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SUPPLEMENTAL INFORMATION

Figure Legends to Figure S1-S5

Figure S1. Relationship of monocyte-derived macrophages (Mb) with other cell types
(related to Figure 1). A Schema of isolation and generation of cells used in this dataset. B
Sample correlation network (visualized in 3-dimensional space) of monocyte-derived
macrophages (baseline, M®) induced by M-CSF or GM-CSF with monocyte-derived cells (DCs)
induced by GM-CSF+IL4. Sample correlation networks additionally including C monocytes, D
CD83" DCs, CD25" DCs and uplLPS-stimulated DCs, E T-cells, B-cells and NK-cells. F
Representative histograms of expression of cell surface molecules CD11c, CD11b, CD14,
CD1a, CD206, CD209 on M°® (GM-CSF) and DCs (GM-CSF+IL4). G Heatmap of normalized
transformed mean fluorescence intensities (MFI) of at least 25 independent experiments of

the markers CD11c, CD11b, CD14, CD206, CD1a, CD1b, CD1c, and CD209.

Figure S2. Genes with selective expression associated with distinct stimuli (related to
Figure 2). A Absolute expression counts (mean * SD) of genes defined by SOM clustering to
be highly expressed for a particular stimulation condition. Shown here are genes enriched in

those conditions, not shown in Figure 2.

Figure S3. Activation-specific genes revealed by Weighted Correlation Network Analysis
(related to Figure 3). A Visualization of the eigengene expression of modules 8, 15, and 30 in
the 29 stimulation conditions. B Network visualization of Gene Ontology Enrichment Analysis
(GOEA) of modules 7-9 (positively correlated) and 43, 44, 48 (negatively correlated) for IFNy
stimulation, 13-15 (positively correlated) and 30, 5, 32 (negatively correlated) for IL4
stimulation using BINGO and EnrichmentMap. Red nodes represent enriched GO-terms,
node size corresponding enrichment p-value. Edge thickness shows overlap of genes

between neighbor nodes.
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Figure S4. Comparison of two reverse engineering approaches (related to Figure 6). A
General workflow of network calculation using ARACNe or TINGe. Three parameter settings
were performed for the comparison, and subsequently, the inferred networks were
compared by network statistical analysis. B ARACNe predicted macrophage network with
Bonferroni correction. 869 largest hubs are shown as in Figure 6B. Each gene is multi-colored
according to its mean expression (log2) in 10 clusters. Starting from background value 6.747
to 14.500, the color is changing from white to red. Node size is proportional to degree of
connectivity. C Comparison of topology of two networks from two algorithms: ARACNe and
TINGe. Shown is the degree of connectivity of 9485 genes within the networks. Parameters
used for network generation are identical (Table S3A, C). D-F Degree node distribution of the
three major networks generated from different tools or settings: D ARACNe cutoff p-value
with Bonferroni correction, E ARACNe without Bonferroni correction, and F TINGe without p-
value adjustment. In each plot, the number of genes with the same number of interactions
(from 1 to 164) fits to a power law (dash line) in logarithmic range. This indicates that they

are scale-free networks.

Figure S5. Permissive histone marks H3K4me3 and PU.1 binding sites at major hub gene
loci (related to Figure 6). ChIP-seq for H3K4me3 (A-C) and PU.1 (D-F) were performed on
different macrophage populations. Using all Ensembl genes as bait, k-means clustering was
performed. Genes were first ranked by cluster and within each of the 5 clusters by signal
intensity at the transcription start site (TSS). Enriched ChIP-seq signals were depicted in red
and signal location is displayed using normalized gene loci relative to the TSS (in percent). A
Concatenated data for H3K4me3 from M®, 1L4-, IFNy- or TNF+PGE,+P3C (TPP) stimulated
macrophages. B H3K4me3 ChlIP-seq data for the 869 hub genes defined in Figure 6 were
extracted from A and visualized. C Mean expression (log2) of the 869 hub genes divided up
into the 5 clusters determined by k-mean clustering of all Ensembl genes were visualized in
boxplots. D Concatenated data for PU.1 from IL4- or IFNy-stimulated macrophages. E PU.1
ChlP-seq data for the 869 hub genes. F Mean expression (log2) of the 869 hub genes.
Asterisk in C reflect statistical significance: * p < 0.05, ** p < 0.01 (Mann-Whitney U test).
Box and whisker plots show the median, 25th and 75th percentile, and the range of

expression values for each cluster.
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Table Legends to Table S1-S5

Table S1. Gene expression microarray data sample information (related to Figure 1). A
Overview of numbers of samples for each cell type and condition. B Detailed description of
samples included in the study. C Explanation of abbrevations for cell stimuli. D 9498 unique
present genes identified by primary data handling and mean log2-transformed expression
values at 29 macrophage conditions

Table S2. 49 modules identified from WGCNA (related to Figure 3). A Pearson correlation
coefficients and p-values of eigengenes for 49 modules from 29 conditions. B 9498 unique
present genes clustered into 49 modules. C-K Overrepresented pathways, gene ontology and
transcription factors in IFNy-, IL4- and TPP-associated modules identified in InnateDB.

