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Abstract:

Background - Brugada syndrome (BrS) is an arrhythmogenic disorder that has been linked to 

mutations in SCN5A, the gene encoding for the pore- -subunit of the cardiac sodium 

channel. Typically, BrS mutations in SCN5A result in a reduction of sodium current with some 

mutations even exhibiting a dominant-negative effect on wild-type (WT) channels thus leading 

to an even more prominent decrease in current amplitudes. However, there is also a category of 

apparently benign (“atypical”) BrS SCN5A mutations that in vitro demonstrates only minor 

biophysical defects. It is therefore not clear how these mutations produce a BrS phenotype. We 

hypothesized that similar to dominant-negative mutations atypical mutations could lead to a 

reduction in sodium currents when co-expressed with WT to mimic the heterozygous patient 

genotype.  

Methods and Results - WT and “atypical” BrS mutations were co-expressed in HEK293 cells, 

showing a reduction in sodium current densities similar to typical BrS mutations.  Importantly, 

this reduction in sodium current was also seen when the atypical mutations were expressed in rat 

or human cardiomyocytes.  This decrease in current density was the result of reduced surface 

expression of both mutant and WT channels.

Conclusions - Taken together, we have shown how apparently benign SCN5A BrS mutations can 

lead to the ECG abnormalities seen in BrS patients through an induced defect that is only present 

when the mutations are co-expressed with WT channels. Our work has implications for risk 

management and stratification for some SCN5A-implicated BrS patients.

Key words: Brugada syndrome, SCN5A, ion channel, arrhythmia (mechanisms), 
electrophysiology  
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Introduction

Brugada syndrome (BrS) is a potentially fatal arrhythmogenic disorder characterized on the 

electrocardiogram by ST-segment elevation in the right precordial leads.1 Although afflicted 

patients have structurally normal hearts, they are predisposed to sudden cardiac death (SCD). It 

has been estimated that the syndrome is responsible for at least 20% of SCD in patients with 

structurally normal hearts and at least 4% of all sudden deaths.2, 3 BrS is typically inherited in an 

autosomal dominant fashion3 and currently, mutations in at least twelve different genes have 

been implicated as causes of this disorder.4 Irrespective of the genes involved, the BrS ECG 

phenotype is ultimately catalyzed by an imbalance of the inward and outward currents during 

phase 1 of the cardiac action potential.2 Mutations in the SCN5A gene encoding the cardiac 

sodium channel Nav1.5 are the predominant source of inherited BrS, accounting for about 20-

30% of all BrS cases.4

In general, in vitro experiments in heterologous expression systems show that SCN5A

BrS mutations result in a major loss of sodium current and are thus able to explain the BrS 

phenotype of afflicted patients. Nevertheless, apparently benign SCN5A BrS mutations exist that 

do not exhibit this typical loss-of-function phenotype but rather display only small biophysical 

defects, if any. Consequently, defects in these “atypical” mutations appear insufficient to support 

the BrS ECG phenotype and explain the clinical manifestation of BrS in mutation carriers. This 

observation led us to question the nature of these mutations and ask how atypical SCN5A BrS 

mutations may cause a BrS phenotype despite near normal channel behavior. 

 Some typical (loss-of-function) SCN5A BrS mutations have a dominant-negative effect 

on WT channels therefore leading to an even more prominent decrease in sodium currents.5, 6

Importantly, we have shown that the mechanism by which an SCN5A BrS mutation can produce 
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a dominant-effect on the WT channel invol -

subunits.6 Moreover, work from our group and others has shown that a sodium channel 

polymorphism can modulate biophysical and trafficking defects in a variety of SCN5A mutations 

located on separate alleles.7-9  Finally, Tester et al 10 reported a SCN5A mutation that -despite 

having normal physiological characteristics when expressed alone- produced a pathogenic effect 

when expressed in the presence of a common sodium channel polymorphism. Based on this 

information, we hypothesized that atypical BrS mutations may produce significant reductions in 

sodium currents when co-expressed with WT, thus explaining the manifestation of the disorder.   

