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1st Editorial Decision 09 July 2013 

Thank you for submitting your manuscript to The EMBO Journal. Your study has now been seen by 
three referees and their comments are provided below.  
 
As you can see, the referees appreciate the findings reported although referee #2 is more hesitant if 
the paper is a good fit for publication here. Given the overall comments provided, I would like to 
invite you to submit a suitably revised manuscript for our consideration. Referees #1 and 3 raise 
minor issues, whereas referee #2 brings up more significant ones that I would like to ask you to 
address in a revised version. I should add that it is EMBO Journal policy to allow only a single 
round of revision and that it is important to address the raised concerns at this stage.  
 
When preparing your letter of response to the referees' comments, please bear in mind that this will 
form part of the Review Process File, and will therefore be available online to the community. For 
more details on our Transparent Editorial Process, please visit our website: 
http://www.nature.com/emboj/about/process.html  
 
Thank you for the opportunity to consider your work for publication. I look forward to your 
revision.  
 
 
REFEREE REPORTS 
 
Referee #1  



The EMBO Journal   Peer Review Process File - EMBO-2013-85887 
 

 
© European Molecular Biology Organization 2 

 
The manuscript by Schulz et al. analyzes the structural and functional changes at the endbulb-bushy 
cell connection in the antero-ventral cochlear nucleus upon partial disruption of the presynaptic 
active zone protein bassoon. The authors show that BsnΔEx4/5 endbulbs have increased quantal 
size and release probability, a reduced RRP size and a reduced vesicle replenishment rate. Despite 
these defects, mutant synapses were almost as reliable as wild-type and auditory signaling in vivo 
was maintained most likely via homeostatic adaptations in PSD size and bushy cell excitability. The 
manuscript is a technically sound, combining highly advanced in vitro and in vivo 
electrophysiological recording with various (LM and EM) morphological measures. The conclusions 
are justified.  
 
The BsnΔEx4/5 mouse model has been well described; showing major structural defects in ribbon 
synapses (Altrock et al, 2003; Dick et al, 2003; tom Dieck et al, 2005; Frank et al, 2010) and 
enhanced short-term depression in central glutamatergic synapses (Hallermann et al, 2010). A 
common observation is the upregulation of piccolo, which may compensate for some of bassoon's 
functions (Waites., et al 2013). Therefore, the main strength of the manuscript lies in elegantly 
revealing the homeostatic compensation resulting from partial activity deprivation in the auditory 
system perhaps more than advancing our understanding of bassoon's function. The unique in vivo 
recordings show that auditory signaling is hardly impaired in BsnΔEx4/5 mice despite the 
transmission defects showing the robustness of this connection in vivo and highlighting the 
importance of in vivo follow up of in vitro observations. These findings would certainly interest a 
broad audience.  
 
Minor comments:  
 
The authors propose several mechanisms to explain the increased quantal size. In addition to 
enlarged PSD and changed AMPA receptor-type composition, enhanced expression of presynaptic 
vGlut is a plausible mechanism that the authors should test by measuring vGlut intensities in Figure 
2.  
 
The term "vesicle reloading" in the ms title not optimal. Probably "vesicle pool replenishment" is 
better.  
 
The running title should be reconsidered too; it does not convey the main message of the ms  
 
 
Referee #2  
 
The study by Schulz et al. investigates the consequence of a Bassoon (Bsn) hypomorph mutation on 
synaptic signaling at the endbulb synapse in the mouse auditory system. Consequences of the Bsn 
KO have previously been described in cultured neurons (Altrock et al. 2003), in other CNS synapses 
studied in slice preparations (Hallermann et al. 2010), as well as in detail at the ribbon-type synapses 
of inner hair cells, by this lab (Kimich et al 2005, Frank et al. 2010, Jing et al. 2013). In light of the 
previous studies, the design, and the main aim of the present study was not well explained. The 
authors find changes in the pool of vesicles and recovery speed which largely re-capitulate previous 
work. In addition, there were small, but significant increases in PSD length and in the quantal 
amplitude, and there was a putative increase in p-rel (but see point 3). These latter changes are 
interpreted as a "homeostatic" plasticity, but the molecular mechanisms of this putative homeostatic 
change are not explored, nor was the physiological background well explained (is this due to a 
decreased sound-driven activity in Bsn KO mice?). It was also difficult to follow the experimental 
design of re-adjusted sound intensities in Fig. S7.  
 
The paper contains a lot of potentially interesting data, but its main thrust remains somewhat fuzzy.  
 
Further specific points:  
 
1) The description of the IHC results in Figs 1, 2 should be improved, and more to the point. It 
should be explained at the outset which hypothesis was tested, and the main results should be 
highlighted. Initially, images of the various individual channels should be shown separately side-by-
side. The labeling "sap7f" should best be changed to "Bassoon". Also, what was the sap7f signal 
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outside synapses (see Figs 1D, E green smear on the sides -- axonal signals?).  
Why were there only few Munc13 punctae (Fig. 2D) as compared to other active zone markers (e.g. 
Rim2-Fig. 2C).  
 
2) It remained unclear whether Bsn KO mice had an outright docking phenotype, or not (the two 
different measure gave different results).  
 
3) The authors claim to have found an increased p-rel but inspection of Table 1 shows that this 
parameter was significantly increased only for the 300 Hz train stimuli, but not with 100 or 200 Hz 
trains. The reasons for this should be discussed.  
 
4) Throughout, the number of independent repetitions should be stated in the Results text. In all bar 
graphs which show average value plus/minus SEM; the data points from individual cells could be 
overlaid (e.g. in Fig. 4B - F).  
 
