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Figure S1 [related to Figure 1]: Proportion of riskier choices taken as a function of relative value of
the riskier choice (Vriskier-Vsafer) in trials with little or no optimal risk bonus scaling (blue line in figure
1D). Vyiskier and Viarer were calculated as either the sum (left) or the product (right) of the options’
reward magnitudes and probabilities.
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Figure S2 [related to Figure 1]: overall correlations (r2) between all regressors at the decision stage.
The highest correlation is between the conceptually related factors of risk bonus and risk pressure.
However, because risk bonus contains model based information about the optimal consequences of the
risk pressure context on the evaluation of two specific choice options it is not confounded with the risk
pressure itself.
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Figure S3 [related to Figure 2]: A) Behavioral general linear model including both risk pressure and
risk bonus. Although much of the behavioral variance is captured by including risk pressure as a
regressor, risk bonus has a further and significant influence on behavior. (** p<0.01). lllustration of
the results of decision sequences through the rest of a mini-block and calculation of optimal risk bonus
scaling for an example trial. B and C) Histograms showing the probability distribution of block
outcomes for two specific decision sequences (for illustrative purposes with a 20 point smoothing to
represent uncertainty about precise final state). We considered only the part of the distribution that
falls above the target level to calculate the expected value of a decision sequence, multiplied with a
constant dependent on target level. The histogram in B) is based on the decision sequence with the
maximal expected value for that trial, and therefore the one with the optimal risk bonus scaling, while
the histogram in C) is based on the decision sequence suggested by the raw values of the choices. Note
the difference in distribution ratio that falls to the right of the yellow target line. D) A plot showing the
expected values of all unique decision sequences suggested by different risk bonus scaling values for a
given trial. In this example a risk bonus scaling of around 0.18 is optimal.
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Figure S4 [related to Figure 2]: A) The relationship between a trial’s risk pressure and the optimal
risk bonus scaling (as determined using the maximal expected value at the end of a block depicted in
Figure S3). There is a clear relationship between both quantities although it is non-linear and not one-
to-one in nature. A number of risk pressure levels entail no need to move towards a more risk-oriented
decision strategy, whereas relatively small variations in high risk pressures should lead to quite large
changes in the optimal risk bonus scaling and therefore predicted changes towards a more risk-
oriented decision strategy. B) Overall proportion of riskier choices as well as a breakdown of decisions
into four categories. Model conforming / opposing riskier and safer (lines indicate individual subjects).
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Figure S5 [related to Figure 4]: Posterior cingulate cortex (PCC) for all decisions. A) Activity
increased with the relative value of the riskier choice (Vyiskier-Vsarer) as in the dACC. B) However, PCC
also activated when the risk bonus was reduced as did vmPFC. Time-course of the ventral striatum at
decision split by choice (riskier or safer). C) The relative value of riskier choice (Vrisier-Vsafer) only
activated the ventral striatum when it was chosen. D) The reduction of the risk bonus activated the
ventral striatum only when the safer choice was taken.
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Figure S6 [related to Figure 5]: In vmPFC there was no effect of the overall expected value at the
end of the block as estimated by our model (left), nor was there any effect of the difference in the
block’s expected value as a function of the current choice being taken and the alternative choice

(right).
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Figure S7 [related to Figure 8]: A) The ventral striatum was more sensitive to rewards after taking
the riskier choice than after taking the safer choice. It only encoded Viiskier-Vsafer when the riskier choice
was taken and decreasing risk bonus when the safer choice was taken). B) Physiological psychological
interaction (PPI) analysis based on the time course of vmPFC activity from the ROl in figure 3A and
inverse risk pressure [we used the inverse of the risk bonus regressor because vmPFC had been shown
to be inversely related to the risk bonus in an earlier analysis (fig3A). Both, ventral striatum and
pgACC (as opposed to dACC) exhibited higher functional connectivity with vmPFC when risk pressure
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was eased during the decision period. C) PPl between the ventral striatum and dACC (point of group
peak activation related to Vyisier-Vsafer (S€e figure 4). Note that the functional connectivity only changes
as a function of Viiskier-Vsafer When the riskier choice is taken. D) PPI between the ventral striatum and
the vmPF(C region from figure 3A. The vmPFC region was more active with decreasing risk bonus and
it was also more coupled with the ventral striatum.
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Figure S8 [related to Figure 8]: A) The proposed network involved in generation of decisions in favor
of the riskier choice. The three key brain areas, vmPFC, dACC, and PCC are indicated and the decision
variable that was prominent in each area during the task is summarized. The brighter green font
indicates that a negative risk bonus signal (mostly a negative effect on trials with a positive risk
bonus) was present in vmPFC and this was associated with increased coupling with PCC when the safer
choice was taken; in other words, as the risk bonus decreased, coupling of vmPFC with PCC increased
when the safer choice was made. The paler red writing indicates that the signal representing the
relative value of the riskier choice (Viiskier-Vsafer) in dACC was not coupled with the PCC in the same
decisions. B) The network for the generation of riskier choices. Now the brighter red font indicates
that the PCC is more coupled with dACC, compared to vmPFC, as a function of Viiskier-Vsaer and left IFG
activity.



