Supplemental methods

RT-PCR, Ret expression

3rd instar larvae, thoraces of pharate stage P11 pupae and 3 day old adult animals, or dissected IFMs of 3 day adult animals were homogenized in RLT buffer (Qiagen) using a rotor-stator homogenizer. Total RNA was prepared using the RNeasy mini kit and the QIAshredder column (Qiagen). RT-PCR analysis was performed using the OneStep RT-PCR kit (Qiagen) using 20 ng of template RNA and 40 cycles of PCR amplification. See below for list of primers.

Fly strains

UAS-Ret^{WT} was generated by reverse mutagenesis of a *UAS-Ret^{MEN2B}* expression construct (kindly provided by Ross Cagan), after which Ret^{WT} cDNA was subcloned into a pUAST_attB vector using Sph1 and Not1, and injected into the attP40 strain according to standard procedures (Genetic Services, Inc.).

Antibodies

For the western blot analysis, antibodies used were anti-NDUFS3 (Abcam #ab14711) and anti-Pyruvate dehydrogenase (Abcam #ab110334), anti-PINK1 (Novus Biologicals #BC100-494), anti-GAPDH (#Sigma-Aldrich G8795), panRet (provided by C. Ibanez) and alpha-Tubulin (clone DM1A, Sigma).

Cell Culture, treatments and RNA Interference

HeLa cells (ATCC number CCL-2) were cultured and transfected for RNAi as described previously (Exner et al). PINK1 (VHS50790, Invitrogen) or medGC control siRNA oligos (Invitrogen) were transfected using Lipofectamine RNAiMAX (Invitrogen). Wt-Ret9 (kindly provided by Marc Billaud) was overexpressed using Lipofectamine 2000. For stimulation of Ret, cells were incubated with hGDNF (50ng/ml) and hGFRα-1 (50ng/ml) for 24 hours.

Assessment of mitochondrial morphology

Mitochondrial morphology of Hela cells was assessed generally as described previously (Exner et al, 2007). Briefly, Mitotracker Green FM (200 nm) (Invitrogen) was added to the cells and incubated for 15 minutes to label mitochondria. Coverslips with live cells immersed in PBS supplemented with Ca^{2+} and Mg^{2+} were analyzed using a Zeiss Axioplan fluorescence microscope with a 63x objective. Random fields were selected and within each field, all cells were classified and counted by the morphology of the mitochondria as "tubular" or fragmented".

