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Supplemental Data: 
Figure S1 shows examples of the postsynaptic responses for the three 

connection types, in both current clamp and voltage clamp, in addition to the 

one shown in Figure 1. 

Figure S2 shows that the measured probabilities of connection (Figure 2) are 

not affected by the slicing procedure. Figure S2 also shows the distribution of 

intersomatic distances in xy and z, as well as the full interpolated functions of 

pE and pC, which are underlying Figure 2A,B. 

Figure S3 describes the random connectivity models with ML position, in 

addition to the two random models described in Figure 3A. 

Figure S4 shows the results for the random models with ML position when 

comparing pair connectivity (Figure 3) and electrical triplet connectivity (Figure 

4). 

Figure S5 provides a full description of all 16 chemical triplet patterns in 

Figure 5 and shows the results for the random models with ML position when 

comparing chemical triplet connectivity (Figure 5). 

Figure S6 shows the results for the non-uniform random models with ML 

position for the common neighbor analysis (Figure 6). 

Figure S7 shows the influence of the ML position on morphology and 

connectivity of MLIs, as suggested by the results of Figure 8. 

Figure S8 provides evidence for the hypothesis that MLIs represent a 

continuous population with properties changing across the ML. 

Supplemental Experimental Procedures: 
This includes detailed descriptions of the Experimental Procedures, additional 

details on the Monte Carlo methods for statistical analysis, and the use of the 

ML position parameter for building the two additional random connectivity 

models. 
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Supplemental Data 
 
 

 
 
Figure S1. Voltage and current clamp recordings of postsynaptic 
responses in three different connection types 

(A) Electrical connection: an action potential (AP) in the presynaptic cell 

triggers a post-synaptic spikelet and the transmission of the after-

hyperpolarisation (AHP; average of > 20 sweeps). (B) Chemical connection: 

an AP triggers an IPSP in current clamp (IC) or an IPSC in voltage clamp 

(VC). (C) Dual connection: the postsynaptic response to a presynaptic AP is 

composed of a spikelet followed by a combination of the coupled AHP and the 

IPSP/IPSC. 
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Figure S2. Distributions of the position of recorded MLIs and model 
interpolation for pE and pC 

(A) Histogram of absolute depth in the slice of the somata of 329 MLIs. The 

relative degree (number of connections / number of possible connections) of 

the MLI for electrical (red) and chemical (blue) connectivity is shown 

superimposed. (B,C) Distribution of intersomatic distances between recorded 

MLI pairs, in the sagittal plane (xy; B) and along the transverse axis (z; C). (D) 

Probability of electrical connections vs. distance between pairs in xy, for 3 

different intervals of intersomatic distances in z (pE = 0 for Δz > 40 µm). The 3 

resulting interpolation functions f(xy) are used for the prediction of the non-

uniform random model. (E) Probability of chemical connections vs. distance in 

xy for two different intervals of intersomatic distances in z (pC = 0 for Δz > 40 

µm). The resulting interpolation functions f(xy) are used for the prediction of 

the non-uniform random model. 
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Figure S3. Random connectivity models including molecular layer (ML) 
position 
(A) Schematic illustrating the hierarchy of random models. The simplest 

assumption is the uniform random model. Including parameters influencing 

connectivity, such as intersomatic distance (non-uniform random model) or 

position in the ML (uniform random with ML position model) is a way to test 

the predictive power of these parameters on connectivity. The non-uniform 

random with ML position model combines both parameters. These models 

remain probabilistic despite being constrained by these parameters. (B) 

Probability of electrical (top) and chemical (bottom) connection matrix 

between the 3 thirds (lower, mid, upper) of the ML. Electrical connections 

count as bidirectional, therefore only one side of the matrix is filled. (C) 

Graphical representation of the probability of connection matrices in B, as a 

function of the ML position of the receiving MLI (left). Traces are slightly offset 

in the x axis for clarity. The matrices can be represented in a plane and 

interpolated as 2D functions (right). (D) Histogram of the differences of ML 

position for the recorded pairs and probabilities of electrical and chemical 

connections vs. difference in ML position. Positive ML position differences are 

for chemical connections going up and negative ML position differences are 

for chemical connections going down. (E) Linear interpolation functions for the 

probability of electrical, chemical up and chemical down connections, as a 

function of intersomatic distances in xy. 
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Figure S4. Predictions of all four random connectivity models for pair 
connectivity and electrical higher order connectivity 
(A) Probability of occurrence of the 6 possible connection types between 

pairs, in the data and predicted by the four random connectivity models. 

