEETEGGNYITARK</u>VLLEQDRNLERLQSYID DVPKLLADCKQTVPGQIAKLKDGYGEMKEKGYKLEHIQLDKELENLSNQLKRAEHVLMTELDIDEASAILQ LIDENIQSVYQQLEGEVEAGQSVLSKMPELIIAYDKLKEEKEHTKAETELVKESYRLTAGELGKQQAFEKR LDEIGKLLSSVKDKLDAEHVAYSLLVEEVASIEKQIEEVKKEHAEYRENLQALRKEELQARETLSNLKKTI SETARLLKTSNIPGIPSHIQEMLENAHHHIQETVNQLNELPLNMEEAGAHLKQAEDIVNRASRESEELVEQ VILIEKIIQFGNRFRSQNHILSEQLKEAERRFYAFDYDDSYEIAAAAVEKAAPGAVEKIKADISA

OppA (59.63 %)

MKKRWŚIVTLMLIFTLVLSACGFGGSGSNGEGKKDSKGKTTLNINIK<u>TEPFSLHPGLANDSVSGGVIRQ</u>TF EGLTRINADGEPEEGMASKIETSKDGKTYTFTIRDGVKWSNGDPVTAQDFEYAWKWALDPNNESQYAYQLY YIKGAEAANTGKGSLDDVAVKAVNDKTLKVELNNPTPYFTELTAFYTYMPINKKIAEKNKKWNTNAGDDYV SNGPFKMTAWKHSGSITLEKNDQYWDKDKVKLKKIDMVMINNNTELKKFQAGELDWAGMPLGQLPTESLP TLKKDGSLHVEPIAGVYWYKFNTEAKPLDNVNIRKALTYSLDRQSIVKNVTQGEQIPAMAAVPPTMKGFED NKEGYFKDNDVKTAKEYLEKGLK<u>EMGLSK</u>ASDLPKIKL<u>SYNTDDAHAKIAQAVQEMWK</u>KNLGVDVELDNSE WNVYIDK<u>LHSQDYQIGRM</u>GWLGDFNDPINFLELF<u>RDKNGGNNDTGWENPEFKKLLNQSQTETDKTK</u>RAELL KKAEGIFIDEMPVAPIYFYTDTWVQDENLK<u>GVIMPGTGEVYFR</u>NAYFK

PrsA (72.60 %)

MKKIAIAAITATSILALSACSSGDKEVIAKTDAGDVTKGELYTNMKKTAGASVLTQLVQEKVLDKKYKVSD KEIDNKLKEYKTQLGDQYTALEKQYGKDYLKEQVKYELLTQKAAKDNIKVTDADIKEYWEGLKGKIRASHI LVADKKTAEEVEKKLKKGEKFEDLAKEYSTDSSASKGGDLGWFAKEGQMDETFSKAAFKLKTGEVSDPVKT QYGYHIIKKTEERGKYDDMKKELKSEVLEQKLNDNAAVQEAVQKVMKKADIEVKDKDLKDTFNTSSTSNST SSSSSNSK

FeuA (61.51 %)

MKKISLTLLILLALTAAACGSKNESTASKASGTASEKKKIEYLDKTYEVTVPTDKIAITGSVESMEDAKL LDVHPQGAISFSGKFPDMFKDITDKAEPTGEKMEPNIEKILEMKPDVILASTKFPEKTLQKISTAGTTIPV SHISSNWKENMMLLAQLTGKEKKAKKIIADYEQDLKEIKTKINDKAKDSKALVIRIRQGNIYIYPEQVYFN STLYGDLGLKAPNEVKAAKAQELSSLEKLSEMNPDHIFVQFSDDENADKPDALKDLEKNPIWKSLKAVKED HVYVNSVDPLAQGGTAWSKVRFLKAAAEKLTQN

FeuB (38.32 %)

MYSKQWTRIILITSPFAIALSLLLSILYGAKHLS<u>TDIVFTSLIHFDPGNTDHQIIWHSR</u>IPRAAGALLIGA <u>ALAVSGALMQGITRNYLASPSIMGVSDGSAFIITLCMVLLPQSSSIEMMIYSFIGSALGAVLVFGLAAMMP</u> NGFTPVQLAIIGTVTSMLLSSLSAAMSIYFQISQDLSFWYSARLHQMSPDFLKLAAPFFLIGIIMAISLSK KVTAV<u>SLGDDISK</u>SLGQKKKTIKIMAML<u>SVIILTGSAVALAGKIAFVGLVVPHITR</u>FLVGSDYSRLIPCSC ILGGIFLTLCDLASRFINYPFETPIEVVTSIIGVPFFLYLIKRKGGEQNG