Contrast Z-coordinates MNI | Label
(mm)
Viiskier-Vsafer 12,34,54 Right DLPFC
54,-60,38 Right PPC
0,-34,40 PCC
-50-64 38 Left PPC
-2,28,36 dACC
Choiceriskier- -2,34,36 dAcCC
Choicesafer
52,24,4 Right IFG
-28,24,-8 Left anterior insula
-48,30,-8 Left IFG

Table 51 [related to Figure 4]: List of peak activations for the corrected significant clusters for the
whole brain contrasts.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

To induce variability in choices, we used four different target levels (595, 930, 1035, 1105 points)
and a block length of eight trials [the pairs of options associated with each decision each had a
reward magnitude in points, and a reward probability (indicated as percentage): 100p x 90% vs
265p x 35%; 180p x 60% vs 260p x 35%; 145p x 75% vs 245p x 35%; 145p x 55% vs 350p x
20%; 115p x90% vs 240p x 45%; 150p x 60% vs 190p x 45%; 170p x 75% vs 245p x 40%; 120p x
80% vs 210p x 30%]. With increasing target level the overall chances of exceeding the required
points in a block decreased. In parallel, the optimal number of riskier choices, as predicted by our
model, increased. The target levels used led to a good spread in the number of optimal riskier
decisions (1-4 riskier decisions) predicted at the beginning of a block and thus to a good spread of
the model parameter “optimal risk bonus scaling”.

To ensure that the overall expected value of all blocks was the same even if the target levels
were different, we introduced a multiplier that scaled the points earned when participants were
successful and reached or exceeded the target at the end of the block. The multipliers for the four
target levels were: target level of 595 points - 1.1 multiplier; target level of 930 points - 2.3
multiplier; target level of 1035 points - 3.3 multiplier, 1105 points - 4.2 multiplier. We presented
participants with the same eight decisions in all blocks. Hence, we reduced variability between
blocks that was due to features of the choices per se. Additionally we decorrelated the decision
parameters (reward probability, reward magnitude, value of option, difference between values) as
much as possible to be able to use them as separate regressors simultaneously in the fMRI analysis.
Moreover, the Pascalian values (probability x magnitude) of six of the eight decisions favored the
safer choice. This meant that because variation in the target parameter drove decisions towards the
riskier choice, participants’ behavior would exhibit an approximate balance between both safer and
riskier choice decisions, which ensured sufficient sample sizes of both decision types for fMRI
analysis.

The fMRI scan took approximately 55 minutes and was followed by a high-resolution
structural scan and a field map acquisition for distortion adjustments. After scanning every subject
completed a brief subjective rating questionnaire on the ‘riskiness’ of the eight decisions that had
been presented in the fMRI task.

Trial time-course: Each trial started with the presentation of the safer and riskier choice options.
After 3-4 seconds (Poisson distributed), a response cue (yellow question mark) indicated
participants should make their decision (Figure 1A). The response cue stayed on until participants
made a response using a button box. Reaction time (RT) was registered, defined as the time period
between onset of the response cue and button press. We refer to the time period from the
presentation of the decision to when participants made their choice as the decision phase. After a
variable jitter of 3-7 seconds (Poisson distributed), in which the chosen option was highlighted on
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the screen, feedback on both options was presented for 1-3 seconds (Poisson distributed). If the
participant’s choice was rewarded, then the points earned were graphically “added” to the “current
points” bar (Figure 1A) indicating the amount of points gained so far in the block. We refer to this
last time period in a trial as the feedback/outcome period.