5) The authors claim that Bsn KO cells "fire more APs for small current injections" (p. 12 top), but 
the corresponding Figure only shows a set of example traces for a WT cell (Fig. 8A). This example 
seems to show only a single AP at the onset even with the largest I-injection, whereas the average 
data for WT suggests about 3-4 APs (Fig. 8C, black symbols). Thus, a more representative example, 
in which all APs all clearly visible, and example traces for a Bsn KO cell should be shown. Also, it 
appears that FigS6A contains the same set of traces as Fig. 8A.  
 
 
Referee #3  
 
This is an excellent manuscript designed to assess the contribution of the presynaptic active zone 
protein Bassoon on synaptic function and plasticity within the auditory system. Specifically, the 
authors describe a set of morphological and electrophysiological experiments assessing functional 
changes at the endbulb of held forming synapses on bushy cells within the anteroventral cochlear 
nucleus. Their results show that in the absence of Bassoon, Held synapses are formed normally, in 
both size and number. While vesicle replenishment and the standing pool of readily releasable pool 
vesicles is reduced, they noted that postsynaptic densities are larger as these synapses exhibit 
increases in quantal size and vesicular release probability. Intriguingly, in vivo homoestatic 
mechanisms appear to compensate for these changes allowing for improved synchronous signaling 
of the dysfunctional auditory pathway in BsnΔEx4/5 mice.  
This is a beautifully designed and executed study. The data are of very high quality and the 
manuscript is clearly and logically written. I have no concerns.  
 
 
1st Revision - authors' response 07 October 2013 

Referee #1  
 
The manuscript by Schulz et al. analyzes the structural and functional changes at the endbulb-bushy 
cell connection in the antero-ventral cochlear nucleus upon partial disruption of the presynaptic 
active zone protein bassoon. The authors show that BsnΔEx4/5 endbulbs have increased quantal 
size and release probability, a reduced RRP size and a reduced vesicle replenishment rate. Despite 
these defects, mutant synapses were almost as reliable as wild-type and auditory signaling in vivo 
was maintained most likely via homeostatic adaptations in PSD size and bushy cell excitability. The 
manuscript is a technically sound, combining highly advanced in vitro and in vivo 
electrophysiological recording with various (LM and EM) morphological measures. The 
conclusions are justified.  
 
The BsnΔEx4/5 mouse model has been well described; showing major structural defects in ribbon 
synapses (Altrock et al, 2003; Dick et al, 2003; tom Dieck et al, 2005; Frank et al, 2010) and 
enhanced short-term depression in central glutamatergic synapses (Hallermann et al, 2010). A 
common observation is the upregulation of piccolo, which may compensate for some of bassoon's 
functions (Waites., et al 2013). Therefore, the main strength of the manuscript lies in elegantly 
revealing the homeostatic compensation resulting from partial activity deprivation in the auditory 
system perhaps more than advancing our understanding of bassoon's function. The unique in vivo 
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recordings show that auditory signaling is hardly impaired in BsnΔEx4/5 mice despite the 
transmission defects showing the robustness of this connection in vivo and highlighting the 
importance of in vivo follow up of in vitro observations. These findings would certainly interest a 
broad audience.  
 
We would like to thank the reviewer for the appreciation of our work and for the criticism that 
helped us to improve the MS. 
 
Minor comments:  
 
1.) The authors propose several mechanisms to explain the increased quantal size. In addition to 
enlarged PSD and changed AMPA receptor-type composition, enhanced expression of presynaptic 
vGlut is a plausible mechanism that the authors should test by measuring vGlut intensities in Figure 
2.   
 
Done:  
1. VGLUT1 immunofluorescence intensity was measured wt and BsnΔEx4/5 terminals around bushy 
cells and were not significantly different from each other. We present this data in Figure S1. 
 
2. In addition to the analysis of VGLUT1 immunofluorescence intensity, we also checked for an 
increased vesicle size as a potential mechanism for the observed increased quantal size. We 
analyzed the synaptic vesicle diameter (inner SV diameter) and found it unchanged. This data is 
now presented as Figure S2C.  
 
2.) The term "vesicle reloading" in the ms title not optimal. Probably "vesicle pool replenishment" is 
better.  
Since we run into character restriction issues for the title, we propose the following title as a 
compromise: 
 
“Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS 
synapse”  
 
Old title: 
Bassoon-disruption slows vesicle reloading and induces homeostatic plasticity at a large CNS 
synapse 
 
3.) The running title should be reconsidered too; it does not convey the main message of the ms  
The proposed new running title is 
Bassoon disruption induces homeostatic plasticity - 49 characters 
 
Old title: (max allowed characters with spaces: 50) 
Role of bassoon at large central auditory synapse 
 
 
Referee #2  
 
The study by Schulz et al. investigates the consequence of a Bassoon (Bsn) hypomorph mutation on 
synaptic signaling at the endbulb synapse in the mouse auditory system. Consequences of the Bsn 
KO have previously been described in cultured neurons (Altrock et al. 2003), in other CNS synapses 
studied in slice preparations (Hallermann et al. 2010), as well as in detail at the ribbon-type 
synapses of inner hair cells, by this lab (Kimich et al 2005, Frank et al. 2010, Jing et al. 2013).  
 