PbpC (56.14 %)

MLKKCILLVFLCVGLIGLIGCSKTDSPEDRMEAFVK<u>QWNDQQFDDMYQSLTK</u>DVKKEISKKDFVNRYKAIY EQAGVKNLK<u>VTAGEVDKDDQDNKTMKHIPYKVSMNTNAGKVSFKNTAVLKLEKTDDEESWNIDWDPSFIFK</u> QLADDKTVQIMSIEPKRGQIYDKNGKGLAVNTDVPEIGIVPGELGDKKEKVIKELAKKLDLTEDDIKKKLD QGWVKDDSFVPLKKVKPDQEKLVSEATSLQGVTRTNVSSRYYPYGEKTAHLTGYVRAITAEELKKKKEGTY SDTSNIGIAGLENVYEDKLRGTTGWKIYVPQTGEVIAEKKAKDGEDLHLTIDIKTQMKLYDELKDDSGAAV ALQPKTGETLALVSAPSYDPNGFIFGWSDKEWKKLNKDKNNPFSAKFNKTYAPGSTIKPIAAAIGIKNGTL KADEKKTIKGKEWQKDSSWGGYSVTRVSERLQQVDLENALITSDNIYFAQNALDMGADTFTKGLKTFGFSE DVPYEFFIQKSSIANDKLDSDILLADTGYGQGQMQMSPLHLATAYTPFVDNGDLVKPTLIKKDSQTADVWH KQVVTKEGAADITKGLKGVVEDERGSAYQPVVKGITVAGKTGTAELKTSKDDKDGTENGWFVGYDYENKDL LVAMMIQNVQDRGGSHYVVEKAKKQFQSN

DacA (63.66 %)

MNIKKCKQLLMSLVVLTLAVTCLAPMSKAKAASDPIDINASAAIMIEASSGKILYSKNADKRLPIASMTKM MTEYLLLEAIDQGKVKWDQTYTPDDYVYEISQDNSLSNVPLRKDGKYTVKELYQATAIYSANAAAIAIAEI VAGSETKFVEKMNAKAKELGLTDYKFVNATGLENKDLHGHQPEGTSVNEESEVSAKDMAVLADHLITDYPE ILETSSIAKTKFREGTDDEMDMPNWNFMLKGLVSEYKKATVDGLKTGSTDSAGSCFTGTAERNGMRVITVV LNAKGNLHTGRFDETKKMFDYAFDNFSMKEIYAEGDQVKGHKTISVDKGKEKEVGIVTNKAFSLPVKNGEE KNYKAKVTLNKDNLTAPVKKGTKVGKLTAEYTGDEKDYGFLNSDLAGVDLVTKENVEKANWFVLTMRSIGG FFAGIWGSIVDTVTGWF

DacC (26.27 %)

MKKSIKLYVAVLLLFVVASVPYMHQAALAAEKQDALSGQIDKILADHPALEGAMAGITVRSAETGAVLYEH SGDTRMRPASSLKLLTAAAALSVLGENYSFTTEVRTDGTLKGKKLNGNLYLKGKGDPTLLPSDFDKMAEIL KHSGVKVIKGNLIGDDTWHDDMRLSPDMPWSDEYTYYGAPISALTASPNEDYDAGTVIVEVTPNQKEGEEP AVSVSPKTDYITIKNDAKTTAAGSEKDLTIEREHGTNTITIEGSVPVDANKTKEWISVWEPAGYALDLFKQ SLKKQGITVKGDIKTGEAPSSSDVLLSHRSMPLSKLFVPFMKLSNNGHAEVLVKEMGKVKKGEGSWEKGLE VLNSTLPEFGVDSKSLVLRDGSGISHIDAVSSDQLSQLLYDIQDQSWFSAYLNSLPVAGNPDRMVGGTLRN RMKGTPAQGKVRAKTGSLSTVSSLSGYAETKSGKKLVFSILLNGLIDEEDGKDIEDQIAVILANQ

YxeB (60.19 %)

MKKNILLVGMLVLLLMFVSACSGTASKGSSSDSASEKTEMRTYKSPKGNVNIPAHPKRIVTDFYAGELLSV GANVVGSGSWSFDNPFLKSKLKNVKDVGDPISVEKVMELQPDLIVVMNEENVDKLKKIAPTVVIPYNTAKN VEDTVSMFGDIAGAKDQAKSFMADFNKKAEAAKKKIAGVIDKDATFGIYENTDKGEFWVFNDNGGRGGQAV YNALGLKAPEKIEQDVIKKGEMKQLSQEVIPEYAADYMFITDYNPKGESKTLDKLENSSIWKNLDAVKHNR VFINDFDSFYPYDPISVSKQVDIITDMLIKRAEEN