 To mimic the heterozygous genotype usually present in patients, we co-expressed 

atypical SCN5A BrS mutations with WT channels and explored whether their biophysical and 

functional properties were modified.  In fact, we found numerous atypical SCN5A BrS mutations 

that, although mainly innocuous and indistinguishable from WT channels when expressed alone, 

demonstrated significant reductions in total sodium current density when co-expressed with WT 

channels. The current reductions observed on co-expression explain the BrS disease phenotype, 

as it is similar in magnitude to what is observed for typical loss-of-function mutations.  

Importantly, we have unveiled how apparently benign SCN5A BrS mutations with minimal 

biophysical defects led to an emergent loss-of-function as a result of interaction between mutant 

and WT channels. This mechanism reconciles the phenotype of atypical mutations with total 

sodium current amplitude, and can explain the clinical manifestation of Brugada Syndrome seen 

in afflicted patients.

Methods

Cloning of SCN5A mutations 

The N70K, R225W, E439K, R526H, G552R, E555K, L567Q, R620C, T632M, A647D, P701L, 
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R965H, R1023H, E1053K, A1113V, S1140T, D1275N, G1319V, L1501V, G1502S, and E1938K 

mutations were created using the Stratagene QuickChange XL Site Directed Mutagenesis Kit in 

the SCN5A background (PubMed Accession No.NM 198056) expressed in the GFP-IRES vector 

(BD Biosciences Clonetech, San Jose, CA).

Expression of SCN5A in heterologous expression systems 

Cardiac sodium channel were expressed using transient transfections of mutant SCN5A together 

with GFP either in human embryonic kidney cells (HEK293), Chinese Hamster Ovary (CHO) 

cells, neonatal rat ventricular myocytes (NRVM), or iCell cardiomyocytes (Cellular Dynamics 

International, Madison, WI). Co-expression of WT was achieved using a CFP-tagged WT 

channel. Transfection of HEK293 and CHO cells was performed using the Polyfect Transfection 

Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol. The total DNA transfected 

-transfections. (A 1:1 ratio was used for co-

transfections.) Transfection of either iCells or NRVMs was accomplished using Lipofectamine 

2000 (Life Technologies, Grand Island, NY) according to manufacturer’s protocol, using 1.2 g

DNA/35 mm dishes.  

Cellular electrophysiological measurements for functional characterisation  

Sodium currents from transfected cells were recorded one day after transfection at room 

temperature (22 C to 23 C) in the whole-cell configuration of the patch-clamp technique. Patch 

electrodes were prepared from 8161 Corning glass (Dow-Corning, Midland, MI) and the 

resistances of the electrodes were 1.5- -clamp errors, series 

resistance compensation of Axopatch 200A was performed to values >85%. To generate voltage-

clamp command pulses, PCLAMP version 10 (Molecular Devices, Sunnyvale, Calif) was used. 

The intracellular solution contained (in mmol/L, at pH 7.4): NaCl 35, CsF 105, EGTA 10, and 
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Cs-HEPES 10. The external solution for HEK293 and CHO cells contained (mmol/L): NaCl 140, 

KCl 5, MgCl2 1, CaCl2 2, glucose 10, and HEPES 10 (pH 7.4).  For NRVM and iCells, a low 

sodium external solution was used containing 35 mM sodium. 

 Whole-cell INa densities and current-voltage relationships were recorded by holding the 

resting membrane potential at -120mV and stepping in 10mV intervals from -80 to +60mV for 

30ms. Steady-state inactivation was elicited using 500ms prepulses in the range of -140mV to 

+60mV in 10mV increments followed by a 30ms test pulse to -30mV. Time course of recovery 

rec) was studied using a 2-pulse protocol with a 30ms prepulse to -30mV with 

varying rest intervals at -120mV, followed by a 30ms test pulse to -30mV. 

Block by extracellular applications of [2-(trimethylammonium) ethyl] 

-

30mV.  Percent of block was obtained by comparing residual currents after 10 minutes exposure 

to MTSET to currents before application of the drug.