We would like to thank the reviewer for the criticism that helped us to further improve our 
manuscript. We have addressed all comments of the reviewer and performed additional experiments 
towards elucidating the molecular mechanisms underlying the changes of vesicular release 
probability, vesicle replenishment and quantal size. In brief, we find by immunohistochemistry that 
the recently identified, bassoon interacting and synaptic-vesicle-associated protein Mover is 
downregulated in BsnΔEx4/5 endbulbs. As Mover may contribute to regulate vesicle replenishment 
and may negatively regulate release probability, we consider its reduced abundance a very 
interesting candidate mechanism for the increased vesicular release probability and reduced vesicle 
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replenishment observed in BsnΔEx4/5 endbulbs. In addition, using semi-quantitative 
immunofluorescence analysis we show that the abundance of the two priming factors Munc13-1 and 
RIM2a at the AZs and the synaptic glutamate transporter VGLUT1 in BsnΔEx4/5 endbulbs is 
unaltered, which argues against their implication in the increased release probability and for a 
general preservation of the molecular composition of the AZs. Finding that the VGLUT1 
immunofluorescence and synaptic vesicle diameter are unaltered in endbulbs of BsnΔEx4/5 mutants, 
we suggest that the quantal size is increased because of changes in postsynaptic GluA receptors in 
bushy cells (BCs).  
In addition, we provide additional analysis that further corroborates our conclusion: e.g. increased 
release probability supported by decreased paired pulse ratio BsnΔEx4/5 endbulb across three different 
stimulus intervals (Table 2), BC volume reduced based on immunohistochemistry, and unchanged 
synaptic vesicle diameter arguing against a presynaptic origin of increased quantal size.  
Finally, we rewrote a substantial part of the manuscript to better convey the aims, design and 
outcome of the study. 
 
1.) In light of the previous studies, the design, and the main aim of the present study was not well 
explained. The authors find changes in the pool of vesicles and recovery speed which largely re-
capitulate previous work.  
 
We agree with the reviewer that our finding of a role of bassoon for efficient vesicular 
replenishment is consistent with the report of Hallermann et al. (2010) on cerebellar high throughput 
synapse. However, our study goes far beyond by:  

• characterizing the molecular composition of the active zone and the synaptic ultrastructure  
• demonstrating an increased quantal size, reduced size of the readily releasable pool and 

increased release probability 
• decreased soma size of the postsynaptic neuron. 

We also agree that the cochlear phenotype and specifically the defect of sound coding at the hair cell 
ribbon synapse has been characterized thoroughly in previous work. However, we actually see this 
as an advantage that enabled us to explain our observations (ultrastructural and functional synapse 
changes) as homeostatic adaptation, whereas, for example, no information on the firing rate of the 
presynaptic neuron was available in the study of Hallermann et al. Finally, we advance the 
understanding of the signaling deficit in the auditory pathway of Bassoon mouse mutants by 
comparing sound-driven spiking in the presynaptic and postsynaptic neurons of the cochlear 
nucleus, demonstrating a near normal transmission due to homeostatic plasticity. This opportunity of 
studying synaptic transmission in vivo and in vitro with good control on the presynaptic activity 
makes the system under study, the early auditory pathway, quite unique and highly valuable. 
 
In order to address this concern of the reviewer in the revised MS we now better explain the 
rationale of the present study and state in: 
Introduction, page 4,5 
“Working on a cerebellar synapse with high transmission rate an impairment of vesicle 
replenishment was found in the absence of bassoon (Hallermann et al., 2010). However, potential 
accompanying ultrastructural and molecular changes remain to be investigated. Robust 
morphological and functional phenotypes were observed at bassoon-deficient ribbon synapses of 
retinal photoreceptors (Dick et al., 2003) and cochlear inner hair cells (Buran et al., 2010; Frank et 
al., 2010; Jing et al., 2013; Khimich et al., 2005) including detached or missing ribbons and a 
reduced rate of transmitter release. In hair cells, fewer membrane-tethered vesicles and Ca2+ 

channels lead to a reduced number of readily releasable vesicles and their replenishment is impaired 
in addition (Frank et al., 2010). However, it remained challenging to distinguish direct effects of 
bassoon disruption from those of impaired ribbon anchorage (Jing et al., 2013). Consistent with the 
reduction of exocytosis from inner hair cells, the auditory nerve fibers (ANFs) exhibited 
approximately halved sound-evoked spiking rates (Buran et al., 2010; Jing et al., 2013) and the 
compound action potential of the spiral ganglion was much reduced (Buran et al., 2010; Jing et al., 
2013; Khimich et al., 2005). However, the subsequent auditory brainstem responses were better 
maintained, suggesting some compensatory mechanism in the cochlear nucleus.” 
 
and 
 
“We combined quantitative light and electron microscopy, in vitro electrophysiology in acute 
brainstem slices and in vivo extracellular recordings of sound driven activity to study the role of 
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Bassoon in synaptic transmission from ANFs to BCs and potential compensatory mechanisms in 
hearing impaired BsnΔEx4/5 mice.” 
 
2.) In addition, there were small, but significant increases in PSD length and in the quantal 
amplitude, and there was a putative increase in p-rel (but see point 3). These latter changes are 
interpreted as a "homeostatic" plasticity, but the molecular mechanisms of this putative homeostatic 
change are not explored nor was the physiological background well explained (is this due to a 
decreased sound-driven activity in Bsn KO mice?). 
 
Yes, BsnΔEx4/5 mutants show an activity deprivation of the AVCN due to the reduction of 
spontaneous and evoked rates of single auditory nerve fibers by a factor of 4 and 2.5, respectively 
(Buran et al, 2010; Jing et al, 2013). We postulate based on our previous and the present work, that 
this partial activity deprivation induces an increase of synaptic strength and of intrinsic excitability. 
We assume that the observed changes reflect homeostatic plasticity also because increased quantal 
size has not yet been reported for other synapses of bassoon mutants. We agree with the reviewer 
that we do not directly address the molecular regulation mediating the observed homeostatic 
plasticity, which is hard to do in a system as complex and small as the AVCN and beyond the scope 
of this study.  
However, in order to address this concern of the reviewer we have: 

1. clarified the rationale, i.e. the activity deprivation of the AVCN in the BsnΔEx4/5 mutants 
due to the synaptic defect of inner hair cells 