YwjA (36.17 %)

MLRQFFSYYKPYKTLFFLDFFSAIAGGLMELSFPLIVNYFIDTLLPGRDWGLIIATSIGLFAVYALSSALQ YIVTYWGHMLGINIETDMRKSLFDHLQKLSFKFYDNNKTGTLMSKLTNDLMYIGEVAHHGPEDLFIAVMTI LGAFGVMLFINWQLALLTFIIMPIVIWLALYFNKKMTKAFTTLNKDIGDFSARVENNIGGIRLVQAFGNEA FEKERFAVNNQRFRVTKLSSYKIMAKNGSISYMLTRFVTLFVLLCGTWFVIRGSLSYGEFVAFVLLTNVLF RPIDKINAIIEMYPRGIAGFKSYMELME<u>TEPDIQDSPDSKDVSGLKGNIRYK</u>HVSFGYDDHHNVLNDINLS I<u>QAGETVAFVGPSGAGKSTLCSLLPRFYEASEGDITIDGISIKDMTLSSLRGQIGVVQQDVFLFSGTLREN</u> IAYGRLGASEEDIWQAVKQAHLEELVHNMPDGLDTMIGERGVKLSGGQKQRLSIARMFLKNPSILILDEAT SALDTETEAAIQKALQELSEGRTTLVIAHRLATIKDADRIVVVTNNGIEEQGRHQDLIEAGGLYSRLHQAQ FGOMVHR

YknZ (8.8 %)

MSLLENIRMÁLSSVLAHKMRSILTMLGIIIGVGSVIVVVAVGQGGEQMLKQSISGPGNTVELYYMPSDEEL ASNPNAAAESTFTENDIKGLKGIEGIKQVVASTSESMKARYHEEETDATVNGINDGYMNVNSLKIESGRTF TDNDFLAGNRVGIISQKMAKELFDKTSPLGEVVWINGQPVEIIGVLKKVTGLLSFDLSEMYVPFNMMKSSF GTSDFSNVSLQVESADDIKSAGKEAAQLVNDNHGTEDSYQVMNMEEIAAGIGKVTAIMTTIIGSIAGISLL VGGIGVMNIMLVSVTERTREIGIRKSLGATRGQILTQFLIESVVLTLIGGLVGIGIGYGGAALVSAIAGWP SLISWQVVCGGVLFSMLIGVIFGMLPANKAAKLDPIEALRYE

YwbM (78.7 %)

MNFTKIAVSAGCILALCAGCGANDTSSTKEKASSEKSGVTKEITASVNKMETIISKLNDSVEKGDQKEIEK KGKELNSYWLSFENDIRSDYPFEYTEIEKHLQPIYTEAQKDKPDAGKIKTESESLKASLEDLTEAKKSGKK ASDQLAKAADEYKGYVKEQSDQLVKATEAFTGAVKSGDIEKSKTLYAKARVYYERIEPIAESLGDLDPKID ARENDVEEGDKWTGFHKLEKAIWKDQDISGEKATADQLLKDVKELDGSIQSLKLTPEQIVAGAMELLNEAG ISKITGEEERYSRIDLVDLMANVEGSEAVYQTVKSALVKDHSDLTEKLDTEFSEFEVLMAKYKTNDQSYTS YDKLSEKQIRELSTKLTTLSETMSKIANVL

YcdA (75.99 %)

MFQKKTYAVFLILLLMMFTAACSGSKTSAEK<u>KESETEKSSDIAQVKIKDVSYTLPSKYDKSTSDDQLVLK</u>V NVAVKNTGKDPLNVDSMDFTLYQGDTKMSDTDPEDYSEKLQGSTINADKSVEGNLFFVVDKGKQYELNYTP ESYGDKKPKSVTFKIDGKDKKILATADKLQDSAKALSAYVDVLLFGKDNADFEKITGANKNEIVNDFNESA KDGYLSASGLSSTYADSKALDNIVNGIKEGLSKNSSIQAKTTSISKDEAIVEATVKPVDASSLSDRIEDKV KDYYSKNSSASYEEAVKYALQVYPEEFKKLGPASSEKTVEVKMKKNDIDQWQLDMDDYRAAELVEAFIKE