Table S3. Reverse engineering of regulatory networks by ARACNe and TINGe (related to
Figure 6). A Parameters and result summary for reverse engineered networks. B All genes
involved in the ARACNE based network (Bonferroni corrected) and their attributes (degree
of connectivity, expression values). C Comparison of ranks based on degree of connectivity in
networks reverse engineered with ARACNE versus TINGe with same parameter settings. D
Identification of publications associated with the major hub genes using pubatlas.org. E GO-
terms revealed by Gene Ontology Enrichment Analysis (GOEA) and visualized using BiNGO. F
First neighbors of the 5 transcription factors shown in Figure 6D. G Transcription factors
identified among the top 10% hub genes, their predicted binding sites at gene loci of the 10%
hub genes, and their mean expression (log2) in the 10 clusters identfied in Figure 11.

Table S4. Comparison of murine macrophage and dendritic cell (DC) signature genes
expression across human dataset (related to Figure 7). Fold changes and mean log2-
expression values of A macrophage signature genes comparing all macrophage endpoint
samples against all dendritic cell endpoint samples, B dendritic cell signature genes
comparing all dendritic cell endpoint samples against all macrophage endpoint samples, C
macrophage signature genes comparing endpoint samples of each single macrophage
condition against all dendritic cell endpoint samples, D dendritic cell signature genes
comparing all dendritic cell endpoint samples against endpoint samples of each single
macrophage condition, E macrophage core signature genes comparing endpoint samples of
each single macrophage condition against mature dendritic cell endpoint samples, F
dendritic core signature genes comparing mature dendritic endpoint samples against
endpoint samples of each single macrophage condition.
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Table S5: Abbreviations and descriptions of used algorithms and software (related to
Experimental Procedures).
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Supplemental Experimental Procedures

Isolation of human blood-derived cells

Buffy coats from healthy donors were obtained according to protocols accepted by the
institutional review board at the University of Bonn (local ethics votes no. 288/13). Written
consent was provided for each specimen according to the Declaration of Helsinki. CD14"
monocytes, CD19" B cells, CD56" NK cells and CD3" T-cells were isolated from peripheral
blood mononuclear cells (PBMCs) of healthy blood donors using CD14, CD19, CD56 and CD3
Micro Beads (Miltenyi) according to the manufacturer’s protocol. Isolated cell fractions were
analyzed by flow cytometry to ensure that possible impurities with other leukocytes were
lower than 5%. Non-activated T-cells, B-cells, NK-cells, and monocytes were lyzed in Qiazol
(Qiagen) immediately after isolation without further cell culture. T-cells and monocytes were
activated with different stimuli prior to lysis (Table S1). CD14" monocytes were used for

further differentiation into macrophages or dendritic cells.

Human macrophage generation

For in vitro differentiation of monocytes into macrophages (Mb, baseline), isolated cells were
subsequently cultured in a humidified atmosphere at 37°C, 5% CO, for 3 days in RPMI1640
(PAA) supplemented with 10% FCS (Gibco) and 1% PenStrep solution (Gibco) in the presence
of 500 IU/ml rhMCSF or 50 IU/ml MCSF. Differentiation into macrophages was analyzed by

flow cytometry.

Human macrophage activation

A total of 29 stimuli were used for activation of baseline macrophages (Figure S2) inlcuding
IFNB (100 U/ml), high-density lipoprotein (HDL, 2 mg/ml, CSL Behring), I1L10 (100 IU/ml),
glucocorticoids (GC, dexamethasone, 1 uM, AbZ Pharma), IL4 (1000 1U/ml), IL13 (100 IU/ml),
ultrapure lipopolysaccharide (upLPS, 10ng/ml, Sigma), immune complexes (IC, 200ug/ml,
Sigma), Pam3CSK4 (P3C, 1 ug/ml, Invivogen), prostaglandine E2 (PGE,, 1 ug/ml, Sigma), fatty
acids (150 uM, all purchased from Sigma, complexed at 65°C with BSA (Sigma)): palmitic acid
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(PA), stearic acid (SA), lauric acid (LA), linoleic acid (LiA), or oleic acid (OA), IFNy (200 IU/ml),
TNF (800 1U/ml), standard LPS (sLPS, 10ng/ml, Sigma) or combinations thereof. All cytokines

were purchased from Immunotools if not indicated otherwise.