(B) Relative occurrence of each connection type in the data compared to the 
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prediction of the four random models. (C) Average clustering and anti-

clustering coefficient of the triplet and quadruplet electrical patterns, in the 

data and predicted by the four random models. (D) Probability of occurrence 

of the four possible electrical triplet patterns in the data and predicted by the 

four random models (top). Relative occurrences of each pattern in the data 

compared to the prediction of the four random models (bottom). (E) All 

electrical connections in fully connected triplets are direct connections. The 

coupling coefficient (CC) of the fully connected triplets was tested for 

contributions due to indirect coupling. The expected value of CC of the 

smallest connection, CC13, was estimated based on the two largest CC 

connections as CC13 = CC12 x CC23. The measured value of CC13 was higher 

than the one estimated assuming indirect coupling (t test, p = 2.73 x 10-25, n = 

76). We conclude that the observed fully connected triplets (pattern #4) are 

indeed the result of direct connections and not indirect electrical coupling. 
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Figure S5. Predictions of all four random connectivity models for 
chemical higher order connectivity 
(A) All 16 non-isomorphic chemical triplet patterns with their names (Milo et 

al., 2004), their transitivity score (number of transitive relations in the pattern) 
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and intransitivity score (number of intransitive relations in the pattern). (B) 

Probability of occurrence of the 16 chemical triplet patterns in the data and 

predicted by the four random models (top). Relative occurrence of each 

pattern in the data compared to the prediction of the four random models 

(bottom). (C) Average clustering and anti-clustering coefficient of the triplet 

and quadruplet chemical patterns, in the data and predicted by the four 

random models. (D) Probability of occurrence of transitive and intransitive 

triplet patterns in the data and the four random models. (E) Transitivity and 

intransitivity scores in the data and the four random models.  
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Figure S6. Common neighbor analysis with the non-uniform random 
model with ML position 
(A-D) Common neighbor analysis comparing the probability of finding no 

connection, an electrical or a chemical connection between pairs with a 

common neighbor (green), with no common neighbor (white), predicted based 

on the intersomatic distances between the pairs with a common neighbor 

(non-uniform random model; gray) and predicted based on the intersomatic 

distances and the ML positions of the pairs with a common neighbor (non-

uniform random with ML model; yellow). (A) Pairs sharing an electrical 

neighbor. (B) Pairs sharing a mixed (electrical only and chemical only) 

neighbor. (C) Pairs sharing a chemical neighbor (any direction). (D) Pairs 

sharing a chemical neighbor in a chain configuration. 
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Figure S7. The influence of ML position on MLI connectivity and 
morphology 
(A) The ML positions of the recorded MLIs were determined based on the DIC 

images and normalized using the position of the PC layer (position = 0) and 

the position of the pial surface (position = 1). (B) The probability of forming a 

connection is related to the position of the MLI in the ML. Probability of 

forming an electrical connection (red), receiving a chemical (light blue) and 

sending a chemical connection (dark blue) for each third of the ML. A χ2 test 

was used to test for significance of differences. (C) Example of three 

reconstructed MLI morphologies located in each of the “thirds” of the ML. (D). 

Schematic describing the preferred chemical connectivity based on the 

characteristic morphologies. The length of the MLI dendrites decreases with 
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ML position, while the main axon stays at the same level in the ML as the 

soma.  
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Figure S8. MLIs form a continuous population across the ML: evidence 
from morphology, physiology and connectivity. 
(A) Sholl analysis of the dendritic tree of 12 MLIs reconstructed from confocal 

microscopy (only one tree is shown here, distances in µm). (B) Maximal 

intersection from Sholl analysis vs. position of the MLI in the ML. Correlation 

coefficient r = -0.85. (C) The MLI input resistance is correlated with the 

position of the MLI in the ML. Correlation coefficient r = 0.65. (D) The 

spontaneous firing frequency of MLIs is broadly distributed across cells in the 

ML and does not abruptly change between lower and upper ML. (E) 

Probability of connection (electrical, receiving a chemical, sending a chemical) 

vs. position of the MLI in the ML. The probability of electrical and the 

probability of receiving a chemical connection continuously decreases with ML 

position (linear fit, p = 0.023 and p = 0.007, respectively), consistent with the 

change in morphology. (F) Coupling coefficient vs. ML position. There is no 

segregation of coupling strength across the ML (correlation coefficient r = -

0.28). (G) IPSC amplitude vs ML position of the receiving MLI. (H) IPSC 

amplitude vs. ML position of the sending MLI. There is no strong segregation 

of connection strengths across the ML (correlation coefficients r = -0.43 and r 

= -0.53, respectively). 
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Supplemental Experimental Procedures 
 

Slice preparation 

250 µm thick slices of cerebellar cortex were made from 18-23 day old rats 

using standard techniques. Briefly, rats were anaesthetized with isoflurane 

and decapitated in accordance with UK Home Office regulations. The brain 

was extracted after dissection in ice-cold artificial cerebrospinal fluid (ACSF), 

containing low sodium concentration and sucrose (slicing ACSF) (Clark and 

Cull-Candy, 2002). Slices were cut using a vibratome (Leica VT1200S), after 

z-axis vibration was minimized. The slices were incubated in carbogen-

saturated ACSF at 34oC for 30 min and then at room temperature for at least 

30 min. During incubation the solution was slowly exchanged between slicing 

and standard ACSF. Standard ACSF contained (in mM) 125 NaCl, 2.5 KCl, 2 

CaCl2, 1 MgCl2, 25 NaHCO3, 1.25 NaH2PO4 and 25 D-glucose and was 

bubbled with carbogen (95% oxygen, 5% carbon dioxide), giving a pH of 7.4. 