YerH (55.05 %)

MKKTLALAATAAVLMLSACSSGFGGEKEEEITQKTAKSSEKAIVPKYNISDSYYKMVLPFKAGKARGLTTE QLNTRLDIDEFETGLMRLAQDSFSTDDYLFQEGQYLDEDTVLSWLARKKTGSDLKKAEKEDKNFKNEGLNP ALPSSGSTEEKNESSPIYLASMLEHDYLVRKDKNSIQLGGVMIGLALNSVYYYREKTGDPQKEVEIKDSTL RQQGEKIAQEVINRLRKKDNLKNVPITVALYKQASKTSIVPGNFIAKTEVKAGSTDISNWDDINEKYVFYP ADTTTAEKYPDDTEVFKRFKNSIEEYFPNYTGVVGTALYENDEMKKMKIDIPMQFYGKSEVVAFTQFLTGE VMDYYSKSSVDVEVNITSSDGQEAVIIRNAGDKEPTVHIYD

YufN (77.14 %)

MSLVÍAAGTILGACGNSEKSSGSGEGKNKFSVAMVTDVGGVDDKSFNQSAWEGIQAFGKENGLKKGKNGYD YLQSKSDADYTTNLNKLARENFDLIYGVGYLMEDSISEIADQRKNTNFAIIDAVVDKDNVASITFKEQEGS FLVGVAAALSSKSGKIGFVGGMESELIKKFEVGFRAGVQAVNPKAVVEVKYAGGFDKADVGKATAESMYKS GVDVIYHSAGATGTGVFTEAKNLKKEDPKRDVWVIGVDKDQYAEGQVEGTDDNVTLTSMVKKVDTVVEDVT KKASDGKFPGGETLTYGLDQDGVGISPSKQNLSDDVIKAVDKWKKKIIDGLEIPATEKELKTFKAE

AdcA (45.14 %)

MFKKWSGLFVIÄACFLLVAACGNSSTKGSADSKGDKLHVVTTFYPMYEFTKQIVKDKGDVDLLIPSSVEPH DWEPTPKDIANIQDADLFVYNSEYMETWVPSAEK<u>SMGQGHAVFVNASK</u>GIDLMEGSEEEHEEHDHGEHEHS HAMDPHVWLSPVLAQKEVKNITAQIVKQDPDNKEYYEKNSKEYIAKLQDLDKLYRTTAKKAEKK<u>EFITQHT</u> AFGYLAKEYGLKQVPIAGLSPDQEPSAASLAKLKTYAKEHNVKVIYFEEIASSKVADTLASEIGAKTEVLN TLEGLSKEEQDKGLGYIDIMKQNLDALKDSLLVKS

BdbD (74.32 %)

MKKKQQSSAKFAVILTVVVVVLLAAIVIINNKTEQGNDAVSGQPSIKGQPVLGKDDAPVTVVEFGDYKCPS CKVFNSDIFPKIQKDFIDKGDVKFSFVNVMFHGKGSRLAALASEEVWKEDPDSFWDFHEKLFEKQPDTEQE WVTPGLLGDLAKSTTKIKPETLKENLDKETFASQVEKDSDLNQKMNIQATPTIYVNDKVIKNFADYDEIKE TIEKELKGK

Qox2 (53.27 %)

MIFLFRALKPLLVLALLTVVFVLGGCSNASVLDPKGPVAEQQSDLILLSIGFMLFIVGVVFVLFTIILVKY RDRKGKDNGSYNPEIHGNTFLEVVWTVIPILIVIALSVPTVQTIYSLEKAPEATKDKEPLVVYATSVDWKW VFSYPEQDIETVNYLNIPVDRPILCKISSADSMASLWIPQLGGQKYAMAGMLMDQYLQADKVGTYEGRNAN FTGEHFADQEFDVNAVTEKDFNSWVKKTQNEAPKLTKEKYDELMLPENVDELTFSSTHLKYVDHGQDAEYA MEARKRLGYQAVSPHCKTDPFENVKKNEFKKSDDTEE

YxeM (50.38 %)

MKMKKWTVLVVÄALLAVLSACGNGNSSSKEDDNVLHVGATGQSYPFAYKENGKLTGFDVEVMEAVAKKIDM KLDWKLLEFSGLMGELQTGKLDTISNQVAVTDERKETYNFTKPYAYAGTQIVVKKDNTDIKSVDDLKGKTV AAVLGSNHAKNLESKDPDKKINIKTYETQEGTLKDVAYGRVDAYVNSRTVLIAQIKKTGLPLKLAGDPIVY EQVAFPFAKDDAHDKLRKKVNKALDELRKDGTLKKLSEKYFNEDITVEQKH