Generation and differentiation of cells by GM-CSF+IL4 (dendritic cells)

Immature dendritic cells (imDCs) were derived from monocytes by 6-day cultures with 800
IU/ml rhGMCSF and 500 IU/ml rhiL4 (Immunotools) in RPMI1640 supplemented with 10%
FCS (Gibco) and 1% PenStrep solution (Gibco). For further differentiation of imDC into
several subtypes, DC were further stimulated with either rhTNF (800 U/ml, Immunotools)
and aCD40 mAbs to induce CD83" CD80" DCs, with rhTNF and P3C (1 pg/ml, Invivogen) to
induce IDO* CD25" DCs or with upLPS (10 ng/ml, Sigma).

Phenotypic analysis of cells under study

To differentiate between cell subtypes of the myeloid lineage expressions of several surface
molecules were analyzed by flow cytometry. Cell suspensions were washed twice in ice-cold
FACS buffer (10%FCS in PBS), incubated with each antibody for 30 min and washed
subsequently with ice-cold PBS. Following antibodies were used: CD1a, CD1b, CD1c, CD3,
CD11b, CD11c, CD13, CD14, CD19, CD23, CD32, CD25, CD56, CD64, CD80, CD86, CD163,
CD197, CD206, CD209, CXCR7 (all from BD or BioLegend) and MERTK (R&D Systems). For all
antibodies the respective isotype controls were used. Data were acquired on a FACS LSRII

cytometer (BD), and analyzed using FlowJo software (Tree Star).

ELISA detection of soluble effector molecules

Levels of soluble CXCL5 (R&D Systems) and IL1a (BioLegend) in the supernatants of M®, IFNy-,
IL4- and TPP-activated macrophages were measured with ELISA kits in accordance with the

manufacturer’s instructions.
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Western Blot analysis of STAT4 in macrophage subtypes

Protein was extracted by incubating cells with cold lysis buffer containing 1 M TrisHCI pH 8.0,
10% Triton, 1 M NaCl, 0.5 M EDTA, 0.1 M DTT and Protease Inhibitor (Roche Diagnostics) for
30 minutes. Subsequently lysed cells were centrifuged at 13000 rpm on 4°C for 10 minutes.
Protein containing supernatant was collected for further analysis. 50 ug of protein samples
were fractionated on 10% sodium dodecyl sulphate polyacrylamide gels and transferred
onto nitrocellulose membranes (Hyobond-C™ Extra, Amersham Biosiences). Immunoblotting
with the BioRad MiniProtean®System was performed at 100mA and 4°C over night.
Membranes were blocked with 1xTBST containing 5% of powdered milk (Bio Magermilch
Pulver, Heirler Cenovis GmbH) for 60 min. Primary antibodies for STAT4 (sc-486. SantaCruz,
dilution 1:1000), and B-Actin (MAB1501R, Merck Millipore, dilution 1:2500) were incubated
over night at 4°C diluted in Blocking Buffer (Li-cor Biosciences). After washing of membranes
with  1xTBST membranes were incubated with matching secondary antibodies
(IRdye®800CW, Li-cor Biosciences, dilution factor 1:5000 to 1:15000 in 1:1 Blocking Buffer)
for 2h at room temperature. Signals were detected on the Odyssey system (Li-cor

Biosciences). Band intensity analysis was performed using Imagel software.

T-cell activation assays in presence of macrophages

Allogenic CD4" T-cells were isolated via MACS technique, according to the protocol provided
by the manufacturer (Miltenyi Biotech). CD4" T-cells were labeled with carboxyfluorescence
in diacetate succinimidyl ester (CFSE) and incubated in 96 well plates with M®, IFNy-, IL4- and
TPP-activated macrophages at a ratio of 10 to 1 (T-cells: macrophages). Activation of T-cells
was achieved with beads coated with anti-CD3 mAb (Janssen-Cilag) or with anti-CD3 and
anti-CD28 mAbs at ratios of 1:1 (beads/T-cells). T-cell proliferation was assessed 72h later by
flow cytometry. The data were acquired with the LSRII cytometer (BD) and analyzed with the

cell proliferation tool of FlowJo (Tree Star).
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RNA isolation

RNA was isolated from cells lysed in Qiazol using the miRNeasy Mini Kit (Qiagen) according
to the manufactures’ protocol. The precipitated RNA was solved in RNAse free water. The
quality of the RNA was assessed by measuring the ratio of absorbance at 260 nm and 280
nm using a Nanodrop 1000 Spectrometer (Peglab) as well as by visualization of the integrity

of the 28S and 18S band on a 1.2% agarose gel.