Data Analysis

Data acquisition of voltage clamp data was performed using Clampex 10 (Molecular Devices, 

Union City, CA, USA).  Off-line data analysis was performed with Clampfit 10 (Molecular 

Devices) and Origin 8.5.1 (OriginLab Corp., Northampton, MA, USA).  For recovery from 

inactivation, peak current amplitude was fit to the following equation: 

 Itest/Ipre-pulse = 1 – exp(– t/ rec) 

For steady-state inactivation, normalized currents were fit to a Boltzmann distribution:

I/Imax = (1 + exp[(V–V1/2)/kv])-1 

ms prepulse to -3000mVmm

mV. 
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For measurements of current density, after entering whole-cell mode, a 10mV pulse was 

administered to each cell to determine capacitance as area under the curve (pF). Experimentally 

determined capacitance was used to normalize currents evoked from each cell (pA/pF).

Cell Surface Biotinylation 

3x100mm dishes of HEK293 cells were transfected with 2.5μg DNA for each separate 

construct/dish. Cells were collected 48h post-transfection, washed three times with PBS. 

Biotinylation was performed in 10 mL ice-cold PBS containing 0.25 mg/mL sulf-NHS-SS-Biotin 

for 30 minutes at 4°C. 10mM glycine was added to quench the reaction. Cell lysis solution 

contained (in mM/L) 50 HEPES (pH 7.4), 150 NaCl, 1.4 MgCl2, 1 EGTA, 10% Glycerol, 1% 

triton X-100, 1.2mg/mL N-Ethyl-maleimide with protease inhibitors. NeutrAvidin Agarose was 

used to pull down labeled proteins.  Eluted proteins were then used for Western blotting as 

previously described,11 and blotted using a sodium channel antibody (Millipore Polyclonal Anti-

Na+ Channel III-IV loop).  Pan-cadherin (Cell Signaling Technology) was used as a loading 

control for the cell surface biotinylated fraction and actin (Sigma-Aldrich monoclonal Anti-

Actin, Clone AC-40) was used as a negative control for the cell surface biotinylated fraction. To 

determine the protein expression level, the sodium channel bands were normalized to the control 

bands (actin for total lysate and pan-cadherin for biotinylated fractions). 

Co-immunoprecipitation

Co-IP experiments were carried out using Dynabeads from Invitrogen (Life Technologies) as 

previously described.6 Briefly, washed magnetic beads were added to lysed HEK293 cells 

expressing the construct of interest. Immunoglobulin capture was carried out for 60’ at room 

temperature (22-23°C) or overnight at 4°C using Protein G to control for non-specific binding. 

Target-bound beads were then incubated for 30 minutes at 37° and the supernatant used for 
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Western blot as previously described.11  An HA antibody (Roche monoclonal Anti-HA high 

affinity antibody) was used for the immunoprecipitation and the blots were revealed with a GFP 

antibody (Clontech GFP monoclonal antibody). 

Neonatal Rat Myocytes 

Neonatal rat cardiac myocytes were isolated from 1- or 2-day old Sprague-Dawley rats and 

cultured as previously described.12 Cells were transfected 48h after plating and used 24h post-

transfection for patch-clamp experiments. The neonatal rat procedures followed were in 

accordance with institutional guidelines.

iCells Cardiomyocytes

Induced cardiomyocytes from Cellular Dynamics were cultured at 37°C in 7% CO2 according to 

the manufacturer protocol. Transfections were carried out using Lipofectamine 2000 as described 

above. Patch clamp experiments were carried out 24-36h post-transfection. 

Statistical Analysis

For sample sizes >10, statistical analysis was performed using the standard statistical package 

available in Origin 8.5.1 using parametric t-tests with a critical value <0.05 considered 

significant after determining normality with the Shapiro-Wilk test.  For sample sizes <10, the 

Mann-Whitney U test was performed using Minitab 16 Statistical Software.