Slicing ACSF contained (in mM) 90 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 

NaHCO3, 1.25 NaH2PO4, 25 D-glucose and 70 sucrose. 

 

Multiple patch-clamp recordings 

Slices were placed in a standard ACSF-perfused recording chamber and 

visualized with an upright microscope (Zeiss Axioskop) using infrared-

differential interference contrast (DIC) optics, optimized as described 

previously (Davie et al., 2006). All recordings were made at 32 ± 1 °C. 

Interneurons were identified by their soma size (10-12 µm) and location in the 

molecular layer. Simultaneous whole-cell current-clamp and voltage-clamp 

recordings were made from the soma of interneurons using two dual-channel 

amplifiers (Multiclamp 700B). Glass pipettes (7-10 MΩ) were filled with 

intracellular solution containing (in mM) 130 K-methanesulfonate, 10 HEPES, 

7 KCl, 0.05 EGTA, 2 Na2ATP, 2 MgATP and 0.5 Na2GTP, titrated with KOH to 

pH 7.2. The resulting reversal potential for chloride is ECl- = -77.5 mV. Biocytin 

(0.5%) was added to the intracellular solution to label the cells. Recordings 

were typically made at least 30 - 40 µm below the surface of the slice to 

minimize the number of cut axons (Figure S2A). Pair, triplet and quadruplet 
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simultaneous recordings were achieved by first establishing cell-attached 

recordings and then breaking in. Compensation for access resistance and 

pipette capacitance was performed and monitored throughout the recording. 

The recorded traces were low-pass filtered at 3 kHz, digitized at 40 kHz and 

acquired using Axograph software. The traces were then imported into Igor 

Pro (Wavemetrics) for analysis. The relative position of each recorded cell in 

the ML was identified using the DIC image and the intersomatic distances 

were read out using the stage position. Some cells were also filled with Alexa 

488 or Alexa 594 and imaged under a two-photon microscope. Interneurons 

had an average input resistance Rinput = 205 ± 102 MΩ (n = 334; Figure S8C) 

and a spontaneous firing rate of 7.9 ± 8.7 Hz (n = 326; Figure S8D). 

 

Identification of connections 

To test for the presence of chemical and electrical synaptic connections, cells 

were hyperpolarized to -65 to -70 mV, and injected with short and long current 

pulses. Electrical coupling was evaluated by injecting steady-state current 

pulses in the presynaptic cell (-100 pA, 400 ms) and recording the voltage 

responses in both cells (averaging > 20 traces). The coupling coefficient was 

calculated as CC12 = ΔV2 / ΔV1, where ΔV1 and ΔV2 are the voltage differences 

compared to baseline in the pre- and post-junctional cell, respectively. Pairs 

were considered electrically coupled if the coupling coefficient satisfied CC ≥	
  

1% in both directions. Using an alternative criterion (the mean of the two 

coupling coefficients in each direction ≥	
   1%) did not alter the statistics of 

connections and the results presented. In order to detect the presence of 

inhibitory connections, action potentials were elicited in the presynaptic cell at 

1 Hz (1 nA, 1 ms pulses) while averaging (> 20 traces) the postsynaptic 

subthreshold membrane potential in current clamp mode (IC), or the 

postsynaptic current in voltage clamp (VC) mode at a holding potential of -50 

mV. When the cell was spontaneously active, online spike-triggered averaging 

was performed to confirm the connection.	
   Both IPSC and IPSP amplitudes 

were measured (Figure S1). Interneuron pairs with strong electrical coupling 

were assessed carefully, as weak chemical connections can be obstructed by 

the large coupled after-hyperpolarization (AHP). If the coupling coefficient of 
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the AHP (CCAHP) was larger than the steady state CC, or if a faster rise time 

of the IPSP/C and a larger variance of the IPSP/C amplitude on individual 

trials were observed, the connection was presumed to be chemical as well. 

The most reliable method to distinguish the electrical and chemical 

connections is the application of a blocker of GABAergic transmission (10 µM 

SR 95531). A total of 57 pair connections were recorded in the presence of 

gabazine, with 7 dual connections confirmed by blocking the GABAergic 

component of the postsynaptic response and recording the remaining 

electrical component (Figure 1C). Most connections were tested using 

standard internal solution and without synaptic blockers, which may 

underestimate the prevalence of very weak inhibitory synapses (IPSC 

amplitude < 4 pA) in the presence of strong electrical coupling (CC > 20%). 