An average trial took about 12 seconds and the inter-trial interval was jittered between 3
and 7 seconds (Poisson distributed). Within a block, each trial followed the previous one until the
last trial of the block was reached. Afterward, a block outcome screen appeared for 4-7 seconds
(Poisson distributed) that either displayed the gains of the participant in the block (if the target had
been reached) or showed no gain for the block when the target was not reached.

Image data acquisition: Structural and functional MRI (fMRI) measurements were taken using a
Siemens 3 Tesla MRI scanner. For the fMRI, we used a Deichmann echo-planar imaging (EPI)
sequence (Deichmann et al,, 2003) (time to repeat (TR): 3000 ms; 3x3x3mm voxel size; echo time
(TE): 30ms; flip angle: 87°; slice angle of 15° with local z-shimming) to minimize signal distortions
in orbitofrontal brain areas. This entailed orienting the window at 30° with respect to the AC-PC
line.

Additionally for each participant, anatomical images were acquired with a T1- weighted
MP-RAGE sequence, using a GRAPPA acceleration factor of 2 (TR: 2200 ms; TE: 4.53 ms; inversion
time: 900ms; voxel size: 1x1x1 mm on a 176x192x192 grid) [same protocol as Kolling et. al., 2012].

Image data analysis: We used FMRIB’s Software Library (FSL) (Smith et al.,, 2004) for image pre-
processing and analysis. Functional images acquired were first spatially smoothed (Gaussian kernel
with 5mm full-width half-maximum) and temporally high-pass filtered (3 dB cut-off of 100s).
Afterward, the functional data were manually denoised using probabilistic independent component
analysis (Beckmann and Smith, 2004), identifying and regressing out obvious noise components
(Kelly et al., 2010). We used the Brain Extraction Tool (BET) from FSL (Smith, 2002) on the high-
resolution structural MRI images to separate brain matter from non-brain matter. The resulting
images guided registration of functional images in Montreal Neurological Institute (MNI)-space
using affine registrations (7 degrees of freedom). The data was pre-whitened before analysis to
account for temporal autocorrelations(Woolrich et al., 2001). Statistical analysis was performed at
two levels. At the first level, we used an event-related general linear model (GLM) approach for
each participant. On the second level, we used FMRIB’s Local Analysis of Mixed Effects (FLAME)
(Beckmann et al., 2003) with outlier de-weighting and tested the single group average. The main
effect images are all cluster-corrected results with the standard threshold of z=2.3 and corrected
significance levels of p=0.05.

FMRI analysis: We acquired up to 1200 volumes with 45 slices per subject. Constant regressors,
modelled as boxcar functions, captured the three critical time phases that occurred in each trial: the
decision phase, the outcome phase and the time period after every eighth trial in which the block
outcome was presented. On each trial the time period indexed by the decision regressor began
when the two options appeared on the screen and the duration lasted until the subject pressed a
response button. Similarly, onset and duration of trial feedback and block outcome regressors
covered the exact time the respective information was displayed on screen. We ran three separate
GLM’s. From the first:

ﬁO + Bl(vriskier'vsafer) + BZ(Vchosen'Vunchosen) + B3(Vriskier+vsafer) + 64(ri5k bOHUS) + BS(trial number) +
Bs[log(reaction time)]

we derived the Viiskier-Vsater Signal shown in Fig.4B. The second GLM

Bo+ B1(Mriskier-Msater) + P2(Priskier-Psater) + P3(risk pressure) + f4(trial number) + fs[log(reaction
time)]

was very similar but now Viisker-Vsater effects were split by choice (riskier or safer) and probability
(Priskier-Psafer) and magnitude (Myiskier-Msater) differences were modeled separately . Although
modeling riskier and safer choices separately revealed interesting results that are reported
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(Figs.4C, 5A), the independent modeling of probability and magnitude did not lead to new insights.
In a third similar GLM we focused on splitting the trials with active risk bonus by choice (riskier or
safe) for the value and risk bonus regressors. For each trial type (safer option chosen or riskier
option chosen) we therefore had the following GLM:

Bo+ P1(Vriskier) + P2(Vsater) + P3(risk bonus) + Bs(trial number) + Bs[log(reaction time)]

This revealed the risk bonus effect in vimPFC (Fig.3A) and effect of the number of remaining trials
(Fig.3B). In all analyses we excluded all decisions taken after the target was reached as well as
decisions when the target was beyond reach.