Results

Functional analysis of atypical BrS mutations with and without wild-type channels

Putative atypical mutations were selected from the Inherited Arrhythmias Database website 

(www.fsm.it/cardmoc).  We first characterized the biophysical properties of these BrS mutations 

expressed alone and confirmed that they express currents largely indistinguishable from WT. We 

then expressed the so-called “atypical” BrS mutations with and without WT in HEK293 and 
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recorded whole-cell currents. Figure 1A shows representative Na+ current traces (INa) recorded 

from WT, the atypical mutation L567Q, and L567Q+WT. In these experiments, current density 

was similar for WT and L567Q (Figure 1B). However, upon co-expression of L567Q with WT 

SCN5A, we observed a decrease in current density when compared to WT or L567Q alone 

(Figure 1A-B). Furthermore, our analysis showed no statistically significant difference in either 

steady-state inactivation or recovery from inactivation between WT, L567Q, and L567Q+WT 

(Table 1). Additional experiments were performed in CHO cells to exclude the possibility that 

our observations were restricted to channels expressed in HEK293 cells.  Results were similar in 

CHO cells, with a reduction in current density on co-expression of L567Q with WT (Figure 1B).

Functional analysis of the atypical mutation, L567Q, in neonatal rat ventricular myocytes 

(NRVM)

To determine if the results observed in Figure 1 were also true for myocytes and not just an 

artifact of the expression system, NRVMs were transfected with either “atypical” L567Q or WT 

cDNA (Figure 2A). While transfection of WT Nav1.5 in NRVM produced the expected increase 

in sodium currents (Figure 2A-B), expression of L567Q in NRVMs produced a reduction in 

sodium currents, re-capitulating the current reduction seen in HEK293 cells (Figure 2A-B).  

Thus, we conclude that the current reduction seen with the atypical mutant on co-expression with 

WT is not an artifact of HEK293 cells but is preserved in an endogenous cardiac background.  

Functional analysis of atypical mutation L567Q in human cardiomyocytes 

Next we asked whether our results in NRVMs also hold true in human cardiomyocytes.  In these 

experiments we utilized iCell cardiomyocytes (Cellular Dynamics International, Madison, WI). 

These cells are human induced pluripotent stem cell derived cardiomyocytes of high purity and 

preserve many properties of native human cardiac myocytes. Figure 2C shows I/V curves 
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obtained after transfecting either atypical mutant L567Q or GFP (control) in these human 

induced pluripotent stem cell derived cardiomyocytes. Current density was reduced when the 

atypical BrS mutation was expressed in these human cardiomyocytes compared to control 

transfections with GFP (Figure 2C). Again, our data are consistent with results obtained from 

NRVMs or HEK293 cells on heterologous expression of the respective mutant channels. 

Identification of Additional Atypical BrS Mutations

To expand on our initial observations with L567Q we screened for additional atypical BrS 

mutations. We found that N70K, E439K, G552R, E555K, A647D, R965H, E1053K, S1140T, 

L1501V, G1502S, and E1938K produced a reduction in sodium current density upon co-

expression with WT (Figure 3A). In general, on co-expression atypical mutations showed a 

reduction in peak current densities ranging from 30 to 70% when compared to mutations 

expressed alone (Figure 3A). As can be seen in Table 1, the biophysical properties of all 

mutations studied includi rec) and steady-state inactivation (V1/2)

parameters varied only minimally. Notably, in our screen we also identified atypical mutations 

with minimal defects whose current amplitude did not change upon co-expression with WT in 

HEK293 cells (Figure 3B).  To confirm these results obtained in HEK293 cells, we expressed in 

human cardiomyocytes two atypical mutations: E555K (which led to a reduction in total currents 

when co-expressed with WT) and T632M (which did not reduce currents when co-expressed 

with WT). We found, as expected, that total sodium current density was reduced in human 

cardiomyocytes when E555K was transfected in these cells (Figure 3B).  In marked contrast, 

when T632M was transfected in human cardiomyocytes, total sodium current densities were not 

significantly different from control transfections with GFP, hence confirming the results obtained 

in HEK293 cells (Figure 3C). 
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Cell Surface Biotinylation and Co-Immunoprecipitation

The current reductions observed on co-expression of WT sodium channel with atypical BrS 

mutants may be attributed either to (1) a decrease in protein synthesis or (2) an induced 

trafficking defect of WT and/or atypical mutant channels.  To discriminate between WT and 

atypical mutant channels, we used a WT channel fused to YFP, which increases the size of the 

channel protein.  To assess changes in protein synthesis, WT-YFP and the atypical mutants 