 

IPSC synchrony between pairs was defined as the peak of the normalized 

cross-correlograms (IPSC peak times, bin size = 1 ms). Spontaneous activity 

was measured in pairs in VC (holding potential -50 mV) for 0.5 to 2 min. 

Outward currents (IPSCs) were detected with a simple threshold detection 

algorithm. Background level was determined by shuffling the inter-event 

intervals and used to normalize the cross-correlograms. Traces with very low 

IPSC frequency were disregarded, as the baseline of the cross-correlogram 

was insufficient. 

 

Cell labeling and reconstruction 

Individual MLIs were filled with biocytin (0.5%) via the patch pipette. The 

whole-cell configuration was maintained for at least 15 min before pulling an 

outside-out patch to seal off the membrane. Slices were fixed by immersion in 

cold 4% paraformaldehyde solution, and kept for at least 24h. After fixation, 

the slices containing biocytin-filled cells were rinsed in PBS, and 0.1% Triton-

X100 was used to permeabilize cell membranes. The slices were then 

incubated in streptavidin conjugated with Alexa 488 (Invitrogen) for 2h. 

Following incubation, sections were mounted between glass and coverslip in 

Vectashield (hard set) containing DAPI stain to visualize cell nuclei throughout 

the slice. Slices were then visualized using confocal microscopy. A spinning 
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disk confocal microscope (PerkinElmer) was used to acquire a high resolution 

image stack of the cell, with a lateral pixel size of 123 nm and a depth 

resolution of 0.3 µm.  

 

Interneuron morphologies were manually reconstructed using the TREES 

toolbox in Matlab (Cuntz et al., 2011; http://www.treestoolbox.org). The 

reconstructed cells (n = 12) were scaled, re-aligned relative to the sagittal 

plane, centered with their soma at the origin, and rotated such that the y axis 

corresponds to the vertical axis of the molecular layer and the x axis is 

oriented along the Purkinje cell layer. By convention, the longer axon was 

directed to the left side. Shrinkage caused by fixation and slice mounting was 

estimated by comparing the morphology of the same cell imaged with two-

photon microscopy in the live slice before fixation and with confocal 

microscopy after immunohistochemistry and mounted between slide and 

coverslip. The xy shrinkage was small; confocal/2P = 0.914 ± 0.055 (n = 45 

segments). However, shrinkage in z was more substantial (confocal/2P = 

0.291 ± 0.334; n = 45 segments), as expected, and therefore difficult to 

estimate accurately. We used the factors xy = 1.1 and z = 3.4 to correct the 

reconstructed confocal morphologies. The dendritic and axonal density maps 

were estimated as described previously (Lübke et al., 2003) for the xy plane 

and the yz plane. Along the transverse axis (z axis), the standard deviation of 

the density was 2σ = 24.1 µm for dendrites and 2σ = 41.3 µm for axons. 

 
Analysis and statistics 

The probabilities of electrical (pE) and chemical (pC) connections were 

determined experimentally. The probability of a connection is defined as the 

ratio between the total number of observed connections and the total number 

of possible connections. For each experimentally measured pair, there is one 

possible electrical connection and two possible chemical connections, 

therefore:  

 

 pE = nE / npairs 

 pC = nC / (2*npairs) 
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where nE is the total number of electrical connections, nC is the total number 

of chemical connections, and npairs is the total number of pairs tested. 

 

The connectivity configuration of each recorded group (pair, triplet or 

quadruplet) was transformed into two graphs in the NetworkX package for 

Python: the electrical connectivity into an undirected graph and the chemical 

connectivity into a digraph with directed chemical edges.  

 

To count the occurrence of triplet patterns, all quadruplets were divided into 4 

triplets. All triplet graphs were tested for isomorphisms for each connection 

type individually. There are 16 different chemical triplet patterns (including 

bidirectional connections) and 4 different electrical triplet patterns. Error bars 

correspond to S.D. of a bootstrap analysis of the experimental data set 

(repeat = 100). 

 

The clustering coefficient of a node i (Ci) is calculated as the ratio between the 

number of actual connections between the neighbors of node i (ni) and the 

number of potential connections between the neighbors of node i (pi) 

according to 

  

 Ci = ni / pi 

 

The standard clustering coefficient, usually applied to entire networks (Watts 

and Strogatz, 1998), has been adapted here for sub-networks of triplets and 

quadruplets. Since the clustering coefficient of a node in a graph can only be 

calculated if the node receives at least 2 connections, the clustering 

coefficient was averaged over the configurations where C could be measured. 

For instance, for a recording of three neurons (triplet), C can take 3 values: 1 

if it is fully connected (pattern #4, Figure 4A), 0 if it has 2 connections (pattern 

#3, Figure 4A), and not a number it is not measurable, i.e. if it has less than 2 

connections (patterns #1 and #2, Figure 4A). As patterns with no connections 

do not contribute to the measure of C, we introduce the anti-clustering 

coefficient AC, which is calculated in the same way as the clustering 
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coefficient but using the complement graph. It measures how clustered the 

absences of connections are. For a triplet, AC can take 3 values: 1 if there is 

no connection (= 3 times “absence of connection”; pattern #1, Figure 4A), 0 if 

it has 1 connection (= 2 times “absence of connection”; pattern #3, Figure 4A), 

and not a number if it is not measurable, i.e. if it has more than 2 connections 

(patterns #1 and #2, Figure 4A). C and AC were evaluated separately for 

triplets and quadruplets and then averaged.  

