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Text S1

Computing lineage state probabilities

As discussed in the main text, we require a way of computing the probability pik that a given lineage i is
in a given state k at any point in time along the genealogy in order to compute the coalescent likelihood.
The rates at which lineages transition between states through births and migrations are given in the
F and G matrices, respectively. Given these transition rates, it is then possible to write down master
equations for how the probability mass assigned to each state evolves backwards in time. As shown in
Volz [1], the general form that these master equations take for any lineage i and state k is
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where Ak =
∑

i∈A pik; that is Ak is the expected number of lineages in state k in the genealogy at a
given point in time. The first two terms in (1) give the probability mass gained or lost from the lineage
transitioning in or out of state k through migration. The second two terms give the probability mass
gained or lost from the lineage transitioning between states through a transmission event that was not
observed as a coalescent event in the genealogy. In order for a lineage to transition from state l to state k
in this way, there needs be a coalescent event between the lineage in state l and another lineage in state
k that is not among the Ak sampled lineages in the genealogy so that it is not observed in the tree. The

probability that the lineage in state k is not among the sampled lineages is (yk−Ak)
yk

. This probability is
then multiplied by the total rate at which lineages transition from state l to state k going backwards in
time, fkl

yl
, to get the total rate at which probability mass is gained by state k.

We also have to take into consideration how the lineage state probabilities get updated after a co-
alescent event. Given that lineages i and j coalesce, the parent lineage h may be either lineage i or
j because we cannot observe from the tree which of the two lineages was the donor. To compute the
probability that the parent lineage h was in state k when in transmitted, we therefore have to take into
consideration all of the different ways h could have transmitted either lineage i or j. Conditioning on the
current lineage state probabilities for lineages i and j, we therefore have

phk =
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λij
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(pikpjl + pilpjk) . (2)

Given these updates, we have everything needed to compute the lineage state probabilities over an entire
genealogy.

Particle filtering with a genealogy

In Rasmussen et al. [2], it was shown how particle filters could also be applied to genealogies instead of
standard observational data by using a coalescent model to relate the genealogy to the unobserved state
variables. To briefly review the algorithm, the particle filter is run forward in time from time t = 1 to time
t = T , sequentially updating the particle states xjt and assigning importance weights wj

t for each particle
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j at each time step. Particle states are updated at each time step by simulating from a proposal density
q(xjt |•). Particle weights are then updated to reflect the posterior probability of each particle trajectory
x1:t up to time t given the data observed up to time t, in this case the genealogy up to time t, G1:t.
Therefore, at any time t, the weighted system of particles gives an importance sampling approximation
to the density p(x1:t|G1:t, θ). Once we reach time t = T , we sample a state trajectory x∗1:T by randomly
selecting a particle according to the final normalized particle weights WT to obtain a random sample
from p̂(x1:T |G1:T , θ). We can also use the weights assigned to the particles to approximate the marginal
likelihood of the parameters p(G1:T |θ).

Algorithm S1: The particle filter targeting p(x1:T |G1:T , θ)

1. Initialize the particle filter at time t = 1 with N particles.

(a) Set xj1 to initial values for all particles.

(b) Assign normalized weights, W j
1 = 1

N .

2. Run filter from t = 2 to t = T .

(a) Propagate particles forward by drawing from the proposal density q(xjt |•).
(b) Set xj1:t = (xj1:t−1, x

j
t ) for all particles.

(c) Compute unnormalized weights,

wj
t =

(wj
t−1)p(Gt−1:t|θ, xjt )p(x

j
t |x

j
t−1, θ)

q(xjt |•)
. (3)

(d) Normalize weights, so that W j
t =

wj
t∑N

j=1 wj
t

.

(e) If resampling at t, choose parent particle indexes ajt according to their weights, such that
p(ajt = k) = W k

t . Set xjt = xkt and set wj
t = 1. Otherwise, set ajt = j.

3. Sample x∗1:T from p̂(x1:T |G1:T , θ) by tracing the ancestry of one particle back through time.

(a) Sample a single particle index k such that p(k) = W k
T and set bkT = k.

(b) For t = T − 1 to t = 1, set bkt = a
bkt+1

t .

(c) Set x∗1:T = x
bk1:T
1:T .

4. Compute marginal likelihood estimate

p̂(G1:T |θ) =

T∏
t=1

1

N

N∑
j=1

wj
t . (4)

Note that we have left the exact form of the proposal density q(xjt |•) unspecified in lack of an ideal proposal
density. Nevertheless, we can update the particle states by simulating directly from the epidemiological
process model p(xt|xt−1, θ) [3, 4]. In this case, the weighting function simplifies to

wj
t = (wj

t−1)p(Gt−1:t|θ, xjt ). (5)

This has the fortuitous result that the term p(xjt |x
j
t−1, θ) does not appear in the weighting function

so that we do not need to compute these transition densities explicitly, which is often not possible for
continuous-time, nonlinear epidemiological models.
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The particle filtering algorithm also allows for resampling to occur at the end of each time step, which
is often necessary to ensure the practical feasibility of the algorithm. Resampling removes unpromising
particle trajectories before we reach time T by replacing particles with low weights, and therefore very
likely low posterior probabilities, with particles with high weights. However, it is often unnecessary
and computationally wasteful to resample after each time step, especially if most particles have high
unnormalized weights or there is little variance in weights across the particle population [5]. For this
reason, we allow for adaptive resampling by making sampling after each step of the algorithm optional
and generally resample as infrequently as possible. However, if we do resample, it requires us to track
the ancestry of each particle in the population so that we can sample a single particle state trajectory
at time T . We do this by recording the parent index ajt of each particle in the population at each time
step. At time T , we choose a single particle index k and can trace that particle’s ancestry back through

time by setting bkt = a
bkt+1

t for all times t < T . Thus bk1:T gives the ancestral lineage of particle k in that
bkt gives the index of the ancestor of particle k at time t. The state trajectory associated with particle k

is then x
bk1:T
1:T .
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