L567Q and E555K were expressed either alone or on co-transfection.  Figure 4A shows that total 

protein levels were maintained which indicates that current reductions were not due to a decrease 

in protein synthesis.  In a second step, cell surface biotinylation was performed to determine 

whether the level of channel proteins present at the cell surface membrane was modified.  We 

found that WT, E555K and L567Q showed similar protein levels at the cell surface, as expected 

based on similar current densities (Figure 4A). However, co-expression of WT with either 

atypical mutation drastically reduced cell surface expression of both WT and mutant channels 

(Figure 4A), suggesting that the reduction in currents is due to induced trafficking defects of both 

WT and mutant channels.  As a negative control to demonstrate the purity for cell-surface protein

of our biotinylated fraction, the blots were also probed for the cytosolic protein actin.  The

absence of an actin signal in the surface fractions and the presence of an actin signal in the total 

cell lysate fractions confirmed the accuracy of the fractions. Additionally, pan-cadherin was 

used as a loading control for the cell surface biotinylated fraction.  We have previously shown 

that sodium channels associate with each other which may explain the dominant-negative effect 

exerted by a BrS mutant on WT.6 Similarly, we used co-immunoprecipitation to test whether 

channel interactions were conserved between WT and atypical BrS mutants and found that this 

interaction was indeed maintained between WT and the atypical L567Q mutant (Figure 4B).   
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Electrophysiological hallmarks co-expressing L567Q and WT 

Our surface biotinylation experiments demonstrated a drastic reduction in surface membrane 

protein of both WT and mutant channels which in itself would explain the reduction in current 

amplitudes observed.  However, surface biotinylation experiments do not guarantee that both 

channels are functional at the level of the cell surface membrane.  Therefore, we tested the 

functionality of both mutant and wild-type sodium channels using a WT-C373Y construct 

resistant to block by MTSET.  MTSET ordinarily inhibits sodium channels by binding to a 

cysteine at residue 373.13-15 Mutating residue C373 to tyrosine (C373Y) has been shown to 

essentially eliminate sensitivity to extracellular applications of MTSET.8 Thus, upon co-

expression with L567Q, selective mutation of WT-C373Y will render only WT current 

insensitive to MTSET.

 Figure 5 shows representative sodium current recordings of WT-C373Y and L567Q in the 

ffects were 

allowed to reach steady-state prior to current measurements. As expected, WT-C373Y alone did 

not show any significant decrease in peak current density, while L567Q was blocked to a large 

extent (Figure 5 A-B). More importantly, on co-expression MTSET reduced sodium current 

density by about 50% at steady state (Figure 5 A-B). As this decrease in peak current density can 

be attributed only to block of L567Q, our results suggest that both channels are functional at the 

cellular surface and present at similar levels.

Discussion

Mutations in the SCN5A gene encoding the cardiac sodium channel Nav1.5 are implicated in 

multiple cardiac diseases, including fatal arrhythmogenic disorders such as Long QT syndrome 

Type 3 and Brugada Syndrome. The BrS ECG phenotype is most often the result of loss-of-
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function in Nav1.5. BrS typically manifests in vitro as a loss of whole-cell sodium currents, and 

in vivo as conduction slowing. In marked contrast, we describe here a category of putative 

SCN5A BrS mutations which are apparently benign (hence “atypical” mutations).  These atypical 

mutations do not reduce current density in vitro as typical SCN5A BrS mutations do and when 

they do, it is to such a small extent that they appear insufficient to produce a BrS phenotype. In 

addition, their biophysical properties of voltage-current relationship, steady-state inactivation, 

and recovery from inactivation remain relatively unchanged. However, we have now 

demonstrated that co-expression of many atypical mutations with wild-type SCN5A result in a 

counterintuitive decrease of current density.  This decrease in current density is not the result of 

defective biosynthesis.  Instead, our surface biotinylation experiments show a reduction in cell 

surface expression of both WT and mutant proteins on co-expression of atypical mutations with 

WT channels. This is also reflected in our MTSET experiments showing that while current 

density is reduced on co-expression, both WT and mutant channels are not only present but also 

functional.  Taken together, our analysis suggests that the loss of current density upon co-

expression with WT is the result of an induced trafficking defect affecting both mutant and WT 

channels.   