Gene expression profiling by lllumina Beadchip arrays and primary data handling

Prior to array based gene expression profiling total RNA was further purified using the
MinElute Reaction Cleanup Kit (Qiagen). Biotin labeled cRNA was generated using the
TargetAmp Nano-g Biotin-aRNA Labeling Kit for the Illumina System (Epicentre). Biotin
labeled cRNA (1.5 pg) was hybridized to Human HT-12V3 or Human WG-6V3 Beadchips
(lumina) and scanned on an lllumina HiScanSQ system. Raw intensity data were processed
in Genome Studio (lllumina) excluding probesets with missing bead types to increase validity.
A total of 384 samples were imported into Partek Genomics Suite (PGS) for further analysis
including quantile normalization. Batch effects of separate array experiments were removed
from normalized log,-transformed data. Background signal was calculated within R based on
coefficient of variation (the computed background for the entire dataset was 6.747). Genes
are only kept for further analysis if their mean expression values are higher than background
in at least one condition from 299 macrophage transcriptomes. Afterwards, multi-probes
were filtered to include only one probe with highest mean expression representing
corresponding gene. Only 9,498 unique present genes, which represent most informative
genes, were retained for analyses with macrophage activation conditions. They are listed in

Table S1D with their mean expression values in 29 macrophage conditions).

Bioinformatics to determine the structure within the dataset

We performed co-regulation analysis (CRA), self-organizing map (SOM)-clustering and
hierarchical clustering (HC) on correlation coefficient matrices (CCM) to determine the

structure within the dataset.
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Co-regulation analysis by BiolLayout Express3D

BioLayout Express®® (BioLayout) is a powerful tool for the visualization and analysis of
network graphs (Theocharidis et al., 2009). We applied BiolLayout to distinguish baseline
macrophages from other immune cells and to compute and visualize the correlation of 29
different macrophage activation programs. Correlation between macrophages and other
immune cells was computed with a Pearson correlation cutoff of 0.96, 0.96, 0.95 and 0.93,
respectively (Figure S1B-E), and that of macrophage activation programs with a cutoff of
0.95 (Figure 1B-G) to maximize the number of samples to be visualized as well as to

maximize the distribution of the different categories.

Self-Organizing-Map (SOM) clustering

To reduce the dimensionality of high-dimensional data for visualization, SOM clustering is an
excellent tool, which projects the input space on prototypes of a low-dimensional regular
grid that can be effectively utilized to explore properties of the data (Kohonen, 1982). SOM
clustering was performed to classify the different macrophage activation conditions using
PGS. First, the expression values were standardized to a mean of zero and standard
deviation of one and this was followed by 20,000 training iterations to cluster similar probes
close to each other on the map. In our settings, the whole transcriptome was divided into
10 X 10 clusters (approximately 400 probes in each cluster), and the expression values of
each cluster genes are rescaled to one eigenvalue, which represent the general expression
value of this cluster. The resulting data are then visualized as a heatmap representing
increased values in red, decreased values in blue and intermediate values in green. It needs
to be mentioned that the input data (e.g. number of samples or conditions) influences the

cluster structure and standardized mean expression values.

Correlation coefficient matrices combined with hierarchical clustering

10
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To further validate the BiolLayout data, we computed Pearson correlation coefficients (PCC)
in a pairwise fashion between all macrophage activation conditions using PGS, which results
in CCM. PCC was computed using Pearson (Linear) correlation based on expression of the
1000 most variable probes out of 2-way ANOVA based on t-test statistics. We performed
hierarchical clustering using Euclidean distance on columns and plotted the standardized
correlation coefficient (mean of zero and standard deviation of one) for the macrophage
activation conditions. This resulted in 10 larger clusters representing all 29 conditions (Figure

11).