All dACC activity time-courses were taken from a single dACC ROI (MNI coordinates x=-2,
y=28, z=36) where the group level effects of risk pressure and Viiskier-Vsater overlapped (also peak of
overall Viiskier-Vsarer effect). PCC, vmPFC, and IFG ROIs were centered at the group peak contrast
effect that first identified them. The GLMs used in constructing activity time courses during decision
periods included similar regressors to those used in the whole brain analyses: Viiskier-Vsafer, trial
number, log(reaction time), risk pressure and risk bonus.

We also conducted PPI analyses (Friston et al., 1997) to investigate functional connectivity
between vmPFC and PCC and between dACC and PCC during the decision period. For the first of
these analyses we generated a demeaned BOLD time-course regressor from the vmPFC as well as
an interaction term with the demeaned psychological regressor [we used the inverse of the risk
bonus regressor because vimPFC had been shown to be inversely related to the risk bonus in an
earlier analysis (Fig3a)] separated according to choice (riskier or safe), to generate two PPI
interaction terms corresponding to the trials in which riskier and safer choices were made. The
main effects of the same two psychological regressors were also included in the GLM. In addition
we also included the relative value regressor Viiskier-Vsater Split by choice and log(reaction time). The
PPI analysis for the dACC PPI analysis was conducted in an analogous manner but using a
physiological regressor derived from the dACC ROI and a psychological regressor of Vryiskier-Vsafer. For
the PPI time-courses, we subtracted the global mean (the average from all voxel at a specific time
point) from the individual time-course of each region investigated, to avoid positive results due to
global correlations.

To investigate interactions between dACC-PCC and vmPFC-PCC as a function of IFG activity
we took the difference between the dACC-PCC PPI regressor and the vmPFC-PCC PPI regressor and
multiplied it with the normalized, time-course from the left IFG, seeded at the group peak effect of
the choiceriskier — choicesater contrast (Fig.4A).

General linear models of fMRI analysis in ROIs:

The time-courses were derived from regions-of-interest (ROI), a sphere of 3 voxel radius,
identified in Montreal Neurological Institute (MNI) standard space on the basis of the whole group
analysis, calculating a mean time-course within a ROI in each subject individually and the
coordinates were then transformed to individual subject space by using the same linear
registration as in the initial analyses. We then oversampled the time-course by ten and created
epochs from the beginning of an event onward and applied a GLM to every pseudo-sampled time
point separately. By averaging the resulting § weights across subjects we created the time-courses
shown (the standard errors were calculated between subjects).

Near-Optimal Model and Supplemental behavioral analysis:

A GLM with both risk pressure and risk bonus reveals that both regressors explain unique
behavioral variance (Figure S3A). The value difference term (Vsqfer-Vriskier) is the fixed difference in
preference between the safer and riskier option and trial number refers to the current trial’s
position in a block. The risk pressure term summarizes how the environmental context should lead
to riskier choices. The risk bonus term, however, encapsulates a model-based interaction of both the
contextual factor of risk pressure and features of the specific choice options available on the
current trial. It predicts how participants should take risks that are dependent on how much the
risk pressure on a trial should lead to a difference in evaluation of the specific current options also
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taking into account future possibilities for taking such risks. It can be seen that it explains
additional variance in behavior over and above that explained by risk pressure. Another
illustration of this can be seen in figure 1 E.

Figure S3B-D depicts how the optimal risk bonus scaling was determined based on the decision
sequences for an example trial. Figure S4A depicts the relationship between the optimal risk bonus
scaling and risk pressure. Although the optimal risk bonus scaling has a strong relationship with the
risk pressure, the relationship is non-linear; variations in risk pressure do not always lead to a
change in optimal risk bonus scaling, for example several levels of risk pressure are associated with
an optimal risk bonus scaling of zero indicating that there should be no contextual modification of
the options’ values. Small changes in risk pressure, when risk pressure is already high, lead to large
increases in optimal risk bonus scaling.