It is apparent that the mechanism governing the behavior of atypical BrS mutations relies 

on a damaging interaction between two otherwise normally functioning -subunits.  This 

observation is surprising, because it deviates from the established paradigms of 

haploinsufficiency or negative dominance. To the best of our knowledge, no such mechanism has 

been previously reported.  On a more mechanistic level we speculate that there is either (i) a 

misfolding event that occurs when a WT channel interacts with a mutant channel thereby 

impairing forward trafficking, (ii) a symmetry-sensing event which allows only for successful 
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processing and export of like-channel pairs or (iii) increased degradation of both channels when 

co-expressed. However, those potential mechanisms are all hypothetical and need to be further 

explored. 

 Interestingly, the atypical mutations that displayed a loss of current density upon co-

expression with WT were located exclusively on the cytoplasmic domains of the channel (Figure 

6, circles). This observation becomes more intriguing as one has to consider that NaV1.5 is 

known to interact with a host of binding partners via its cytoplasmic domains,16, 17 suggesting 

-subunits may have interaction mediated by one or more of these binding partners.  This 

represents other potential pathways through which two independently perfectly functional 

channels may become non-functional on co-expression.  Theoretically, disabling the interaction 

between atypical BrS and WT sodium channels may restore trafficking and ameliorate the 

disease phenotype clinically, as channel function is normal in isolation. Further work will seek to 

examine the role of these interacting proteins on producing the BrS loss-of-function phenotype 

from atypical BrS mutations.  

 Our findings appear to contrast a recent report by Mercier et al who found that for a 

dominant negative mutation located on the extracellular loop of DIII, the 1-subunit appeared to 

- 18 However, our biochemical and patch clamp experiments here 

show interaction between -subunits without co-transfection of -subunits and we have also 

previously demonstrated that co-immunoprecipitation between sodium channels was possible 

without 1-subunit over expression.6  Despite extensive debate within the sodium channel 

community, the physiological effects of the 1-subunit remain poorly understood. Further 

complicating matters is the fact that HEK293 cells are known to endogenously express 1-

subunits in a highly variable manner.  Therefore, one potential explanation for the discrepancy 
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between our work and that of Mercier et al could be due to different endogenous levels of 1-

subunits present in the expression systems used.  

A loss-of-function in SCN5A arising directly from the interaction of a disease allele with 

WT is attractive as it offers an elegant solution for apparently innocuous BrS mutations showing 

WT-like behavior.  However, not all mutations without loss of function characteristics showed a 

current reduction upon co-expression with WT.  One possible explanation is the uncertainty of 

these mutations being benign polymorphisms instead of ‘true’ BrS mutations.  Importantly, even 

though these SCN5A variants have been putatively found in BrS patients, several of them have 

only been reported as ‘candidate’ gene mutations in the Inherited Arrhythmias Database 

(www.fsm.it/cardmoc).  Thus, there is a distinct possibility that these mutations are not truly the 

source of the disease, especially when we consider the fact that no obvious functional defects 

have been reported on co-expression with WT in a heterologous system or in human 

cardiomyocytes.   

 Most importantly, however, our study demonstrates that SCN5A mutations may not only 

affect their own expression but also reduce expression of WT/mutant channels complexes in a 

heterozygous situation. Overall, our results have a high level of clinical significance in that they 

offer a novel mechanism to understand the complex phenomenon of genotype-phenotype 

discordance that was presented by these atypical mutations because it was up until now unclear 

how an SCN5A mutant channel with no major biophysical defects could lead to BrS. This 

genotype-phenotype discordance is of high interest to clinicians as it affects risk stratification 

and ultimately treatment options for BrS patient and closely related family members that are 

mutation carriers.  While some progress has been made toward explaining the genotype-

phenotype discordance of BrS (namely, the contribution of disease-modifying genes)19 it remains 
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poorly understood. To this end, our present study identifies for the first time a pathophysiological 

mechanism for a number of atypical BrS SCN5A mutations and offers guidance for future 

treatment approaches similar to typical loss-of-function SCN5A BrS mutations.  
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Table 1: Biophysical properties of mutations studied. Table showing V1/2 rec of mutations 
studied. P values represent a comparison between mutation alone and mutation + WT 

