Syntheses and analyses of conjugates 1 and 4

General

Where anhydrous solvents were required for reactions, MeOH and DMF were purchased (anhydrous) and used as received. DCM was doubly distilled (over CaH₂) before use and THF was obtained anhydrous and was used without further drying. All other solvents were dried using appropriate drying reagents. Fine chemicals were purchased from Aldrich-, Sigma- or Acros-Chemicals and were of the highest purity available. Reactions were monitored via thin layer chromatography (TLC) using pre-coated silica sheets with fluorescent indicator UV_{254} . Compound detection was achieved by UV absorption and by developing plates by staining with a molybdenum phosphate reagent (20 g ammonium molybdate and 0.4 g cerium^(IV) sulfate in 400 mL of 10% aqueous sulphuric acid) with subsequent heating.

Chromatographic purification was performed using silica gel 60A 'Davisil' (particle size $35-70\mu$ m) from Fisher Scientific, UK and silica gel 100 C18 reversed phase (particle size $40-63\mu$ m from Fluka Analytical, UK. Silica-based MPLC chromatography was carried out on the Büchi Sepacore system equipped with glass columns packed with LiChroprep Si 60 (15-25µm) from Merck, Darmstadt, Germany. Solvents for chromatography were used as received except for toluene and ethyl acetate, which were distilled before use. Gel permeation chromatography was carried out in the 1-10 mg scale on a XK 16/70 column (bed volume 130 mL), from Amersham packed with Sephadex G-10 (particle size $40-120\mu$ m) and 0.1 M NH₄HCO₃ as buffer. Detection was achieved using a differential refractometer from Knauer, Berlin, Germany.

¹H NMR, ¹³C NMR, ³¹P NMR and all multidimensional spectra were recorded on Varian VNMRS spectrometers (600 MHz, 500 MHz or 400 MHz). Chemical shifts in ¹H and ¹³C NMR spectra were referenced to the residual proton resonance of the respective deuterated solvents, $CDCl_3$ (7.26 ppm), D_2O (4.80 ppm) and CD_3OD (3.31 ppm) respectively. For ³¹P NMR spectra H₃PO₄ was used as external standard (0 ppm).

HR-ESI-MS spectra were recorded on a Bruker Daltonics Apex III in positive mode with MeOH and/or H_2O as solvent. Where possible, HR-ESI-MS has been used to characterise compounds which have been synthesised.

Target compound phospha-oseltamivir-biotin conjugate 1

Under an atmosphere of dry nitrogen, protected biotin-conjugate **4** (26 mg, 0.019 mmol) was dissolved in THF (1.5 mL), NEt₃ (0.37 mL, 0.27 mmol) and thiophenol (0.016 mL, 0.133 mmol) were added and the mixture was stirred for 48 h at room temperature. The same amounts of NEt₃ and thiophenol were added and strirring was continued for another 24 h when tlc indicated completion of the reaction. The solvents and reagents were removed *in vacuo* and the resulting crude product was taken up in water (2 mL), sonicated and filtered. The demethylated intermediate was purified by gel

permeation chromatography (0.1 M NH₄HCO₃) as detailed in ref. 6, and the resulting 13 mg (51%) were stirred in a solution of TFA/H₂O (1:1) (1 mL) overnight. The solvent was then evaporated *in vacuo* and the residue was purified again by gel permeation chromatography (0.1 M NH₄HCO₃) to afford target compound **1** (8 mg, 66%).

¹H NMR (600 MHz, D₂O) δ_{H} : 0.89 – 1.00 (6 H, m, -OCH(CH₂C<u>H₃</u>)₂), 1.42 – 1.76 (18 H, bm, -OCH(C<u>H₂CH₃</u>)₂, -C(O)CH₂-C<u>H₂-CH₂-CH₂-, -OCH₂C<u>H₂CH₂CH₂CH₂CH₂CH₂NH-</u>), 2.13 (3 H, s, -NHCOC<u>H₃</u>), 2.27, (2 H, m, -C(O)<u>CH₂-</u>), 2.48, 2.59 (2 H, m, H_{6ax}, H_{6eq}), 2.85, 3.02 (2 H, d, dd, J = 13.1 Hz, J = 5.0, 13.2 Hz, -S-<u>CH₂-</u>), 3.25 (1H, OC<u>H</u>(CH₂CH₃)₂, 3.42-3.45 (3 H, -CH₂C<u>H₂NH-, -S-CH-</u>), 3.66 – 3.72 (4 H, m, -OCH₂C<u>H₂NHCO-, NHCOCH₂CH₂O-), 3.74-3.77 (44H, -O(CH₂CH₂)₁₁O-), 3.79-3.90 (6H, m, -O<u>CH₂CH₂NHCO-, -NHCOCH₂C<u>H₂O-</u>, H₄, H₅), 3.98 (1H, m, H₃), 4.27 (2 H, m, -OC<u>H₂CH₂-), 4.49 (1 H, m, -S-CH-CH-NHCO-), 4.67 (1 H, -S-CH₂-C<u>H</u>-NHCO-), 6.37 (1 H, d, J_{P-2} = 19.06 Hz, H₂).</u></u></u></u>