2. performed further experiments and analysis to better elucidate the molecular mechanisms 
underlying the functional synaptic phenotype. We now show that: 

a. VGLUT1 immunofluorescence is unaltered in endbulbs of BsnΔEx4/5 mutants 
b. the synaptic vesicle diameter is unaltered in endbulbs of BsnΔEx4/5 mutants 
c. immunofluorescence estimates for Munc13-1 and RIM2 at excitatory AZs around 

BCs are largely unaltered 
d. presynaptic protein Mover is down-regulated in endbulbs of BsnΔEx4/5 mutants, 

which serves as a molecular candidate mechanism for the increased release 
probability (since Mover siRNA increased release probability in the calyx of 
Held synapse, Körber 2011) and reduced vesicle replenishment 

e. BC (bushy cell) somata are smaller also by immunofluorescence analysis  
Despite numerous attempts and successful use of the same antibodies for GluA3 and GluA4 on other 
tissue we had great difficulty to reproducibly obtain specific GluA labeling in the BCs. We now 
provide careful discussion of the increased quantal size, favoring the increased postsynaptic GluA 
receptor number. 
 
3.) It was also difficult to follow the experimental design of re-adjusted sound intensities in Fig. S7.  
We realize that we did not sufficiently communicate the rationale of the experiment now presented 
in Figure S8. As mentioned in the response to comment 2, the spontaneous and evoked rates of 
single auditory nerve fibers (ANFs) of BsnΔEx4/5 mutants are reduced. We have revised the 
corresponding section of the results section to now state: 
“In order to elucidate how bassoon disruption at the endbulb synapses affects transmission of 
auditory information in the AVCN, we compared BC firing in BsnΔEx4/5 and Bsnwt mice while 
matching ANF activity between both genotypes. We reduced the sound pressure levels for Bsnwt 

mice so that their ANF adapted spike rates matched the maximal adapted firing rate of BsnΔEx4/5 ANF 
(Figure S8). We found comparable rates in BCs of BsnΔEx4/5 and Bsnwt mice (Figure S8) suggesting 
no further impairment in afferent auditory transmission at endbulb synapses due to bassoon 
disruption. In summary, these in vivo findings corroborate our hypothesis that due to homeostatic 
plasticity afferent auditory transmission from ANFs to BCs is intact at least at the firing rates of 
BsnΔEx4/5 ANF amenable to sound stimulation. We propose that homeostatic plasticity and 
convergence of inputs likely underlie the improved sound onset firing of BCs and the better 
preserved wave 2 of the auditory brainstem response.” 
 
4. The paper contains a lot of potentially interesting data, but its main thrust remains somewhat 
fuzzy.  
 
As mentioned in our general response we have revised the manuscript for better explanation and 
flow. 
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Further specific points:  
 
5. The description of the IHC results in Figs 1, 2 should be improved, and more to the point. It 
should be explained at the outset, which hypothesis was tested, and the main results should be 
highlighted. 
 
Done, we provide better motivation and guidance and have added the results of additional 
experiments and analysis. 
 
Initially, images of the various individual channels should be shown separately side-by-side. The 
labeling "sap7f" should best be changed to "Bassoon".  
 
We show the individual channels separately next to the merged figure. We would like to refrain 
from changing sap7f to bassoon, as we need to distinguish another (c-terminal) anti-bassoon 
antibody. As a compromise we have renamed it to Bsn-sap7f and Bsn-c-term and have used this 
notation throughout.  
 
6.) Also, what was the sap7f signal outside synapses (see Figs 1D, E green smear on the sides -- 
axonal signals?).  
 
This immunofluorescence is certainly unspecific as it also observed in the mutant tissue, where we 
do not find any noticeable sap7f immunofluorescence in endbulbs around the BC (Fig. 1E). We 
suspect that the stained structures represent capillaries and not axons, which are much thinner (see 
supplementary Fig. S4). We now mention this in the results section.  
 
7.) Why were there only few Munc13 punctae (Fig. 2D) as compared to other active zone markers 
(e.g. Rim2-Fig. 2C).  
 
In order to address this comment and the overall concern that the molecular mechanisms underlying 
the functional changes should be further investigated, we analyzed the Munc13-1 expression in 
presumptive endbulb AZs around 10 Bsnwt and 5 BsnΔEx4/5 BCs. We did not find fewer, but in fact, 
more Munc13-1 positive AZs in both genotypes. The higher count of excitatory AZs may have 
technical reasons, because the gephyrin immunofluorescence was stronger in these stainings, which 
may have caused underestimation of inhibitory AZs by confluence of immunofluroescent spots. We 
found a small but significant difference in the number of Munc13-1 positive AZs in BsnΔEx4/5 
endbulbs, but comparable Munc13-1 immunofluorescence per AZ between Bsnwt and BsnΔEx4/5 
endbulbs (Figure 2).  
 
8.) It remained unclear whether Bsn KO mice had an outright docking phenotype, or not (the two 
different measure gave different results).  
 