RbsB (29.51 %)

MKKAVSVILTLSLFLLTACSLEPPQWAKPSNSGNKKEFTIGLSVSTLNNPFFVSLKKGIEKEAKKRGMKVI <u>IVDAQNDSSKQ</u>TSDVEDLIQQGVDALLINPTDSSAISTAVESANAVGVPVVTIDR<u>SAEQGKVETLVASDNV</u> KGGEMAAAFIADKLGKGAKVAELEGVPGASATR<u>ERGSGFHNIADQKLQVVTKQSADFDR</u>TKGLTVMENLLQ GHPDIQAVFAHNDEMALGALEAINSSGKDILVIGFDGNKDALASIKDR<u>KLSATVAQQPELIGKLATEAADD</u> ILHGKKVQKTISAPLKLETQK

YkwC (89.24 %)

MKKTIGFIGLGVMGKSMASHILNDGHPVLVYTRTKEKAESILQKGAIWKDTVKDLSKEADVIITMVGYPSD VEEVYFGSNGIIENAKEGAYLIDMTTSKPSLAKKIAEAAKEKALFALDAPVSGGDIGAQNGTLAIMVGGEK EAFEACMPIFSLMGENIQYQGPAGSGQHTKMCNQIAIAAGMIGVAEAMAYAQKSGLEPENVLKSITTGAAG SWSLSNLAPRMLQGNFEPGFYVKHFIKDMGIALEEAELMGEEMPGLSLAKSLYDKLAAQGEENSGTQSIYK LWVK

YeeF (21.04 %)

MKVFEAKTLLSEATDRAKEYKELRTQMVNLRKALK<u>GVADLSDSEFSGK</u>GASNIKAFYTTNVGVADRWIDYI DMKIAFFNSIAGAAEDKGLSDAYIEESFLEHELANANKKSKSIMSEQKKAMKDILNDIDDILPLDLFSTET FKDELADANDKRKKTLEKLDALDEDLKTEYALSEPNEQFIKSDFQKLQEATGKGKNATPIHYNAKAYRESD IHKKRRHLKRRTEAYLKIKKEEAKEREIEKLKERLKNYDYADADEFYEMAKTIGYENLTAEQQRYFTQIEN TRELEAGFKGVAVGLYDSGKDAVVGLWDMVTDPGGTVEAITGAMAHPIKTYEAISAAIEESYQKDMVNGDT YSRAR<u>WVSYAVGTVVTSIVGTK</u>GVGAVSKTGTAAKVTTKVKTAASKSATAQKAITVSKQTVDHIKQKVNTG IEVSKKHVK<u>TKLNQIGDLTLADILPYHPR</u>HDLVPAGVPYNAVNGVTLKEGLQKFAKVILPKPYGTSSSGRR TPAPHVPPVTVKYGEHFARWSRKKVLKPNIIYKTKEGYTYTTDNYGRITSVKADLQLGEAKRNQYAQTNAG KPQDRKPDDDGGHLIATQFKGSGQFDNIVPMNSQINRSGGKWYEMEQEWAKALSKKPPKKVAVQIEPVYSG DSLRPSYFDVTYKIGSRKEISVSIKISLGVRRMETRKMQDLYQLIGEKLNDIIPGEWTKIYLYAEVLDDST MVLFHFRTPENNQIIYSQDIPSHYNVSKDIFKTLLRELFEELRTEHRNNNDDVWTNLTLTLDRSGEFQ LDYNYDDILASELDGYERIAIWEYKNLGILPEDEDDKEFVISYLGL

YpuA (36.21 %)

MKKIWIGMLAAAVLLLMVPKVSLADAAVGDVIVTLGADLSESDKQK<u>VLDEMNVPDNATTVTVTNKEEHEYL</u> GKYISNAQIGSRAISSSSITIAKKGSGLNVETHNISGITDEMYLNALMTAGVKDAK<u>VYVTAPFEVSGTAAL</u> TGLIKAYEVSSDEAISEDVKQVANQELVTTSELGDKIGNENAAALIAKIKEEFAKNGVPDNKADIEKQVDD AASDLNVTLTDSQKNQLVSLFNKMK<u>NADIDWGQVSDQLDK</u>AKDKITKFIESDEGKNFIQKVIDFFVSIWNA IVSIFK

Table S2: Strain list.