Calculation of the vectors for the spectrum model of macrophage activation

The spectrum model of macrophage activation was established by grouping the samples
according to the clusters obtained by the CCM analysis, utilizing the 3D coordinates of the
individual macrophage samples determined by CRA, calculating mean vectors for the clusters
and plotting the information in a 3D graph using the coordinates of the baseline
macrophages (Mb) as the origin. The coordinates of the nodes can be joined by conditions or
clusters using ‘Collapse Nodes by Class’ function in Biolayout by setting baseline
macrophages (Mb) as origin (0, 0, 0) and then the joined coordinates of other conditions or
clusters are rescaled based on the origin in 3D space. The vectors starting from MP to all

activation states were plotted in 3D using Matlab (Figure 1J).

Linking module information to prior knowledge stored in InnateDB

A major resource for innate immunity is the database InnateDB designed to facilitate
systems-level analyses of mammalian innate immunity networks, pathways and genes
(Breuer et al., 2013). In order to link our experimental data to this knowledge resource we
used the WGCNA-defined modules for IFNy-, IL4- and TPP-induced macrophage activation to
analyze the enrichment of pathways, gene ontologies and transcription factor binding sites
by InnateDB associated with the three chosen module-associated gene sets.

Overrepresentation analyses were performed with standard settings, recommended analysis
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algorithms including the hypergeometric statistics and p-value correction method by

Benjamini Hochberg. Results are summarized in Table S2C-K.

Gene module analysis using WGCNA algorithm

Weighted gene co-expression network analysis (WGCNA) can be used to identify underlying
data structures in a complex dataset (Langfelder and Horvath, 2008). We utilized WGCNA to
identify co-regulated genes associated with the 29 different macrophage conditions. The

WGCNA R package (http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/

Rpackages/WGCNA/) was used for the analysis. The standard parameters were altered to a

power of 6 and a minModuleSize of 30 resulting in 49 modules using 9498 transcripts in 160
macrophage samples (Table $2B). For each module the eigengene corresponding to the first
principal component of a given module was calculated. The network for each module of
interest was generated using the “1-TOMsimilarityFromExpr” function of the WGCNA R
package. The network was subsequently imported into Cytoscape for GO-enrichment
analysis and visualization using BiNGO, Enrichment Map, and Word Clouding. Additionally,
the 3 most positive correlated modules specific for each condition (IFNy, IL4 and TPP) were
used to visualize a TF correlation network. Genomatix was used to filter module genes for
known TFs. A TF coregulation network was calculated using the TFs within the module
associated with a particular stimulation condition (e.g. IL4) and using all microarray samples

of that particular condition. Visualization of the network was performed in Cytoscape.

Gene ontology enrichment analysis (GOEA) and GO network visualization

To link our data to prior knowledge we performed GOEA by using the Cytoscape

(http://www.cytoscape.org/) plug-in BINGO (v2.44) (Maere et al., 2005). To include only

significant results, the FDR threshold was set to 0.05. The Cytoscape plugins Enrichment Map
(v1.1) (Merico et al., 2010) and Word Cloud (Oesper et al., 2011) were used to visualize the
GO networks. The cutoff for the Jaccard coefficient was set to 0.25 and the FDR g-value to

0.1.
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Linking in vitro macrophage activation data to in vivo macrophage signatures

Using Macrophage.com as a resource, we identified two datasets of human alveolar
macrophages (GSE13896 (Shaykhiev et al., 2009) and GSE2125 (Woodruff et al., 2005))
compiling samples from 39 non-smokers, 49 smokers and 12 COPD patients as one dataset.
RMA normalization and batch correction was performed by using PGS. Differentially
expressed genes were defined by a 1-way ANOVA model (|FC| > 2, FDR (Benjamini and
Hochberg, 1995) adjusted p-value < 0.05) to determine differences between macrophages
from non-smokers, smokers and COPD patients and used to create co-regulation networks.
Gene Set Enrichment Analysis (GSEA) was performed on 49 WGCNA modules from Figure 3
in 10,000 permutations using PGS (Subramanian et al., 2005). For each comparison (non-
smoker versus smoker or COPD patients), normalized enrichment score (NES), allowing
comparisons of overrepresentation between different gene sets, together with p-values of
GSEA were plotted by Volcano plots. Enriched modules (p-value < 0.01) were selected to

perform GOEA.