 

Chemical triplet patterns were grouped into transitive and intransitive patterns. 

Transitivity is a property of a directed graph G. A transitive graph G fulfills the 

condition that if uv and vw are directed edges in G and u ≠ w, then uw is also 

a directed edge in G (Bang-Jensen and Gutin, 2008). Intransitive graphs do 

not fulfill this condition. Graphs that do not satisfy the first part of the condition 

were excluded from the grouping.  

 

The common neighbor analysis was performed in a sequential way. 

Estimation of significance for the comparison of probabilities between pairs 

with a common neighbor and other pairs was done with a χ2	
  test (or a Fisher’s 

exact test for cases in which the number of occurrences was below 5), and 

the comparison with the non-uniform random predictions was done with 

Monte Carlo methods (repeat = 10,000; see below). Data are given as mean 

± S.D. 

 

Random models of connectivity 

Specific connectivity is generally defined by comparison to equivalent random 

predictions. Identifying such differences can be used to rule out simple 

random connectivity models, but can also improve our understanding of what 

the actual connectivity rules are. The dependence of connection probability on 

intersomatic distance (Stepanyants and Chklovskii, 2005) is expected to 

influence the patterns of connections, in particular for higher order 

connectivity (Artzy-Randrup et al., 2004). We have therefore included specific 

parameters, such as intersomatic distance and the vertical position in the ML, 

and generated four models of random connectivity to compare with the 
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experimentally observed connectivity (Figure S3A).  

 

The first model represents the simplest case: connections between neurons 

are formed independently of each other based on the connection probabilities 

pE and pC, and independent of other parameters. This model is called the 

“uniform random” model, as the probabilities pE and pC are uniform with 

respect to distance. 

 

The second model is called the “non-uniform random” model, as the 

probabilities of electrical and chemical connections are distance dependent 

and determined by the experimentally measured distribution of pE and pC vs. 

the intersomatic distance between recorded cells (Figure 2A,B). To combine 

the interpolation of these functions for xy distance and z distance, we perform 

the following approximation:  

 If Δz ≥ 30 µm : pE = 0 

 If Δz < 30 µm : pE = f
i
 (xy), interpolations (i = 1,2,3; Figure S2D) 

 If Δz ≥ 40 µm : pC = 0 

 If Δz < 40 µm : pC = f
i
 (xy), interpolations (i = 1,2; Figure S2E) 

 

The third model is called “uniform random with ML position” model. The 

elements were individually determined based on the pairwise respective ML 

positions and using the interpolated 2-D functions fE (ML1, ML2) and fC (ML1, 

ML2) (Figure S3C). 

 

The fourth model is called “non-uniform random with ML position” model. The 

elements were individually determined based on the pairwise difference in ML 

positions ML2-ML1 and the pairwise intersomatic distances (xy), using the 

interpolated functions fE (xy) and fC (xy) (Figure S3E). 

 

For the pairwise connectivity, probabilities of observing each individual type of 

connection between MLI pairs were extracted from the data and compared to 

the predictions of the models of random connectivity. We generated 100 

artificial instances of the 420 experimentally recorded pairs, for each of the 
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four predictions (Monte Carlo method, see below). All random connectivity 

models assume that connections are made independently of each other, 

implying: 

 

 p(no connection)    = (1-pE) * (1-pC)2 

 p(electrical only)    = pE * (1-pC)2 

 p(chemical only)    = 2 * pC * (1-pE) * (1-pC) 

 p(chemical and electrical)   = 2 * pC * pE * (1-pC) 

 p(bidirectional chemical)   = pC
2 * (1-pE) 

 p(bidirectional and electrical)  = pC
2 * pE 

 

For the non-uniform random models, the intersomatic distance between each 

pair of neurons was used to determine and pE and pC, as described above.  

 

For the analysis of higher order connectivity, we generated 1000 artificial 

instances of the 65 triplets and 27 quadruplets which were experimentally 

recorded (Monte Carlo methods, see below). Occurrences of patterns in the 

data were compared to the occurrences of patterns predicted by the four 

random connectivity models, and measured in the same way. The non-

independence of the 4 triplets extracted from a quadruplet is therefore also 

included in the model predictions. 