Strain	Genotype	Reference		
Bacillus subtilis				
DL1	Wild type (NCIB3610)	(Branda <i>et al.</i> , 2001)		
DL2	Wild type 168	(Moszer <i>et al</i> ., 2002)		
DL7	∆eps::tet ∆tasA::km	(Lopez <i>et al.</i> , 2009c)		
DL1308	∆ftsH::km	This study		
DL1315	∆ftsH::tet	(Zellmeier <i>et al.</i> , 2003)		
DL1211	∆floT::km	(Lopez & Kolter, 2010)		
DL1442	∆floT::spc	This study		
DL1401	∆yqfA::mls	(Lopez & Kolter, 2010)		
JS119	$\Delta floT$ (markerless)	This study		
JS152	$\Delta yqfA$ (markerless)	This study		
AY93	ΔfloT::spc, ΔyqfA::mls	This study		
DL1419	ΔfloT::km ΔyqfA::mls	This study		
JS163	$\Delta floT \Delta y q fA$ (markerless)	This study		
BM59	amyE:: Pho-floT (spc) lacA::Pho-yqfA (mls)	This study		
BM28	amyE:: Pho-floT (spc)	This study		
BM26	lacA::Php-yqfA (mls)	This study		
DL147	∆kinC::km	(Lopez et al., 2009a)		
DL227	∆kinC::mls	(Lopez et al., 2009a)		
DL1295	amyE:: FloT-YFP (spc)	(Lopez & Kolter, 2010)		
DL1367	amyE::YqfA-GFP (spc)	This study		
AY224	lacA::P _{hp} -FtsH-RFP (<i>mls</i>)	This study		
AY225	lacA::P _{ftsH} -FtsH-RFP (<i>mls</i>)			
DL1565	Δ <i>floT</i> Δ <i>yqfA</i> (markerless) <i>lacA</i> ::FtsH-RFP (<i>mls</i>)	This study		
AY238	amyE::YqfA-GFP (spc) lacA:: FtsH-RFP (mls)	This study		
AY240	amyE::FloT-YFP (spc) lacA:: FtsH-RFP (mls)	(Lopez & Kolter, 2010)		
DL1056	lacA::P _{hag} -cfp (mls)	(Vlamakis et al., 2008)		
DL382	amyE::P _{tapA} -yfp (spc)	(Vlamakis et al., 2008)		
DL1089	amyE::P _{sspB} -ytp (spc)	(Vlamakis et al., 2008)		
DL1079	amyE::P _{tapA} -yfp (spc) lacA::P _{hag} -cfp (mls)	(Vlamakis <i>et al.</i> , 2008)		
DL1521	ΔftsH::km amyE::P _{tapA} -ytp (spc) lacA::P _{hag} -ctp (mls)			
DL1523	$\Delta ftsH::km amyE::P_{hp}ftsH(spc) thrC::P_{tapA}-ytp (cm)$	This study		
DI 4400	IacA::P _{hag} -ctp (mis)	This shude		
DL1433	$\Delta \pi s H :: km amy E :: P_{ftsH} \pi s H (spc)$			
DL1361	$\Delta fish: km amy E:: P_{hp} - \pi sH (spc)$	I his study		
DL1568	ΔftsH::km amyE::P _{hp} -FtsH-RFP (spc)			
DL1349	ΔftsH::km amyE::P _{hp} -ftsH (spc)	This study		
DL1404	ΔftsH::km amyE::P _{hp} -FtsH-RFP (spc)	This study		
DL1461	ΔftsH::km amyE::P _{hp} -ftsH (spc) lacA::P _{tapA} -yfp (mls)	This study		
DL1364	∆ftsH::km amyE::P _{hp} -ftsH (spc) lacA::P _{sspB} -yfp (mls)	This study		
DL383	∆abrB::km	(Chu et al., 2008)		
DL5	∆sinR::spc	(Branda <i>et al.</i> , 2006)		
DL1148	amyE::sad67 (cm)	(Ireton <i>et al.</i> , 1993)		
DL1362	∆ftsH::tet ∆abrB::km	This study		
DL1360	∆ftsH::km ∆sinR::spc	This study		
DL1363	∆ftsH::km amyE::sad67 (cm)	This study		
DL1372	Δ floT::spc Δ yqfA::mls Δ abrB::km	This study		
DL1374	∆floT::km ∆yqfA::mls ∆sinR::spc	This study		