Linking human macrophage activation to ImmGen macrophage and DC core signatures

To assess the regulation of genes recently defined as core signatures of murine macrophages
(Gautier et al., 2012) and dendritic cells we compiled a dataset of 161 macrophages (29
conditions), 33 DCs and 7 monocyte samples (Miller et al., 2012; Table S1B). The data set
was log,-transformed, quantile normalized, batch-corrected, and further analyzed using PGS.
In order to define the expression of the 44 murine macrophage and 43 murine DC signature
genes in the human dataset, the mouse gene symbols were converted to the respective
human  orthologues by combining information from Ensembl BioMart
(http://www.ensembl.org/biomart/martview) using the species specific gene symbols and

Ensembl Gene IDs. For some of the genes BioGPS (http://biogps.org/#goto=welcome) was

used if no orthologue was found in BioMart. For three genes (A930039A15Rik, H2-Eb2, Klril)
no orthologue could be identified in both resources. For the other genes, the transcript with
the highest mean expression across all samples was kept as a representative, where nine
genes (Akrib10, Apls3, Btla, H2-Aa, Haao, Hmgn3, Pon3, Pvrll, Tmem195) were excluded
because all corresponding transcripts in the human dataset were not defined as being

present. For each transcript having a mean expression higher than the background level
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(6.747 on log2 scale) within at least one of the conditions fold changes (FC) were calculated,
comparing all macrophages against all DCs. The condition-wise mean expression values were
standardized as well as scaled over all examined conditions (to a mean of zero and a
standard deviation of one as well as to a minimum value of -2 and a maximum value of 2),
sorted according to the overall fold change and visualized in a heatmap using Mayday 2.13

(Battke et al., 2010). Overall fold changes (Table S4) were displayed with the heatmap.

Reverse engineering of the core macrophage activation network

The overall approach utilized for reverse network engineering is presented as a schema in
Figure 6A. Information-theoretic methods such as ARACNe (Basso et al., 2005; Margolin et
al., 2006) or TINGe (Aluru et al., 2013) have been introduced to determine central hubs
within a dataset. To determine the central hubs of all stimulation conditions reflecting the
core macrophage activation network, transcriptional interactions between genes were first
determined by ARACNe, which has been integrated into geWorkbench (v2.4.0) (Floratos et
al.,, 2010). For this analysis we used 299 arrays describing all stimulation conditions of
macrophage activation. The 9498 unique present genes, as introduced above (Table S1D),
were taken into calculation of mutual information (a measure of the mutual dependence of
the two genes as random variables) with p-value less than 1e-7 with or without Bonferroni
correction (Figure S4A). The threshold of the data processing inequality (DPI) theorem from
information theory used by ARACNe was set to 0.1 and used to detect and discard indirect
interactions that are unlikely to be mediated by an actual physical interaction. The functional
relationship between the numbers of nodes and their degree of interactions was estimated
by power law regression (Figure S4D). The power law regression in the relationship between
the number of nodes (number of genes ranging from 490 to 1) and their degree (number of
interactions ranging from 1 to 164) suggests a scale-free network structure, i.e. the network
is unevenly populated with highly connected nodes or hubs and less dense nodes. The R-
squared value was 0.767, indicating high correlation and a strong linear relationship
between degree of connectivity and corresponding number of genes. Networks were
visualized in a force-directed layout in Cytoscape (Figure 6B and Figure S4B). The plug-in
MultiColoredNodes (Warsow et al., 2010) was used to visualize mean expression values of

the 10 most highly interconnected genes as well as transcription factors.
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Since the introduction of ARACNe several improvements of the original algorithm and novel
algorithms have been introduced for reverse network engineering of transcriptome datasets.
To ensure robustness of the computed network, we applied a second reverse engineering
algorithm, namely the TINGe (Tool for Inferring Network of Genes) algorithm (Aluru et al.,
2013). Written in C++ TINGe is also based on information theory. To compare results from
ARACNe and TINGe derived networks, we applied the same significance threshold (p < 1e-7)

and the same DPI tolerance (0.1). For complete workflow see Figure S4A.

The inferred networks from ARACNe and TINGe were compared topologically by the degree
of connectivity of each gene using a degree-degree plot, where the degrees of ARACNe
network genes were in x-axis and corresponding degrees in TINGe network in y-axis (Figure
S4C). Networks were visualized in a force-directed layout in Cytoscape, followed with
statistical analysis such as the functional relationship between the numbers of nodes and
their degree of interactions (degree node distribution) of three predicted networks (Figure

S4D-F) utilizing the plug-in Network Analysis (Cline et al., 2007).