Currently the view of morphological substrates of functional vesicle states is being revolutionized 
by the use of high pressure freezing and EM-tomography. While previously docking (physical 
contact between vesicle and plasma membranes) were considered a prerequisite for fusion 
competence of vesicles, it has become clear now that vesicles tethered to the membrane but not 
“contacting” may be fusion competent (Siksou et al, 2009; Fernández-Busnadiego et al, 2013). In 
the light of these developments and given that we used random section EM we revised our statement 
to: 
Results: 
“We then compared the vesicle distribution by counting synaptic vesicles in five 40 nm bins from 
the presynaptic membrane into the cytosol of the presynaptic terminal (Figure S2 and data not 
shown). We observed a trend towards fewer membrane-proximal vesicles in BsnΔEx4/5 excitatory 
synapses (first bin), which became significant when related to the PSD length (Figure 3D). The 
number of vesicles in direct contact with the presynaptic plasma membrane (Figure 3D) was 
unaltered, as were the vesicle counts for the other bins and the vesicle size (Figure S2). “  
Discussion: 
“The integration technique revealed a significant reduction of the RRP size for all stimulation 
frequencies. The morphological correlate of the physiologically defined RRP is subject to active 
research. It may not only include “membrane contacting” or “docked” vesicles, which were not 
changed in number at AZs of Bsn∆Ex4/5 endbulbs, but potentially also membrane proximal tethered 
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vesicles (Siksou et al., 2009). We found a significant reduction of membrane proximal vesicles per 
µm PSD, which seems consistent with the functional finding of a reduced RRP, but did not employ 
EM tomography that is required to resolve tethers. In addition, there may be fewer functional release 
sites due to fewer presynaptic Ca2+ channels. A reduction in the number of AZ Ca2+ channels was 
indeed reported for bassoon-deficient synapses of photoreceptors and hair cells (tom Dieck et al., 
2005; Frank et al., 2010), but a role of the synaptic ribbon to promote clustering of Ca2+ channels 
was postulated (Frank et al., 2010; Jing et al., 2013). Finally, the standing RRP, resulting from the 
balance of release and replenishment (Frank et al., 2010; Oesch and Diamond, 2011; Pangršič et al., 
2010), may be lower due to impaired vesicle replenishment. Indeed, we found evidence for impaired 
replenishment during and after stimulation.” 
 
9.) The authors claim to have found an increased p-rel but inspection of Table 1 shows that this 
parameter was significantly increased only for the 300 Hz train stimuli, but not with 100 or 200 Hz 
trains. The reasons for this should be discussed.  
 
In response to this comment we have additionally calculated the paired-pulse ratio of the responses 
to the first two pulses as an additional metric related to release probability and find it decreased in 
Bsn∆Ex4/5 endbulbs for all three frequencies (now included in Table 2), indicating enhanced release 
probability in the absence of functional bassoon. We argue that the release probability obtained from 
EPSC integration likely underestimate it in the Bsn∆Ex4/5 endbulbs, because the impaired vesicle 
replenishment is expected to bias the extrapolated RRP estimate to larger values. Since the 
difference in steady state EPSCs, likely reflecting the balance of vesicle replenishment and 
subsequent fusion is smallest for 333 Hz, which also drives the most rapid RRP depletion, we trust 
the release probability estimate obtained at 333 Hz the most.  
We have revised the corresponding results and discussion sections accordingly. 
 
Results: 
“Responses of BsnΔEx4/5 endbulbs showed faster and stronger depression with lower steady-state 
values (Figure 5A, B, D, E; Table 2). Stronger depression was also evident from the lower paired-
pulse ratio for the responses to the first two pulses at all stimulus frequencies (Table 2). The lower 
paired-pulse ratio and faster decline of responses during the train indicates an increased release 
probability in the BsnΔEx4/5 endbulb synapses (see below). We estimated release probability, size of 
the readily releasable pool of vesicles (RRP) and vesicle replenishment by applying the method of 
integration (Schneggenburger et al., 1999) to the EPSC trains (Figure 5F). Line fitting to the last 10 
of the 20 data points was used to estimate the number of readily releasable vesicles (the ordinate 
crossing of the extrapolated line-fit divided by the mean mEPSC amplitude) and to approximate 
vesicle replenishment (slope of fit), which are summarized in Table 2. In brief, we found a 
decreased RRP size for all stimulus frequencies and an increased release probability for 333 Hz 
stimulation.” 
Discussion: 
“An increase in release probability was indicated by faster and stronger depression and enhanced 
asynchronous release. The paired-pulse ratio was smaller for Bsn∆Ex4/5 endbulbs at all stimulus rates, 
while the speed of depression and the estimate of release probability from the EPSC-integration 
technique differed significantly only at 200 and 333 Hz, respectively. We consider it likely that 
demonstrating significantly enhanced release probability using the EPSC-integration technique 
required the stronger synaptic drive of higher stimulus rates because of the lower rate of vesicle 
replenishment in Bsn∆Ex4/5 synapses. Impaired replenishment might also explain why the mEPSC 
frequency rate was unchanged despite the increased release probability.” 
 
10.) Throughout, the number of independent repetitions should be stated in the Results text. In all 
bar graphs which show average value plus/minus SEM; the data points from individual cells could 
be overlaid (e.g. in Fig. 4B - F).  
 
done 
 
11.) The authors claim that Bsn KO cells "fire more APs for small current injections" (p. 12 top), 
but the corresponding Figure only shows a set of example traces for a WT cell (Fig. 8A). This 
example seems to show only a single AP at the onset even with the largest I-injection, whereas the 
average data for WT suggests about 3-4 APs (Fig. 8C, black symbols). Thus, a more representative 
example, in which all APs all clearly visible, and example traces for a Bsn KO cell should be shown.  
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Also, it appears that FigS6A contains the same set of traces as Fig. 8A.  
 
We followed the reviewer’s suggestion and now show more representative example traces for both 
genotypes in Figure 8A, which now also differ from the ones shown in Figure S7 (former Figure 
S6). 
 
 
Referee #3  
 
This is an excellent manuscript designed to assess the contribution of the presynaptic active zone 
protein Bassoon on synaptic function and plasticity within the auditory system. Specifically, the 
authors describe a set of morphological and electrophysiological experiments assessing functional 
changes at the endbulb of held forming synapses on bushy cells within the anteroventral cochlear 
nucleus. Their results show that in the absence of Bassoon, Held synapses are formed normally, in 
both size and number. While vesicle replenishment and the standing pool of readily releasable pool 
vesicles is reduced, they noted that postsynaptic densities are larger as these synapses exhibit 
increases in quantal size and vesicular release probability. Intriguingly, in vivo homoestatic 
mechanisms appear to compensate for these changes allowing for improved synchronous signaling 
of the dysfunctional auditory pathway in BsnΔEx4/5 mice.  
This is a beautifully designed and executed study. The data are of very high quality and the 
manuscript is clearly and logically written. I have no concerns.  
 