DL1375	ΔfloT::spc ΔyqfA::mls amyE::sad67 (cm)	This study		
DL1365	ΔfloT::km ΔyqfA::mls, amyE::sad67 (cm)	This study		
DL1430	∆rapA::cm ∆rapB::spc ∆rapE::mls ∆spo0E::km	This study		
DL1554	$\Delta floT \Delta yqfA$ (markerless) $\Delta rapA::cm \Delta rapB::spc,$	This study		
	Δ rapE::mls Δ spo0E::km			
JS201	∆ <i>yuaG</i> (markerless) <i>amyE</i> ::P _{hp} -FloT-His ⁶ (<i>spc</i>)	This study		
JS202	∆ <i>yqfA</i> (markerless) <i>amyE</i> ::P _{hp} -YqfA-His ⁶ (<i>spc</i>)	This study		
Other species used in this work				
DL1128	Staphylococcus aureus wild type SC-01	(Beenken <i>et al.</i> , 2003)		
DL95	Escherichia coli DH5 $lpha$	(Reusch <i>et al.</i> , 1986)		
DL127	<i>Escherichia coli</i> DH5 α pBR322 P _c -gfp	This study		
JC163	Escherichia coli DH5 $lpha$ pBR322 P $_c$ -rfp	This study		
DL1205	Pseudomonas aeruginosa PA14	(O'Toole & Kolter, 1998)		

Abbreviations

Antibiotics

- Encodes erythromycin + lincomycin resistance protein mls
- Encodes kanamycin resistance protein kт
- Encodes chloramphenicol resistance protein ст
- Encodes tetracycline resistance protein tet
- Encodes spectinomycin resistance protein spc

Protein tags

- GFP Green fluorescent protein
- YFP Yellow fluorescent protein
- RFP Red fluorescent protein
- His⁶ Six histidines

Promoters

- P_{hp} Hyperspank IPTG-inducible promoter
- P_c Constitutive promoter PftsH Natural promoter that controls the expression of ftsH
- PtasA Natural promoter that controls the expression of tasA
- PsspB Natural promoter that controls the expression of sspB
- Phag Natural promoter that controls the expression of hag

Table S3: Primer list.

Name	Sequence (5'-3')	Purpose
AY84B	ATGGTGAGCAAGGGCGAGGAGG	Forward RFP
AY85B	TTTTTGCTAGCTTACTTGTACAGCTCG	Reverse RFP
AY82	TTTTTTGTCGACATGGTACTATTGAACATAGTTGTG	Forward FtsH
AY83B	ATCCTCCTCGCCCTTGCTCACCATCTCTTTCGTATCGTCTTTC	RFP tail
AY132	TGCTAAGCTTACATAAGGAGGAACTACTATGACAATGCCGATTAT	Forward FloT
AY133	ATCCTCCTCGCCCTTGCTCACCATCTCTGATTTTTGGATCGTTT	Reverse FloT (LFH) RFP
AY134	TTTTTGGATCCTTACTTGTACAGCTCGTCCAT	Reverse RFP (BamH1)
Ftshfwsal	AAAAGTCGACATGGTACTATTGAACATAGTTGT	Forward IPTG-controlled FtsH
Ftshrvsph	AAAAGCATGCTGATTGTAAAAGCCGCAGC	Reverse IPTG-controlled FtsH
Pftshfw	TTTTGAATTCAACGAGCGAGTATCAAGATACA	Forward Promoter ftsH
Pftshrv	TTTTAAGCTTTCCTTACCTCCTCCCACAGT	Reverse Promoter ftsH
Ftsh1	CAGCGACCGCATTGTATT	<i>∆ftsH</i> cassette
Ftshkm2	CCTATCACCTCAAATGGTTCGCTGCCGATCAGCTTTCATAA	<i>∆ftsH</i> cassette
Ftshtet2	GAGAACAACCTGCACCATTGCAAGATGCCGATCAGCTTTCATAA	∆ <i>ftsH</i> cassette
Ftshkm3	CGAGCGCCTACGAGGAATTTGTATGCTGCCAAGAGAAGACCGTT	∆ <i>ftsH</i> cassette
Ftshtet3	GGGATCAACTTTGGGAGAGAGTTCTATGCTGCCAAGAGAAGACCG	∆ <i>ftsH</i> cassette
	TT	
Ftsh4	AGCTTTGCTGCACGCGA	<i>∆ftsH</i> cassette
AY86	ATTTGCAGCATATCATGGCGTG	∆ <i>pbpE</i> cassette
AY87	CTTGATAATAAGGGTAACTATTGCCCCTCCACCTCCATATCTCTG	∆ <i>pbpE</i> cassette
AY88	GGGTAACTAGCCCTCGCCGGTCCACGAAAGGAATGAATGA	∆ <i>pbpE</i> cassette
	ATGATCGG	
AY89	AGCTTTGATAAGCAAGATATGTG	∆ <i>pbpE</i> cassette
JS15	TTTTGGATCCCCATTTSTAAAGCACTTCAAATGG	Flotfw1
JS16	AGTTACCATACGGTTCTGCCCCAAATTCCTCCTCCTTTTTATGTAAA	Flotrv2
	ATG	
JS17	GGGCAGAACCGTATGGTAACTG	Flotfw3
JS18	TTTTGTCGACCTTTAACTTATAATGCGACTTAC	Flotrv4
JS19	TTTTGGATCCCCAGATCAGCTATGCAAAGGAG	Yqfafw1
JS21	GCGTTCTCCCTTCTTAGAGAGGTTGACGGACCCATATAACTTC	Yqfarv2
JS22	CTCTCTAAGAAGGGAGAACGC	Yqfafw3
JS39	TTTTGTCGACCAGATATGATGCAGTGGCCCTG	Yqfarv4
BM5	AAAAGTCGACTAAGGAGGAACTACTATGACAATGCCGATTATAAT	Forward IPTG-controlled FloT
BM6	AAAAGCATGCTTACTCTGATTTTTGGATCG	Reverse IPTG-controlled FloT
BM7	AAAAGTCGACTAAGGAGGAACTACTATGGATCCGTCAACACTTA	Forward IPTG-controlled YqfA
BM8	AAAAGCATGCTTATGATTTGCGGTCTTCAT	Reverse IPTG-controlled YqfA
JS44	AAAAGCATGCTTAGTGATGATGATGATGATGGCTGCTCTCTGATTT TTGGATCG	FloT Reverse (His6)
JS45	AAAAGCATGCTTAGTGATGATGATGATGATGGCTGCTTGATTTGCG GTCTTCAT	YqfA Reverse (His6)

