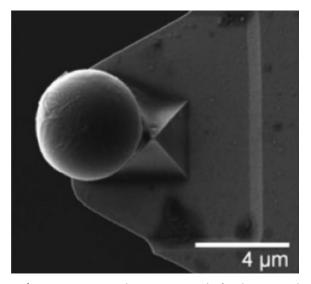
RESEARCH REPORTS

Biomaterials and Bioengineering


D. Vukosavljevic¹, J.L. Hutter², E.J. Helmerhorst³, Y. Xiao¹, W. Custodio¹, F.C. Zaidan¹, F.G. Oppenheim³, and W.L. Siqueira^{1*}

¹Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N5A 6C1, Canada; ²Department of Physics & Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada; and ³Goldman School of Dental Medicine, Boston University, Boston, MA, USA; *corresponding author, walter.siqueira@uwo.ca

J Dent Res DOI: 10.1177/0022034514526599

Nanoscale Adhesion Forces between Enamel Pellicle Proteins and Hydroxyapatite

APPENDIX

Appendix Figure. Scanning electron micrograph of a silica microsphere (~5 μ m) attached to the atomic force microscopy (AFM) cantilever tip after being used for adhesion measurements. Note: Protein functionalized silica microsphere remained attached to the AFM cantilever even after more than 3,000 force-distance curve acquisitions were carried out.