 

The values of average clustering coefficients for the experimental data were 

compared to the average clustering coefficients, calculated in the same way, 

for the triplets and quadruplets connected according to the random 

connectivity models. For the average C and AC vs. z dispersion, the 

quadruplets were also divided into triplets. The depth differences for each 

element of the triplet were averaged (mean z dispersion), and triplets were 

grouped into bins according to their mean z dispersion. C and AC were 

calculated in the same way as described above, for each bin. For the two 

random connectivity predictions, 1000 repetitions of the experimental 

configuration were used and calculated in the same way as for the data.  
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Monte Carlo method 

Here we describe our Monte Carlo procedure for calculating p values for the 

higher-order connectivity. The analysis of the pair connectivity was done 

analogously. The experimental dataset corresponds to a set S containing 27 

quadruplets and 65 triplets. For each of the models tested (uniform, non-

uniform, uniform with ML position, non-uniform with ML position), we first 

generated matrices ME and MC containing the probabilities of electrical and 

chemical connections, respectively, between all cells recorded in each 

configuration in S (each of the 65 triplets and each of the 27 quadruplets).  

 

Next, we generated B random instances (B = 10 000) of the full set S. For 

each random instance 𝑏   ∈ {1,⋯ ,𝐵} , we transformed the connection 

probability matrices ME and MC into connectivity matrices and undirected 

graphs GE for the electrical connectivity and directed graphs GC for the 

chemical connectivity. The quadruplet graphs were separated into 4 triplet 

sub-graphs. For each non-isomorphic pattern (k = 4 possible electrical triplet 

patterns and k = 16 possible chemical triplet patterns), we counted the 

number of occurrences  𝑐!,!    , 𝑖   ∈ {1,⋯ , 𝑘}. Across the B random instances of 

the set, we counted how many times (psup) the number of occurrences 

predicted by the model ci,b  are superior or equal to the observed number of 

occurrences c,  and how many times they are inferior or equal (pinf):  

 

𝑝!"# = #𝑏, 𝑐!,! ≥ 𝑐               𝑎𝑛𝑑          𝑝!"# = #𝑏, 𝑐!,! ≤ 𝑐                       𝑏   ∈ {1,⋯ ,𝐵} 

 

The p values for each pattern i, which determines the probability that the null 

hypothesis is true (H0 : “There is no difference between the observed and the 

predicted occurrence of the pattern i”) are then given by : 

 

𝑝! = 𝑚𝑎𝑥
min(𝑝!"#  ,𝑝!"#)

𝐵    ,
1
𝐵   𝑖 ∈ {1,⋯    , 𝑘} 

 

The formula prevents the p value from being equal to zero when psup or pinf 

are equal to zero.  



	
   24	
  

Multiple hypothesis corrections 

It was necessary to correct the raw p values for multiple hypothesis testing in 

the case of the 6 possible connections between pairs (none, electrical only, 

chemical only, dual, bidirectional, full), the 4 possible electrical triplet patterns, 

the 16 possible chemical triplet patterns and the 3 possible connections 

between pairs in the common neighbor analysis. We applied the Bonferroni 

correction for k hypotheses, and report the corrected p values given by: 

 

𝑝!∗ = min(𝑘  𝑝! , 1)     𝑖 ∈ {1,⋯    , 𝑘} 

 
 

Transitive / intransitive grouping  
We tested for the occurrence of transitive and intransitive triplet patterns, 

based on the signature triplet representation in other networks (Milo et al., 

2004) and previous reports of the transitive property in social networks 

(Holland and Leinhardt, 1970) and neural networks (Nikolić, 2007). For this 

we grouped the 16 possible chemical triplet patterns into three groups: the 

ones satisfying the transitive relation; the transitive patterns (n = 4; patterns 

#10, #12, #14, #16), the ones not satisfying the transitive relation; the 

intransitive patterns (n = 7; patterns #6, #7, #8, #9, #11, #13, #15) and the 

ones where the first part of the transitive relation could not be applied (n = 5; 

patterns #1, #2, #3, #4, #5).  

 

The grouping into transitive and intransitive patterns was originally tested with 

a subset of the data, after obtaining n = 8 quadruplets and n = 17 triplets. The 

overrepresentation of transitive triplets was significant when compared to the 

predictions of both the uniform and non-uniform random models. Only after 

this hypothesis was formulated, the second subset of the data was collected 

to test this hypothesis only. The n = 19 quadruplets and n = 48 triplets were 

used to compare with the predictions of the random models and significant 

differences were found when comparing with the uniform and non-uniform 

random models (p = 0.006 and p = 0.003 respectively). 