Candidate gene prioritization approach

Reverse engineered networks can predict novel functions for uncharacterized genes but also
potential functional associations among known genes. Predictions made by such networks
can also be supplemented with prior knowledge or additional data sources to generate new
hypotheses for further investigation. We therefore supplemented the network generated by
ARACNe or TINGe with prior knowledge by applying the following strategy. The top 10%
highly connected hub genes with a degree of connectivity higher than 30 were prioritized by
association with macrophage lineage and activation information using the transcription
factors PU.1 and RUNX1 as bait genes. Both have crucial roles as macrophage lineage and
activation factors. Using these genes we performed similarity profiling, data fusion and
network-based strategies by applying two prioritization tools, ToppGene (Chen et al., 2009)
and Endeavour (Tranchevent et al., 2008). The results of the different approaches were

subsequently combined by the Borda ranking method.

15



Supplemental Information to Spectrum model of human macrophage activation

Common transcription factor binding site prediction

TF binding prediction was performed using the Genomatix Suite

(http://www.genomatix.de/). First, promoter models for the top 10% hub genes (842

accepted gene loci, 3882 promoter models) of the ARACNe-defined network were compiled
using the Gene2Promoter module in Genomatix. Subsequently, the Genomatix module for
the search of common TF binding sites was applied to determine overrepresented TF binding
sites. Significance measure for each TF family is represented by z-score, calculated with a
continuity correction using the formula z = (x-E-0.5)/S, where x is the number of found
matches in the input data, E is the expected value and S is the standard deviation. A z-score
below -2 or above 2 can be considered to be statistically significant. The z-score was
subsequently converted as a normal distribution to the corresponding p-value using pnorm

command in R. Data can be found in Table S3G.

miRNA-Seq data generation and analysis

Sequencing of miRNAs was done according to the manufacturer’s recommendations. In brief,
5x10° -2x10” macrophages were harvested and total RNA including small RNAs was isolated.
Small RNA libraries were generated from 1 pg total RNA with the TruSeq Small RNA Sample
Preparation Kit (lllumina). After successful ligation of 3’ and 5’ adapters to RNA molecules,
RNA was reverse-transcribed using SuperScript Il reverse transcriptase (Invitrogen). cDNA
was amplified by 11 PCR cycles with high-fidelity Phusion Polymerase (Finnzymes). cDNA
with the size of miRNAs plus ligated adapters was purified on a pre-cast 6%
Tris/Borate/EDTA polyacrylamide gel electrophoresis gel (Invitrogen). Generation of clonal
clusters from single molecules of the cDNA library was done with the TruSeq Cluster Kit
(Hlumina) on a CBot station. Sequencing by synthesis was performed by using the TruSeq SBS
Kit on a HiScanSQ system (lllumina). Sequencing reads were retrieved as FASTQ files. After
demultiplexing adapter sequences were trimmed from each read using Flicker 3.0 (lllumina).
Trimmed reads were mapped to the human genome hgl9 and hairpin and mature human
miRNAs deposited in miRBase version 19 using the short read aligner Bowtie 0.12.9
(Langmead et al., 2009) with no mismatches allowed. The number of reads mapping to a

specific miRNA sequence were counted within PGS. The dataset was then normalized by
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using the statistical software R package DESeq (Anders and Huber, 2010) and miRNAs having
less than one normalized read count in all samples were excluded. The read counts were
transformed into log2 counts per million (cpm) and were divided by the corresponding
library size (in millions) by using the R package limma (Smyth, 2005). The R package sva
(Johnson et al., 2007) was used to perform a batch removal for the random factors date and
donor. Then miRNAs having less than one transformed read count in all samples of the same
condition were excluded. Differentially expressed miRNAs between macrophages polarized
with IFNy (M1), IL4 (M2) or with the combination of TNF, PGE, and P3C (TPP) were
determined against MP° by using the R package limma (Smyth, 2005) with a p-value of 0.05 as
well as an absolute fold change of 2 as cutoffs. Finally, for each condition a set of uniquely
differentially expressed miRNAs was determined, which was then sorted by the transformed
expression values. The first five most highly abundant up-regulated and the first five most
highly abundant down-regulated miRNAs were chosen to be represented within a heatmap.

Displayed are the fold changes against M° colored from blue to red.