Mutation V1/2 (mV) SEM P rec (ms) SEM P n
N70K -79.62 0.64 ns 2.81 0.08 ns 19
N70K+WT -79.47 0.50 2.89 0.15 15
R225W -81.29 1.24 ns 3.49 0.23 ns 11
R225W+WT -79.80 1.36 2.94 0.22 10
E439K -80.00 0.53 ns 3.66 0.32 ns 11
E439K+WT -81.25 0.97 3.61 0.16 17
R526H -81.29 0.85 ns 3.88 0.14 ns 11
R526H+WT -80.60 1.78 4.02 0.12 10
G552R -81.23 0.97 ns 3.25 0.23 ns 15
G552R+WT -82.16 0.93 3.25 0.23 13
E555K -82.16 0.93 ns 3.28 0.09 ns 17
E555K+WT -82.26 0.92 3.31 0.13 15
L567Q -79.91 0.68 ns 3.49 0.14 ns 13
L567Q+WT -82.00 0.94 3.86 0.16 11
R620C -81.65 1.17 ns 4.11 0.10 <0.05 11
R620C+WT -83.43 1.12 3.75 0.07 11
T632M -81.81 0.36 <0.05 3.27 0.19 ns 10
T632M+WT -78.43 1.17 3.30 0.20 11
A647D -80.54 0.94 ns 2.90 0.20 <0.05 10
A647D+WT -79.76 1.18 3.34 0.10 16
P701L -82.52 0.70 ns 3.93 0.20 ns 11
P701L+WT -83.66 1.06 3.95 0.25 10
R965H -79.78 0.62 ns 3.43 0.18 ns 12
R965H+WT -81.76 0.46 3.25 0.13 10
R1023H -77.23 0.56 ns 3.66 0.17 <0.05 10
R1023H+WT -77.69 0.86 2.81 0.14 10
E1053K -75.77 1.24 ns 3.75 0.41 ns 11
E1053K+WT -76.60 1.15 3.38 0.21 13
A1113V -80.26 0.53 ns 3.45 0.19 ns 15
A1113V+WT -80.86 0.82 3.08 0.16 12
S1140T -82.53 1.09 ns 3.81 0.32 <0.05 14
S1140T+WT -82.00 1.18 2.96 0.16 11
D1275N -80.32 1.29 ns 2.25 0.47 <0.05 12
D1275N+WT -79.68 1.30 4.12 0.19 11
G1319V -81.40 0.53 ns 4.77 0.33 <0.05 14
G1319V+WT -82.23 0.79 3.82 0.21 11
L1501V --79.29 1.41 ns 3.13 0.39 ns 13
L1501V+WT -78.35 0.80 3.16 0.22 15
G1502S -86.66 0.74 ns 4.95 0.21 <0.05 14
G1502S+WT -84.30 0.62 3.93 0.30 10
E1938K -80.44 0.91 ns 3.09 0.18 ns 15
E1938K+WT -78.80 0.47 2.94 0.22 13
WT -79.48 0.60 n/a 3.58 0.20 n/a 18

09 ns 17
131313 1
14 ns 1
16 1

T

T

T
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Figure Legends:

Figure 1: Effect of WT on L567Q atypical mutation. A. Representative traces for SCN5A-WT, 

SCN5A-L567Q and SCN5A-L567Q+WT expressed in HEK293 cells. B. Summary of peak

current density in HEK293 and CHO cells showing a reduction in peak current density upon co-

expression with WT. Data presented as mean±SEM. (n= WT: 18, L567Q: 12, L567Q+WT: 14) 

Cells -

co-transfections. (*p<0.05 compared to L567Q alone) 

Figure 2: Expression of atypical BrS mutant sodium channels in myocytes significantly reduces 

sodium current density. A. Family of sodium current traces in NRVMs in response to a series of 