 

An alternative way to assess the transitivity of complex networks is to 
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compute their transitivity score (Holland and Leinhardt, 1970; Milo et al., 

2004). For each of the 16 triplets, the transitivity score (TS) counts the 

number of successful transitive relations, and the intransitivity score (IS) 

counts the number of unsuccessful transitive relations (Figure S5A). For 

instance, the pattern #16 containing the full connectivity, also called “clique”, 

involves 6 successful transitive relations and therefore obtains a TS of 6 and 

an IS of 0. The patterns for which the first part of the transitive relation could 

not be satisfied obtained both TS and IS of 0. Note that the patterns with an IS 

different from 0 are the intransitive patterns as described earlier. For the data, 

we calculated a total TS = 20 and IS = 15. We compared these values to the 

scores predicted by random connectivity models and obtained significant 

differences (Figure S5E). The TS is significantly higher than predicted by the 

random models (p = 0.0038 and p = 0.0022 for uniform and non-uniform 

random models, respectively) and the IS is significantly lower than predicted 

by the random models without ML position (p = 0.0013 and p = 0.0029 for 

uniform and non-uniform random models, respectively). This latter result 

confirms that the chemical network of MLIs has a preference for locally 

transitive motifs over locally intransitive motifs. 

 
 
Position of the interneurons in the molecular layer 

The positions of the recorded cells taken from the DIC images were collected 

and normalized according to the positions of the Purkinje cell layer (position = 

0) and the pial surface (position = 1; Figure S7A). To establish the top-to-

bottom orientation in the molecular layer (ML) of the transitive patterns, the 

ML positions of the three neurons were arranged according to their 

connectivity. For the feed-forward pattern (#10) the origin neuron (1) sends 

two diverging connections, the intermediate neuron (2) sends one connection 

and receives one, and the target neuron (3) receives two converging 

connections (Figure 8B, n = 11). For the regulating mutual pattern (#14, n = 

3), the target neuron (3) receives two converging connections, and the two 

other neurons are reciprocally connected, which means that there is not an 

origin neuron defined by connectivity. The neuron highest in the ML from the 

two reciprocally connected ones was chosen as neuron (1). The means of the 
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three ML positions of all transitive patterns were significantly different (one-

way ANOVA, p = 0.0002, n = 14) as well as significantly different pairwise 

(paired t-test; neuron (1) vs. (2), p = 0.013; neuron (2) vs. (3), p = 0.014; 

neuron (1) vs. (3) p = 0.0001). The average ML position of neuron (1) and (2) 

was also significantly different from the position of neuron (3) (paired t-test, p 

= 0.0004), accounting for the bias introduced by selecting neuron (1) in the 

regulating mutual pattern. 

 

This result suggests an influence of the ML position on morphology and 

connectivity of MLIs. From the morphological point of view, it appears that 

stellate and basket cells are not two distinct populations but rather form a 

continuum, with the main parameter being the vertical position in the 

molecular layer (Sultan and Bower, 1998). For this reason, the connectivity of 

MLIs is likely to depend on the ML position. In the following analysis, we 

divided the vertical extent of the ML into 3 parts and grouped MLIs in their 

respective “third” of the ML. The probability of forming an electrical connection 

appeared to be related to the position of the cell in the ML (Figure S7B): pE = 

0.46 for MLIs in the lower third, pE = 0.45 in the middle third and pE = 0.39 in 

the upper third of the ML. For the chemical connectivity, we separated the 

probability of receiving a connection pC_IN and the probability of sending a 

connection pC_OUT. MLIs in the upper third of the ML have a higher probability 

of sending pC_OUT = 0.23 than receiving a connection pC_IN = 0.09 (χ2-test, p = 

0.0003; Figure S7B). Moreover, the probability of receiving a connection is 

lower in the upper third pC_IN = 0.09 than in the middle third pC_IN = 0.21 (χ2-

test ; p = 0.0004) and than in the lower third pC_IN = 0.25 (χ2-test ; p = 0.0004). 

These results are in accordance with the morphologies of MLIs (Figure S7C). 

The main axons of MLIs tend to stay at the same level in the ML as the soma, 

which means that axons can predominantly target cells whose dendrites are 

at the same ML level. Cells in the lower third have large dendrites, some 

extending in the whole ML and can therefore receive connections from all 

other MLIs. On the other hand, cells in the upper third have short dendrites 

and can receive connections predominantly from other upper third cells.  
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Despite significant differences in connectivity when examining individual 

“thirds” of the ML, we conclude that the MLIs form a continuous population 

with gradually changing properties across the ML, as previously suggested 

(Rakic, 1972; Sultan and Bower, 1998; Trigo et al., 2010). We show here 

evidence from morphology, physiology and connectivity. First, we observed a 

gradual transition of morphologies from top to bottom of the ML (Figure S7C). 

We applied a Sholl analysis to the dendritic tree of 12 reconstructed cells and 

found that the length of maximal intersection is negatively correlated with the 

ML position (correlation coefficient r = -0.85; Figure S8A,B). Next, we 

observed that MLI input resistance Rinput increased with position in the ML 

(correlation coefficient r = 0.65; Figure S8C). This correlation can be 

explained in part by the decrease of the dendritic length with the ML position 

(Figure S8A,B).  We observe that the spontaneous firing rate does not show a 

discontinuous change between top and bottom of the ML. Next, we find that 

the probability of electrical connection and the probability of receiving a 

chemical connection continuously decrease with ML position (linear fit, p = 

0.023 and 0.007, respectively), consistent with the change in morphology. 