The model is very nearly optimal. The decisions taken by our model after taking into account risk
pressure and by a truly optimal model differ in less than 7% of cases. More importantly the
divergences in expected value at the end of the block that would follow from taking a sequence of
actions according to our risk sensitive model or according to a truly optimal model are very small;
the expected values of the choices our model generates, after taking into account risk pressure, are
highly correlated (r>0.98) with the expected values of the choices generated by a truly optimal
model (in which all possible decision sequences are computed and compared according to their
expected values). The reason we use our model and do not simply take the completely optimal
decision sequence, is that our model offers a simple account of how context might lead to a simple
modification of a choice’s value that might in turn lead to a change in the decision that is taken.

The reason a small number of minor divergences occur between our model and the
completely optimal decision sequence has to do with the hard target constraint; in some cases very
specific outcome combinations add up to generate a slightly higher overall expected value than our
model. This is because our model is constrained to envisage that the level of risk-taking in the rest
of the block will be consistent with the level of risk-taking in the current trial when it computes the
level of risk-taking that is appropriate in the current trial. Thus it computes a uniform level of risk-
taking for the entire sequence of decisions that remain before the block end. By contrast an optimal
model is not constrained by any concept of risk taking and simply finds the decision sequence that
gives the highest expected value. In this way a small number of specific decision sequences become
very slightly more optimal because they lead to an expected value that just exceeds the target.
However, because the gain in expected value is rather minimal and can most likely only be
computed with a very precise knowledge of all specific magnitudes and probability in the decision
sequence we thought that it was unlikely that participants could make use of this information.
Moreover we found no empirical evidence that they could do so. Indeed, on average, for the 7% of
decisions in which the optimal sequence and our model diverged from each other, about half were
made in accordance with our model and half in accordance with the optimal sequence.

We compared participants’ behavior to the predictions of the model (Figure S4B).
Participants were more likely to make model-conforming safer choices than they were to make
model-conforming riskier choices. However, riskier choices were still more likely to conform to the
model prediction than not. This shows that even though participants were not completely optimal,
they integrated over value and contextual factors in a way predicted by our model, with a slight
overall bias against the riskier option,

Reinforcement learning approach

An alternative approach to our task is a reinforcement learning one. Such an analysis has the appeal
that it aligns naturally with other past studies using state-based reinforcement learning to explain
neural data and behavioral performance.

It would be feasible to use a reinforcement learning approach to analyze the behavior
recorded in our paradigm. Such a model approach might represent all combinations of the current
number of points acquired and of trial number and it would estimates expected overall block end
values separately for each target level. However, when related reinforcement learning-based
approaches have been used in the past they have typically not incorporated knowledge of which
option pairs have actually been observed in past decisions; they therefore incorporated no
expectations about how options might be paired in future decisions or knowledge of the specific
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sequence of decisions in a block). In order to incorporate this information it would be necessary
additionally to hold independent state space representations for every possible combination of
sequences.

We therefore used a state space-based reinforcement learning model of this type. The
starting point of the model is to estimate the values of all possible block end states taking into
account the four different target levels, i.e. making all below target values zero. We subsequently
computed the value of all earlier states in blocks, one trial back at a time, giving equal likelihoods of
all option pairing appearing in any decision, by looking up the values of the later states that would
follow on from them as a function of the state space map. Furthermore, we made the assumption
that in every decision the option that would lead to the higher next state would be selected. Doing
so from the last to the first trial, it is possible to give the current state a value defined by the state
(trial number and point count) as estimated from the model and also find such a state estimate for
each the two options if they are chosen in the decision. Since the future state is different for losses
and wins, we need to compute two future state space values for each option. The two future state
values are then averaged by using the probabilities of winning for each option i.e. by multiplying
the value of each state with its probability, which is the expected future state value for both
available options, The difference between both options’ future state values is the state value
difference and, according to such an approach, should be the decision variable. The model assumed
equally likely redraws of all eight trial types for every future trial.

We then compared several key value estimates and decision variables using this state-based
reinforcement learning model with those derived from our risk pressure-risk bonus model which is
explained in Methods and above. In order to make the comparison fair we used a slightly modified
version of our risk pressure-risk bonus model, which also assumed equally likely redraws of all
eight trial types for each future decision (r=0.79 between future block end value differences). We
estimated:

1) future state space value differences/future block end value differences. The future

state space value for each of the two options on each decision under the reinforcement

learning model and we then determined the difference between the future state space
values. We then found the comparable term using our risk pressure-risk bonus based
model by determining the expected value at the end of the block for each choice that might
be taken in a decision and then determining the difference between the expected values for
each pair of options offered in a decision. There was a high correlation between
reinforcement learning-based future state space value differences and risk pressure-risk
bonus model based future block value differences (r=0.95).