We would like to thank the reviewer for the appreciation of our work. 
 
 
2nd Editorial Decision 29 October 2013 

Thank you for submitting your revised manuscript to The EMBO Journal. Your study has now been 
re-reviewed by referee #2. As you can see below, the referee appreciates the introduced changes, but 
also has a number of constructive text suggestions that I would like you to take into consideration in 
a final revision.  
 
 
REFEREE REPORT 
 
Referee #2  
 
The authors have responded to many of my previous points. However, I think writing of the paper 
still needs to be improved, especially Abstract, Introduction and start of Results. It needs to be 
explained at the outset what the aim of this study was, and that the hypothesis of homeostatic 
plasticity is followed.  
 
In the results, please clearly conclude your main findings for each Figure. For example, for Fig. 1 it 
should be summarized explicitly that the "truncated" form of the protein was absent in endbulb 
synapses, even if this might seem trivial to the authors. At the end of the Results for Fig.2, again 
please summarize the main results; i.e. also specifically mention that Piccolo was upregulated, but 
that RIM2a and Munc13-1 were unchanged. Please also explain your motivation for chosing RIM2a 
(as opposed to RIM1?) and Munc13-1 for these investigations, at the start of describing Fig. 2.  
 
In the introduction, the mouse model used here (Bsn-d-Ex4/5 mice) should be introduced more 
carefully. These improvements are necessary to make the paper accessible to a general readership.  
 
Specific points remaining from the first review:  
 
1) The example image in Fig. 2E shows only few Munc13-1 punctae, and it is was not explained 
why. Maybe show a more representative example?  
 
New points which I spotted upon the second reading:  
 
Major (relating to the homeostatic effects):  
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1) p. 15, Discussion:  
"Instead, the firing rates of BCs at sound onset were greater than those of ANF."  
=> I don't understand this sentence. If the authors refer to the slight difference between the peak rate 
of ANF in Bsn-d-Ex4/5(Fig. 9C, grey bar) and AVCN neurons in Bsn-d-Ex4/5 (same panel, red 
bar), then I think this is an over-interpretation. I understand that due to the hair cell deficit, sound-
evoked peak ANF frequency is lower, and this effect seems to be passed over onto AVCN neurons 
(Fig. 9C). But making a point out of such a small difference (Fig. 9C grey vs red), which might 
easily be caused by sampling biases between the groups of cells, seems not justified.  
 
Similarly, I do not understand statements like (p. 20)  
"Here, we demonstrate that the onset firing of BCs is improved over that of ANFs." (... in Bsn-d-
Ex4/5 mice, you mean?)  
and  
"account for the improved onset response."  
=> in the Bsn-d-Ex4/5 mice, the absolute onset response was clearly smaller (?)  
 
Further specific points:  
 
2) CR IHC to count the number of endbulb inputs (p. 5).  
It is unclear to me how this was done, and I did not find a description in the Method. From the 
image in Fig. 1A, I assume that every endbulb expresses CR, so I did not understand how CR can be 
used to distinguish between different "fingers" of the same endbulb. Please explain this in detail in 
the Methods, and mention it briefly in the Results section. In Fig. 1B, it would be better to change 
the display to a standard histogram with bars.  
 
3) "what is center of mass distance" => please define at outset in Results and make a link to a 
suitable explanation in Methods.  
 
4) Mover IHC intensities: How was the "normalized" intensity of IHC punta calculated (please 
describe in detail in Methods, and mention it briefly in Results). Also, please give the average 
reduction in the Results text -- this was apparently a small effect (~ 20% reduction?).  
 
5) Fig. S2A:  
- indicate length of scalebar  
- what is a "presynaptic dense projection" -- please give reference to previous work  
 
6) p.10:  
" This functional distinction was confirmed by inspection of cell morphology after filling them with 
the fluorescent dye Alexa-488 via the pipette in a subset of experiments (Figure S4)"  
=> Respectfully, the morphology in Fig. 4SC, cell 2 and 3 are very similar -- both cells have 3 or 
more "primary dendrites". Please further explain.  
 
7) Fig. 8G:  
- please label which symbols correspond to which situation (with/without TTX).  
- The fig. legends says " ...but did not enable clamping the voltage at the AIS". -- how was voltage-
clamp assessed?  
 
8) p. 17:  
"We consider it likely that demonstrating significantly enhanced release probability using the EPSC-
integration technique required the stronger synaptic drive of higher stimulus rates because of the 
lower rate of vesicle replenishment inBsnΔEx4/5 synapses"  
=> I did not understand this sentence; please re-write  
 
 
2nd Revision - authors' response 05 November 2013 

Referee #2  
 
1) The authors have responded to many of my previous points. However, I think writing of the paper 
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still needs to be improved, especially Abstract, Introduction and start of Results. It needs to be 
explained at the outset what the aim of this study was, and that the hypothesis of homeostatic 
plasticity is followed.  
 