Moreover, the synaptic strength (coupling coefficient and IPSC) shows no 

segregation across the ML (correlation coefficients  r = -0.28, r = -0.43 and r = 

-0.53 respectively; Figure S8F-H). 

 

Construction of random connectivity models using molecular layer position 

As the connectivity is evidently influenced by the ML position, we therefore 

constructed two additional random models including the ML position as a 

parameter; one model with uniform random and one with non-uniform random 

probability of connection with respect to intersomatic distances (Figure S3A).  

First, as the probabilities of receiving and sending a connection depend on the 

vertical position in the ML of the neuron, it was necessary to account for the 

position of both cells in the pair when building a pairwise connectivity model. 

As the simplest approximation, we divided the ML into 3 parts and established 

the corresponding 3 x 3 matrix of probability of connections between cells in 

those 3 parts, for electrical and chemical connections (Figure S3B). As the 

electrical connections count as bidirectional, the matrix of the probability of 

electrical connections is only filled on one side. We first represented the 
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matrices as probability of connection as a function of the ML position of the 

receiving MLI (Figure S3C, left). This highlights the effect of the reduced 

probability of receiving a connection (electrical and chemical) the higher the 

cell is in the ML. The matrices were then turned into 2D interpolations to 

construct the “uniform random with ML position” model (Figure S3C, right). 

 

Second, we wanted to include both the ML position and the intersomatic 

distances. To simplify, we used the difference in ML position instead of the full 

3 x 3 connection matrix. The ML position difference was calculated as the ML 

position of the receiving cell minus the ML position of the sending cell, such 

that positive ML differences represent connections going up the ML and 

negative ML differences represent connections going down the ML. We 

observed a relationship of the probability of connection (electrical and 

chemical) with the difference in ML positions, with a higher probability of a 

chemical connection when going from top to bottom of the ML (Figure S3D). 

We next divided the data into two parts, one exhibiting positive and the other 

negative ML differences, and established the relationship of their probability of 

connection with intersomatic distances (Figure S3E). The chemical probability 

of connection indeed showed markedly different distance dependence for 

connections going down the ML (high probability and long tail) and 

connections going up (low probability, short tail). We interpolated these 

functions and used them for the “non-uniform random with ML position” 

model. 

 

We then compared the observed connectivity with the connectivity predicted 

by these two new random models. All four random models are presented in 

Figure S3-S6 in order to facilitate the comparison. First, at the pair level, we 

observed that both models including ML position predict a reduced 

occurrence of bidirectional chemical connections (Figure S4A,B). This is 

consistent with the preference for chemical connections going down the ML 

and therefore a reduced probability of finding bidirectional connections 

between cells at different levels in the ML. Moreover, the underrepresentation 

of fully connected pairs (bidirectional chemical and electrical), significant 

compared to the uniform and non-uniform random models, was non-



	
   29	
  

significant compared to the random models with ML position, presumably for 

the same reason stated above. In this respect, the random models with ML 

position are better at representing the data at the pair level. 

 

At the triplet level, we first tested the electrical connectivity, and did not 

observe any markedly different result compared to the random models without 

ML position (Figure S4C,D). As expected, the ML position does not improve 

the prediction of the higher clustering coefficient in the data by the random 

models.  

 

We next tested the chemical connectivity at the triplet level and counted the 

observed and predicted occurrences of all 16 non-isomorphic triplet patterns 

(Figure S5B). As before, the occurrence of the feed-forward pattern (#10) is 

significantly different from the occurrence predicted by random models with 

ML position (Monte Carlo method, Bonferroni corrected p values: p = 0.0016 

and 0.042, uniform and non-uniform random with ML position, respectively). 

We observed that the chemical clustering coefficient in the data remained 

higher than the one predicted by the random models (Figure S5C). However, 

when grouping into transitive and intransitive triplet patterns, we observed that 

the overrepresentation of transitive patterns remained, while the 

underrepresentation of intransitive patterns was not significant anymore when 

comparing to predictions of the non-uniform random model with ML position 

(Figure S5D; p = 0.077). This result was confirmed using the alternative way 

for assessing transitivity; determining the transitivity and intransitivity scores 

(Figure S5A,E). It can in part be explained by the preference for chemical 

connections going down the ML (Figure S7A,B). Indeed, it implies that the 

models including ML position have a tendency to predict a lower occurrence 

of loop patterns than the random models not including ML position, and 

therefore predict a lower level of intransitive patterns. From this perspective, 

we can confirm that the models of random connectivity including ML position 

and intersomatic distances appear to provide a better description of the actual 

connectivity, but are still incomplete. 

 

Finally, we repeated the common neighbor analysis for the comparison with 
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the non-uniform random model with ML position (Figure S6). The main results 

found when comparing with the non-uniform random model were confirmed, in 

particular the structured overlap of the electrical and chemical networks 

(Figure S6B). 
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