List PCR primers

Primer	5' to 3'	CG34089_R	TTTCATTAGAGGCTAAAGATGTTACG
		CG34092_F	ATTCGTAAAGGTCCTAATAAAGTTG
Drosophila genomic		CG34092_R	ATAATTTAATCGCATCACAAAAAGG
Pink1B9-F	CGACCAAATCGAATCGAAAC	CG34439_F	CCCTACAAGATGAACGGTCTTGA
Pink1B9-R	CCAGACTAACGCCAATCAG	CG34439_R	GAGAGCTCCACTGGCGAAAT
Pink1-F	TCTGTGAGACTGCTGACCGT	CG3446_F	TTTACCCTGCCCCAAGTCAG
Pink1-R	AAGATTCCACTGCTGCTGGT	CG3446 R	TGGTGGTGAAGCCTGTGAAG
Park1-F	GTTCCCGTTTGGGCGAGCGT	CG3621 F	CCTGGGTCGGGAGCACAAC
Park1_R		CG3621 R	ATCCCGCTGGCAGTAGTAGT
Park25_F	GCAAATCGGCAGCCACGCAG	CG3683 F	AGCTGTTGTGTTGTTTTTGGTTG
Dork 25 D	GCCTCATCCCATCGCGCCTC	CG3683 R	GCATTGCTTGCCCAAATGGA
Dork E	GCTGGTGTTTGGCAACGCGTAAG	CG3944 F	AGAACATGCCCTTCGTCGTT
Dorle D	GETCACCETTTTCCCCCETCT	CG3944 R	GGGACAGGCTTCCTGACAGA
DataDNA E		$CG4000\overline{2}$ F	GAGGAGCTATGTGGTGGTGG
ReteDNA-F	GTCCCAGTCCCCCCAAACA	CG40002_R	TGTAACTACATGCCTACATATCGCA
CAL 20 E	CCCCCTTCCTACCCCTACCA	CG40472_F	GGGAAATACCGCAGTAGGCA
GAL80-F	GUUGUIIGUIAUGUIAUGA	CG40472 R	GGGGCCATTGCGGTAAGATA
GAL80-K	GIUIIIGGGAUIUGUIGGUUU	CG5548 F	CAATTTACGATGGGCAACGC
		CG5548_R	GACTCCATCTCCTCCTGGGT
Drosopnila KI-PCK		CG5703_F	TGGAGACCTGCAAGAAGCAG
CG10320_F	TAAGICAACITACAGCAATGGGC	CG5703_R	TCCTTGGATGTCAGATCCTCATAG
CG10320_R	ATAGCGCCAGACTICGTICC	CG6008_E	CACCTTCTACTCCCCCTAC
CG11423_F	TATACGGACGGCACGATTGG	CG6008_P	CCACTTCCCATTCCCATTA
CG11423_R	AGTACCGGGCTCTCCTTCAT	CG6462_E	CUCACITEUCATIC
CG11455_F	CTTCCATGCAATGCGAAACGA	CG6463_P	CTCCATCATCTCCCCTCCTC
CG11455_R	GGGTCTCCGTCTAGTAGGCA	CG0405_K	
CG11752_F	ACCCAACACGTCCACTTTGT	CG0485_F	
CG11752_R	CACGCAATTGCTGGTCAGTC	CG0485_K	
CG11913_F	TCCGGTAATCATGTCTGGCG	CG6914_F	AAGAAGAIGUICACUGUCAA
CG11913_R	GGCTCTTCGGGGGCAATCTTC	CG6914_K	AIGLACUITICUIGGAGIUG
CG12079_F	GGATAAGCCCACTGTCCGC	CG/598_F	GGATGIGCIGGACAAGIGGA
CG12079_R	GTACCAGTTGGCCGCCTTAT	CG/598_R	CGCTTAAAGGATTTCCGCACT
CG12203_F	AAGCCGATTTCTGCCGTGTA	CG//12_F	GCIGGICAICAAGGGCCAAA
CG12203_R	CTGGTACAGCTGCAGGGAGG	CG//12_R	AAGGACACACGCGTTTCTGA
CG12400_F	GCTAACTGCGTTAGTTGCCC	CG8680_F	AGAACTGGGGGCATCAAGCTC
CG12400_R	CTTCTGGATGCCGGAAAACAC	CG8680_R	TTTCCGGGTTTGTCCAGGTT
CG12859_F	ACCTGCCAGCTGTTGCTAAA	CG8844_F	ACGAACTGCGGTCCTACAAC
CG12859_R	AATCCCGCATCGAAAACGGT	CG8844_R	CTCCACAATGCTCTCACGGA
CG13240 F	GGAGCTGAACAACCCCATCA	CG9140_F	CAAAGCCGCAGATTGTTGCG
CG13240 R	CCTTCCGGGTCCAGTCATTC	CG9140_R	TCATCGGCATTCACCACCAA
CG15434 F	ACAGTTTGACAACCCTGCGT	CG9160_F	CAGCCAGTTGAGCCAAGAGTG
CG15434 R	CCACGTATTCCCTGACTCCC	CG9160_R	CGTGGTCCAAGGAATCCAGT
CG18624 F	AAAAACGACTCGACAGCCCT	CG9172_F	GCGGTCACATCATACGCATC
CG18624 R	CCACAGTGCTCGCTTATCCA	CG9172_R	GCAGCATGTTGATCCTGCTAT
CG1970 F	AGAACCATTATAATTCCGATTGCGG	CG9306_F	ATATTTTCAGGCGCAGGGCT
CG1970 R	CGTCTGGATACATCACCGGG	CG9306_R	GTAGACATTGCGTCGGTCGT
CG2286 F	CGGTCGGTCTGTCAAAGCAA	CG9762_F	GTACGAGAAGCACCCCATCT
CG2286 R	GATCTGAGCAGCAGCCTGG	CG9762_R	TAAGATGATGTTGCGAAGTCGAT
CG3192 F	TGGCTGGCTGGAATAAGGAC	GAPDH_F	CAAGCAAGCCGATAGATAAAC
CG3192 R	CCGAGATGGGCTCGTGTTG	GAPDH_R	CAAGTGAGTGGATGCCTTGT
CG3214 F	ACTAAGGAGGCCTACTACCCC	RetcDNA-F	ATGCCAAGGCAGGGCAGCTG
CG3214_R	TGTTCTTCGAGTGCAGAGTCA	RetcDNA-R	GTGGCAGTCGGGCCGAAACA
CG32230 F	TCAAATCCCGAACCATGGCA		
CG32230_R	AGCTTCCACAAGCTTTCAAATCC	Human RT-PCR	
CG34063_F	TCTTGGTTAGGAGCTTGAATAGGT	human PINK1 F	CGGTCTCGGCCTGTCAGGAG
CG34063_R	TCAAAAATGGAAAGGAGCGGC	human PINK1 R	GCCCTGCAAGCGTCTCGTGT
CG34076 F	GCTTTAATCGACCGAGA	human Ret F	CGGACATCAGCAAAGACC
CG34076 P	TGGATCAAATCCACATTCAA	human Ret R	GCCGTCGTCATAAATCAGG
CG34085 F	TGAAGCTCCAGTTTCTGGGT	human β-actin F	TGGACTTCGAGCAAGAGA
CG34085_R	TGAGCAACAGATGAATAAGCAA	human β -actin R	AGGAAGGAAGGCTGGAAGAG
CG34089_F	TCATCCATTAGCTTTAGGATTAACTTT		

References

Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R, Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ, Schmid B, Haass C (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 27: 12413-12418