We have revised the MS accordingly.  
In the abstract, we now state: “Here, we studied the structure and function of endbulb synapses 
in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the 
AVCN. “ to set the stage for introducing homeostatic plasticity. Then we emphasize homeostatic 
plasticity “We propose that ANF activity deprivation drives homeostatic plasticity in the 
AVCN involving synaptic upscaling and increased intrinsic BC excitability.“ 
 
In the introduction, page 4, line 15, we now state: “However, the subsequent auditory brainstem 
responses were better maintained, suggesting some compensatory mechanism in the AVCN. 
Whether such improved synchronicity of auditory signaling results from the convergent ANF input 
to BCs or the AVCN undergoes homeostatic plasticity in response to the reduced ANF remained to 
be investigated.”  
And, page 5, line 4: 
“We combined quantitative light and electron microscopy, in vitro electrophysiology in acute 
brainstem slices and in vivo extracellular recordings of sound driven activity to study the role of 
bassoon in synaptic transmission from ANFs to BCs and potential homeostatic plasticity in hearing 
impaired BsnΔEx4/5 mice.” 
 
In the results we now state: 
Beginning of first section:  
“We used immunohistochemistry in order to elucidate effects of bassoon disruption and potential 
homeostatic plasticity on the convergence of ANFs, the number of AZs and their molecular 
composition.” 
 
In the results, please clearly conclude your main findings for each Figure.  
 
2) For example, for Fig. 1 it should be summarized explicitly that the "truncated" form of the protein 
was absent in endbulb synapses, even if this might seem trivial to the authors.  
 
We had already clearly stated the specific finding, undoubtedly mentioning the remaining presence 
of low amounts of the truncated bassoon fragment. We now clarify further (page 7, line 4): 
“Consistent with previous observations at other synapses (Dresbach et al., 2003; Frank et al., 2010) 
the remaining fragment was not or less efficiently integrated in to the AZ, as is evident from the 
diffuse and weak labeling for the truncated bassoon fragment that less accurately co-localized with 
piccolo. The center of mass distance of the nearest neighboring spots of piccolo and bassoon (Bsn-c-
term. antibody) was significantly larger and more variable (F-test: p<0.001) in BsnΔEx4/5 terminals 
than in Bsnwt (Fig. 1G). Therefore, we assume that AZs BsnΔEx4/5 endbulbs lack functional bassoon.” 
 
3) At the end of the Results for Fig.2, again please summarize the main results; i.e. also specifically 
mention that Piccolo was upregulated, but that RIM2a and Munc13-1 were unchanged.  
 
“While the abundance of RIM2a and Munc13-1 was unchanged, piccolo was up-regulated whereas 
the putative bassoon-effector Mover was down-regulated in endbulbs.” 
 
4) Please also explain your motivation for chosing RIM2a (as opposed to RIM1?) and Munc13-1 for 
these investigations, at the start of describing Fig. 2.  
 
The goal was to analyze exemplary CAZ constituents for whether bassoon disruption would change 
their abundance. Among the several antibodies tested the ones selected for the 
immunohistochemical analysis shown provided the most reliable staining in our hands, which was 
required for a robust comparison of both genotypes. 
 
We now state, page 8, line 3: 
“In addition, we studied RIM2a- and Munc13-1, which served as exemplary CAZ constituents. The 
number and fluorescence intensity of RIM2a- and Munc13-1-immunoreactive spots was largely 
unaltered in Bsn∆Ex4/5 endbulbs (Figure 2C, D, E, F).” 
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5) In the introduction, the mouse model used here (Bsn-d-Ex4/5 mice) should be introduced more 
carefully. These improvements are necessary to make the paper accessible to a general readership.  
Done:  
“Disruption of bassoon function by deletion of exons 4 and 5 of the Bsn gene that code for a large 
central part of bassoon in mice (BsnΔEx4/5) led to a higher number of presynaptically silent synapses 
in cultured hippocampal neurons (Altrock et al., 2003), while the remaining synaptic transmission of 
the functional synapses was unaltered (Altrock et al., 2003; Mukherjee et al., 2010). Working on a 
cerebellar synapse with high transmission rate an impairment of vesicle replenishment was found in 
BsnΔEx4/5 and a bassoon gene trap mouse mutant (Hallermann et al., 2010). However, potential 
accompanying ultrastructural and molecular changes remain to be investigated. Robust 
morphological and functional phenotypes were observed at the synapses of retinal photoreceptors 
(Dick et al., 2003) and cochlear inner hair cells (Buran et al., 2010; Frank et al., 2010; Jing et al., 
2013; Khimich et al., 2005) of BsnΔEx4/5 mice including detached or missing ribbons and a reduced 
rate of transmitter release.” 
 
Specific points remaining from the first review:  
 
6) The example image in Fig. 2E shows only few Munc13-1 punctae, and it is was not explained 
why. Maybe show a more representative example?  
 
Done, we now show a more representative example in panel 2E.  
 
New points which I spotted upon the second reading:  
 
7) Major (relating to the homeostatic effects):  
 
1) p. 15, Discussion:  
"Instead, the firing rates of BCs at sound onset were greater than those of ANF."  
=> I don't understand this sentence. If the authors refer to the slight difference between the peak 
rate of ANF in Bsn-d-Ex4/5(Fig. 9C, grey bar) and AVCN neurons in Bsn-d-Ex4/5 (same panel, red 
bar), then I think this is an over-interpretation. I understand that due to the hair cell deficit, sound-
evoked peak ANF frequency is lower, and this effect seems to be passed over onto AVCN neurons 
(Fig. 9C). But making a point out of such a small difference (Fig. 9C grey vs red), which might 
easily be caused by sampling biases between the groups of cells, seems not justified.  
 
Small, but significant (P = 0.038, Wilcoxon Mann Whitney test), reasonable sample size  (n = 32 
ANF and n = 12 putative BCs) and relevant: 
 
The relatively well maintained wave II of the ABR in BsnΔEx4/5 mice has been puzzling us and the 
field. We now provide evidence for an improved onset response of putative BCs compared to ANF 
and partly attribute it to homeostatic plasticity. 
 