Reference list

- Beenken, K. E., J. S. Blevins & M. S. Smeltzer, (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. *Infect Immun* **71**: 4206-4211.
- Branda, S. S., F. Chu, D. B. Kearns, R. Losick & R. Kolter, (2006) A major protein component of the Bacillus subtilis biofilm matrix. *Mol Microbiol* **59**: 1229-1238.
- Branda, S. S., J. E. Gonzalez-Pastor, S. Ben-Yehuda, R. Losick & R. Kolter, (2001) Fruiting body formation by Bacillus subtilis. *Proc Natl Acad Sci U S A* 98: 11621-11626.
- Chu, F., D. B. Kearns, A. McLoon, Y. Chai, R. Kolter & R. Losick, (2008) A novel regulatory protein governing biofilm formation in Bacillus subtilis. *Mol Microbiol* 68: 1117-1127.
- Ireton, K., D. Z. Rudner, K. J. Siranosian & A. D. Grossman, (1993) Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. *Genes Dev* **7**: 283-294.
- Lopez, D., M. A. Fischbach, F. Chu, R. Losick & R. Kolter, (2009a) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. *Proc Natl Acad Sci U S A* **106**: 280-285.
- Lopez, D. & R. Kolter, (2010) Functional microdomains in bacterial membranes. *Genes Dev* 24: 1893-1902.
- Lopez, D., H. Vlamakis, R. Losick & R. Kolter, (2009b) Cannibalism enhances biofilm development in Bacillus subtilis. *Mol Microbiol* **74**: 609-618.
- Lopez, D., H. Vlamakis, R. Losick & R. Kolter, (2009c) Paracrine signaling in a bacterium. *Genes Dev* 23: 1631-1638.
- Moszer, I., L. M. Jones, S. Moreira, C. Fabry & A. Danchin, (2002) SubtiList: the reference database for the Bacillus subtilis genome. *Nucleic Acids Res* **30**: 62-65.
- O'Toole, G. A. & R. Kolter, (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. *Mol Microbiol* **30**: 295-304.
- Reusch, R. N., T. W. Hiske & H. L. Sadoff, (1986) Poly-beta-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol 168: 553-562.
- Vlamakis, H., C. Aguilar, R. Losick & R. Kolter, (2008) Control of cell fate by the formation of an architecturally complex bacterial community. *Genes Dev* 22: 945-953.
- Zellmeier, S., U. Zuber, W. Schumann & T. Wiegert, (2003) The absence of FtsH metalloprotease activity causes overexpression of the sigmaW-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. *J Bacteriol* **185**: 973-982.