2) overall expected value at the end of the block. The overall expected value at the end of

the block estimated under the reinforcement learning model and risk pressure-risk bonus

model were highly correlated (r=0.97).

3) Q-action values and option values for specific choices. The Q-action values associated

specific options under the reinforcement learning approach and the option values used by

the risk pressure-risk bonus model were highly correlated (r=0.97).

Thus both approaches generate almost equivalent estimates of ultimate or long term value
expectations at the block end and something like such estimates were found to be represented in
the dACC (figure 5B). However, only the risk pressure-risk bonus approach also has parameters
relating to risk pressure and the risk-based value modification of option values in a specific
decision and such terms were useful for describing both behavior and the pattern of activity
recorded in dACC, vmPFC,PCC, and IFG. Moreover, none of these areas appeared to carry a future
state space value difference code. In other words we did not find an area that represented the
difference between the expected value at the block end if one option or another were taken on the
current trial. This could be due to the feedback given after every trial which might make the actual
end of block states seem relatively unpredictable in comparison to the outcome for each component
decision in the block and which might have led to a decision-making process that was more guided
by current option values and a contextually based value modification. Nevertheless a
reinforcement learning and state-based approach might provide additional important insights
under different conditions, for example if subjects always progressed through the same fixed order
of decisions.
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Linear approximation of choice values

Participants appeared to combine probability and magnitude linearly. This is apparent when the
proportion of riskier choices made as a function of the relative value of the riskier choice (Vriskier-
Viater) is plotted when values are computed as a linear approximation or as the true product of the
component reward magnitudes (Figure S1) in trials with little or no optimal risk bonus scaling
according to our model. Choices are not so well explained by choice values that computed by
multiplication.

Supplemental fMRI results

If the decisions participants made were not just motivated by the values of the immediately
available choices but also by values of the outcomes expected at the end of the block then activity
encoding block end values is expected. We found such a signal in dACC (main manuscript, Fig.5B).
However, in vmPFC there was no effect of the overall expected value at the end of the block as
estimated by the model nor was there any effect of the difference in the block’s expected value as a
function of the current choice being taken and the alternative choice (Figure S6).

As shown in figure 4B the posterior cingulate cortex (PCC) carried a Viiskier-Vsater Signal (time course
shown in Figure S5A), but was also, like vmPFC, more active when the risk bonus decreased (Figure
S5B). This is further evidence for its role in representing information coming from both vmPFC and
dACC and possibly its connectivity with both brain regions is a way of mediating different decision
strategies, i.e. ways of weighing up different properties of current decision alternatives.

Activity and coupling changes involving the ventral striatum also occurred during task
performance (Figures S5C+D and S7). In summary, ventral striatum represented Viiskier-Vsafer Only
when the riskier choice was taken. By contrast risk bonus had a negative impact on the striatum
when safer choices was taken. The chosen reward activated the ventral striatum more when the
riskier choice was taken (Figure S7A). Like the PCC, connectivity with dACC was modulated by
Viiskier-Vsater 0nly when the riskier choice was taken. However, the same was not true for the vmPFC
connectivity. If anything, ventral striatal-vmPFC coupling decreased as the risk bonus increased
although the coupling change, might have been more closely related to what is shown in Figure S7,
i.e. more related to changes in risk pressure.

We also looked for other evidence that vmPFC coupling with other areas might increase and
decrease as risk pressure waxed and waned (Figure S7B). We first looked at vmPFC functional
connectivity as a function of decreased risk pressure. We predicted that if decreasing risk pressure
increased the degree of vmPFC involvement in choice then its functional connectivity would
increase correspondingly. Decreasing risk pressure indeed led to increased coupling between
vmPFC and pregenual ACC (pgACC). Note that, while pgACC is in the cingulate cortex it is separate
from dACC and appears to have a different function; activity in the pgACC has previously been
observed in relation to the degree to which people are prepared to adopt strategies other than the
simplest or default one and are prepared to search through the environment for better alternative
strategies in the optimal manner (Kolling et al., 2012) (Figure S7B). The human pgACC may
correspond to a pregenual ACC area in the macaque in which activity is related to the manner in
which the costs and benefits of courses of action are compared (Amemori and Graybiel, 2012).
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