In response to the reviewers request we have toned down our statement in the abstract and 
discussion. 
Abstract:  
“In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound 
onset compared to ANF, likely reflecting the combined effects of ANF convergence and 
homeostatic plasticity.” 
 
Results, page 14, line 6 bottom-up: 
“As reported earlier, we found a reduction of evoked spike rates in BsnΔEx4/5 ANFs (Buran et al., 
2010; Frank et al., 2010). However, the spike rate at sound onset of putative mutant BCs was 
slightly less reduced than in ANFs, indicating that brainstem mechanisms partially counteract the 
cochlear deficit to recover spike rates (Figure 9C; BsnΔEx4/5 ANF: n = 32, BsnΔEx4/5 AVCN: n = 12).” 
 
Discussion, page 16, top: “Instead, the firing rates of BCs at sound onset were slightly higher than 
those of ANF.” 
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8) Similarly, I do not understand statements like (p. 20)  
"Here, we demonstrate that the onset firing of BCs is improved over that of ANFs." (... in Bsn-d-
Ex4/5 mice, you mean?)  
and  
"account for the improved onset response."  
=> in the Bsn-d-Ex4/5 mice, the absolute onset response was clearly smaller (?)  
 
changed accordingly: 
“Here, we demonstrate that in Bsn∆Ex4/5 mice the onset firing of BCs was slightly improved over that 
of ANFs. We postulate that homeostatic plasticity (Turrigiano, 2011) in the AVCN, likely induced 
by the partial auditory deprivation due to the synaptic defect in hair cells, together with the 
convergence of ANF in the AVCN (Cao and Oertel, 2010) account for the partially restored sound 
onset response.” 
 
Further specific points:  
 
9) CR IHC to count the number of endbulb inputs (p. 5).  
It is unclear to me how this was done, and I did not find a description in the Method. From the 
image in Fig. 1A, I assume that every endbulb expresses CR, so I did not understand how CR can be 
used to distinguish between different "fingers" of the same endbulb. Please explain this in detail in 
the Methods, and mention it briefly in the Results section. In Fig. 1B, it would be better to change 
the display to a standard histogram with bars.  
 
done as requested: 
Results:  
was quantified by reconstructing calretinin-stained endbulbs (Caicedo et al., 1997; Chanda and Xu-
Friedman, 2010a; Lohmann and Friauf, 1996) as exemplified in Figure 1A and explained in the 
methods section. 
 
Methods: 
Reconstruction of endbulb terminals from calretinin-stained confocal image stacks was done by 
visually tracing, labeling and computed volume rendering with the Reconstruct software (Fiala, 
2005). 
 
Please note that we did not intend to quantify fingers of individual endbulbs. 
 
10) "what is center of mass distance" => please define at outset in Results and make a link to a 
suitable explanation in Methods.  
 
We consider center of mass distance a standard term. However, on request of the reviewer we 
specify in results: “center of immunofluorescence mass distance“ and provide an explanation in the 
methods section: 
(center of immunofluorescence mass coordinates were calculated by the average pixel position 
weighted by pixel intensity)   
 
11) Mover IHC intensities: How was the "normalized" intensity of IHC punta calculated (please 
describe in detail in Methods, and mention it briefly in Results). Also, please give the average 
reduction in the Results text -- this was apparently a small effect (~ 20% reduction?).  
 
done 
 
12) Fig. S2A:  
- indicate length of scalebar  
done  
 
- what is a "presynaptic dense projection" -- please give reference to previous work  
 We added to the MS: 
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“Given that bassoon is part of the CAZ we also counted presynaptic dense projections (DP), 
electron-dense appearing specializations that extend from the cytomatrix into the cytoplasm and 
tether synaptic vesicles (Zhai and Bellen, 2004)…” 
 
13) p.10:  
" This functional distinction was confirmed by inspection of cell morphology after filling them with 
the fluorescent dye Alexa-488 via the pipette in a subset of experiments (Figure S4)"  
=> Respectfully, the morphology in Fig. 4SC, cell 2 and 3 are very similar -- both cells have 3 or 
more "primary dendrites". Please further explain.  
 
In response to the reviewers request we have enlarged the images and enhanced the contrast 
allowing for better visual inspection and now explain more thoroughly in the figure legend: 
 
Cell 2 exhibits bushy cell-typical mEPSCs and morphology (two primary dendrites that branch 
extensively in close proximity to the soma and oval shaped soma) as well, but unusually strong 
depression. In contrast, cell 3 represents a typical example of a stellate cell with facilitating EPSC 
amplitudes at the beginning of high frequency stimulation, slower kinetics of both, evoked and 
spontaneous currents, more numerous (~5) primary dendrites (*) and a sharp cornered, polygon-like 
soma. 
 
14) Fig. 8G:  
- please label which symbols correspond to which situation (with/without TTX).  
done 
- The fig. legends says " ...but did not enable clamping the voltage at the AIS". -- how was voltage-
clamp assessed?  
 
To explain this the figure legend now states: 
[...] but did not enable clamping the voltage at the AIS as indicated by the all-or-none-like current 
and the relatively constant peak current amplitudes, exemplified in G. 
 
15) p. 17:  
"We consider it likely that demonstrating significantly enhanced release probability using the 
EPSC-integration technique required the stronger synaptic drive of higher stimulus rates because of 
the lower rate of vesicle replenishment inBsnΔEx4/5 synapses"  
=> I did not understand this sentence; please re-write 
 
done: “The enhancement of release probability might have been revealed by the EPSC-integration 
technique only with most rapid RRP depletion protocol (at 333 Hz), because at lower stimulation 
rates the method tends to overestimate the RRP, and consequently, to underestimate release 
probability in Bsn∆Ex4/5 synapses due to their lower rate of vesicle replenishment.” 
 
 
 
 
 
 