¹³C NMR (150.8 MHz, D₂O) δ_C: 8.93, 9.01 (-OCH(CH₂<u>C</u>H₃)₂), 22.72 (-NHCO<u>C</u>H₃), 25.12, 25.52, 25.59, 25.94, 26.12, 28.07, 28.25, 28.59, (3 biotin-C, -OCH₂CH₂<u>C</u>H₂<u>-C</u>H₂CH₂NH-, -OCH(<u>C</u>H₂CH₃)₂), 30.26 (-OCH₂<u>C</u>H₂-), 35.83 (C-biotin), 36.51 (C₆), 39.63 (2 C-biotin), 49.6 (d, C5), 53.52 (C4), 55.73, 60.62, 62.45 (3C-biotin), 65.68, 67.23, 68.31, 69.26, 69.65, 69.79, 69.88, 70.03 ($-OCH_2CH_2O-$, OCH_2CH_2NHCO- , $POCH_2-$, $-NHCOCH_2CH_2-$), 76.28 (C3), 84.51 ($-OCH_1CH_2CH_3$)₂), 130.0 (C₁), 136.45 (C₂), 166.68 (-NH-<u>C</u>(O)-NH-), 175.12 (-NH<u>C</u>OCH₃), 175.53 (-CH₂-<u>C</u>(O)NH-CH₂-), 177.25 (-NH<u>C</u>OCH₂CH₂).

³¹P NMR (242.7 MHz, MeOH-D₄) δP: 13.13 (s).

HR-ESI-MS (m/z) calculated for $C_{56}H_{105}N_6O_{20}PS$ [M+H]⁺ 1246.65, found 1246.6960.

Protected phospha-oseltamivir-biotin conjugate 4

Under an atmosphere of dry nitrogen, azide 3^{6} (29 mg, 0.052 mmol) was was dissolved in dry THF (1 mL) and PMe₃ (1 M stock solution in THF, 68 µL) was added dropwise with stirring. When the indicated the absence of starting material (~ 4h), the reaction was quenched with deionised water (0.5 mL) and the mixture was stirred for an additional 30 minutes. The solvent was then removed *in vacuo* and the crude product was placed on a short silica plug (DCM/MeOH; 10:1 +3% NEt₃) to give the respective amine without additional purification. d-Biotin (51 mg, 0.060 mmol) and PyBOP (32 mg, 0.062 mmol) were dried *in vacuo* and then placed under an N₂ (g) atmosphere. Dry DMF (1 mL) was then added followed by DIPEA (16 µL, 0.0974 mmol). The reaction flask was then sonicated briefly and cooled to 0 °C (ice-bath). After a few minutes the isolated amino-conjugate (23 mg, 0.0487 mmol) was dissolved in dry DMF (1 mL) and was added dropwise to the stirring d-Biotin solution. The solution was allowed to warm slowly to room temperature overnight after which time TLC indicated the reaction was complete. The solvent was evaporated *in vacuo* and then purified by flash

chromatography (EA/MeOH; 1:2 + 2% AcOH) to give protected target compound **4** (46 mg, 56%). R_f : 0.4 (EA/MeOH; 1:2 + 2% AcOH).

¹H NMR (500 MHz, MeOH-d₄) δ_{H} : 0.84, 0.96 (6 H, 2t, J = 7.4 Hz, -OCH(CH₂CH₃)₂), 1.43 (9 H, s, -NHCOC(CH₃)₃), 1.34 – 1.78 (18 H, bm, -OCH(CH₂CH₃)₂, -C(O)CH₂-NHCO-), 6.57 (1 H, d, J_{P-2} = 22.0 Hz, H₂).

¹³C NMR (151 MHz, MeOH-d₄) δ_{C} : 9.71, 10.02 (-OCH(CH₂<u>C</u>H₃)₂), 23.05 (-NHCO<u>C</u>H₃), 26.43, 26.86, 26.93, 29.60, 29.86, 30.37 (C(O)CH₂-<u>C</u>H₂-<u>C</u>H₂-<u>C</u>H₂-, -OCH₂CH₂-<u>C</u>H₂-<u>C</u>H₂-<u>C</u>H₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-NH-), 27.36, 27.53 (-OCH(<u>C</u>H₂CH₃)₂), 28.81 (-NHCOC(<u>C</u>H₃)₂), ~31.4 (d, J = 5.9 Hz, -OCH₂<u>C</u>H₂-), 32.1, 36.86, 40.23 (-CH₂<u>C</u>H₂NH-, biotin-C, C₆), 41.07 (biotin-C,), 50.4 (C5), 53.4 (d, J = 5.8 Hz, - P(OC<u>H₃</u>)₂), 56.60 (m, C4), 57.08, 61.70, 63.45 (biotin-C), 67.84, 68.29, 70.68, 71.39, 71.41, 71.51, 71.56, 71.62, 71.64 (-O<u>C</u>H₂<u>C</u>H₂O-, (-O<u>C</u>H₂CH₂NH-, -PO<u>C</u>H₂-, -NHCOCH₂<u>C</u>H₂-), 77.4 (C3), 80.39 (-NHCO<u>C</u>(CH₃)₂), 83.89 (-O<u>C</u>H(CH₂CH₃)₂), 144.32 (C2), 157.97 (-NH<u>C</u>OC(CH₃)₂), 166.15 (-NH-<u>C</u>(O)-NH-), 173.88 (-NH<u>C</u>OCH₃), 176.18 (-CH₂-<u>C</u>(O)NH-CH₂-).

³¹P NMR (161.7 MHz, MeOH-d₄) δ P: 19.00 (s).

HR-ESI-MS (m/z) calculated for $C_{62}H_{115}N_6O_{22}PS$ [M+Na]⁺ 1381.75, found 1381.7471.

NMR-Spectra

1H-NMR Spectrum Compound 1

13C-NMR Spectrum Compound 1

31P-NMR Spectrum Compound 1

1H-NMR Spectrum Compound 4

13C-NMR Spectrum Compound 4

31P-NMR Spectrum Compound 4