30-ms test pulses. Control represents non-transfected cells. B. Summary of peak current density 

recorded at -20 mV. When SCN5A-L567Q was transfected in NRVM, the peak current was 

reduced by about 50% compared to non-transfected cells. (*p<0.01 compared to non-transfected 

cells) (n= control: 12, L567Q: 11, WT: 16). . C. iCells from Cellular Dynamics show a reduction 

of current upon transfection with L567Q, consistent with data from HEK293 cells. GFP 

transfected cells were used as a control. (n= GFP: 11, L567Q: 7, T632M: 8) 

Figure 3: Additional Atypical BrS Mutations Studied. A. Summary showing peak current 

densities of additional atypical BrS mutations that demonstrated a reduction upon co-expression 

with WT. (n= N70K: 19, N70K+WT: 15, E439K: 11, E439K+WT: 19, G552R: 15, G552R+WT: 

13, E555K: 17, E555K+WT: 15, A647D: 11, A647D+WT: 16, R965H: 12, R965H+WT: 11, 

E1053K: 11, E1053K+WT: 15, S1140T: 16, S1140T+WT: 11, L1501V: 13, L1501V+WT: 15, 
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G1502S: 10, G1502S+WT: 10, E1938K: 15, E1938K+WT: 13). B. Summary showing peak 

current densities of atypical BrS mutations that did not reduce upon co-expression with WT. 

(*p<0.05 compared to mutation alone; #p<0.05 compared to WT) (n=R223W: 11, R223W+WT:

10, R526H: 11, R526H+WT: 10, R620C: 11, R620C+WT: 11, T632M: 10, T632M+WT: 11, 

P701L: 12, P701L+WT: 10, R1023H: 10, R1023H+WT: 11, A1113V: 15, A1113V+WT: 12, 

D1275N: 12, D1275N+WT: 11, G1319V: 14, G1319V+WT: 11. C. iCells from Cellular 

Dynamics show results consistent with results from HEK293 cells for E555K (A) and T632M 

(B). GFP transfected cells were used as a control. (n= GFP: 11, E555K: 9, T632M: 8) 

Figure 4: A. Surface Biotinylation Experiments. Whole-cell lysate (left) and surface 

biotinylation fraction (right) for SCN5A-WT- -L567Q (2.5 g), SCN5A-

WT-YFP (2.5 g) + SCN5A-L567Q (2.5 g), SCN5A-E555K (2.5 g), and SCN5A-WT-YFP (2.5 

g) + SCN5A-E555K (2.5 g). The Western was blotted with a sodium channel antibody. The 

SCN5A-WT-YFP construct’s size was around 260kDa whereas the mutations constructs were 

around 220kDa. The cell surface biotinylation showed a dramatic reduction of both WT and 

atypical mutations on co-expression, whereas the total protein level was not modified. Actin was 

used as a negative control for the cell surface fractions and pan-cadherin was used as loading 

control for the cell surface fractions. B Co-immunoprecipitation experiments were performed 

between WT-YFP and a WT channel expressing an HA tag (WT-HA) and L567Q-YFP and WT-

HA. The pull down was performed with an HA antibody and the blot was revealed with a GFP 

antibody. For both A and B, the figures are a representative example of at least three separate 

experiments.
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Figure 5: Both WT and mutant channels are functional at the plasma membrane. A. Sodium 

-C373Y (no reduction), 

SCN5A-L567Q (near total reduction) and SCN5A-L567Q+SCN5A-C373Y(~50% reduction) B. 

Averaged percent current reduction. There was no reduction in SCN5A-C373Y (n=10), a near 

complete reduction in SCN5A-L567Q (n=15), and a 58% reduction in SCN5A-L567Q+SCN5A-

C373Y (n=15). These results demonstrate that both channels are present at the cell surface in a 

similar ratio. (*p<0.05 compared to SCN5A-C373Y). 

Figure 6: Schematic of Nav1.5 showing location of mutations studied. Atypical BrS mutations 

that showed no decrease in current density upon co-expression with WT are represented by 

squares, whereas atypical mutations showing a decrease in sodium currents when co-expressed

with WT are represented by circles.
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