Histone modification and TF ChIP-Seq data generation and analysis

Native ChIP (N-ChIP) experiments to assess histone modifications were performed following
previously described methodology (Cuddapah et al., 2009). Briefly, 2x10” macrophages were
harvested from cell cultures and were digested with MNase (0.3U/ml; Sigma Aldrich) to
generate mononucleosomes. An additional sonication step was performed three times for
20 seconds each in ice water (Bandelin Sonoplus). 10 ug of rabbit monoclonal anti-trimethyl
histone H3K4 antibody (Millipore; 17-614) or purified rabbit IgG were used for each ChIP
experiment. For mapping PU.1 binding, ChIP experiments were performed following the
manufacturer’s protocol (Millipore; Magna ChIP A Kit). In brief, 1x10” macrophages were
crosslinked with formaldehyde (1% v/v, 10 min). Next, nuclei were isolated and resuspended
in 130 pl Nuclear Lysis Buffer. Chromatin was fragmented to 200-500 bp by ultrasonication
in microTUBEs (Covaris) using the Covaris S220 Ultrasonicator (Peak Incident Power 105 (W),
Duty Factor 10%, Cycles per Burst 200, treatment time 25 minutes). 10 ug of polyclonal
rabbit anti-PU.1 antibody (Santa Cruz Biotechnology; sc-352x) or normal rabbit IgG (Millipore;
12-370) were used. Multiplex DNA libraries of both H3K4me3 as well as PU.1 bound DNA

were generated using lllumina’s ChIP-Seq Sample Preparation Kit (lllumina; IP-102-1001) and
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the Multiplexing Sample Preparation Oligonucleotide Kit (lllumina; PE-400-1001) using at
least 10 ng DNA following the manufacturer’s instructions. Purified DNA ends were repaired
using PNK and Klenow enzyme, followed by treatment with Klenow exo minus polymerase to
generate a protruding 3’ A base used for adaptor ligation. Next, size selection of libraries was
performed as follows: DNA libraries were agarose gel purified, DNA fragments with
approximately 220 bp size excised and eluted using QIAquick Gel Extraction kit (Qiagen).
After subsequent adapter ligation to the repaired ends, an amplification step was performed
for 5 cycles with PCR primers 1.1 and 2.1 (lllumina, IP-102-1001). During a second
amplification step (13 cycles) multiplex PCR primers were added to the DNA libraries to
construct multiplex sequencing libraries. For PU.1 DNA libraries multiplex PCR primers were
added directly after adapter ligation to the amplification mix and 18 cycles of amplification
were performed. Purified DNA was loaded onto a single read SR flowcell (lllumina) and
cluster generation performed using the TruSeq SR Cluster Kit on a cBot Cluster station
(Hlumina). DNA libraries were sequenced with an lllumina HiScan SQ in a multiplex single-
read run with at least 40 bases sequencing length and 6 bases for index sequences.
Sequence reads from each DNA library were aligned with Casava software (lllumina) against
the human reference genome 18 (NCBI 36/hg18) and converted into the .bam file format. To
determine permissive histone marks and PU.1 binding sites at major hub gene loci, HM was
assessed in M°, IFNy- or IL4-stimulated macrophages, or macrophages stimulated with TNF,
PGE,, and P3C (TPP). PU.1 binding was assessed in IFNy- or IL4-stimulated macrophages. The
overall spectrum of histone modifications respectively PU.1 binding was determined by
concatenating datasets with Samtools (Li et al., 2009). K-means clustering of concatenated
bam files was performed to assess the distribution of marks of interest across the entire
gene length with Euclidean distance similarity metric calculations in R as previously
described (Statham et al., 2010). For this purpose, average scaled enrichment (ASE) plots
were utilized. The number of clusters was set to five. For visualization of H3K4me3 or PU.1
binding the length scaled signal across the entire gene body plus additional 20% upstream
and 10% downstream of each gene was calculated. The signal was capped at the 97th
percentile of the combined signal from all genes to prevent extreme spikes in enrichment
dominating the clustering. For visualization of K-means clustering the Repitools R package

was used (Statham et al., 2010).
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Active gene regulation in macrophages has been recently linked to open chromatin marks
and the presence of the lineage-specific TF PU.1 (Ghisletti et al., 2010; Ostuni et al., 2013).
ChiIP-seq data of permissive HM H3K4me3 and PU.1 binding sites derived from M°, M1 (IFNy),
M2 (IL4), and M™" (TNF+PGE,+P3C; TPP) were concatenated. HM and PU.1 binding sites
were related to the transcriptional start site (TSS). The five major clusters revealed by K-
mean clustering of genome-wide information for 37,435 Ensembl genes were visualized by
ASE plot (Figure S5). H3K4me3 signals mainly clustering around the TSS, or extending from
the TSS into the promoter region and the first exons of the respective gene loci present in all
Ensembl genes (Figure S5A) where compared with H3K4me3 signals in the 869 major hub
genes (Figure S5B). Gene expression levels for the major hub genes were plotted according
to their H3K4me3 signal cluster affiliation (Figure S5C). Instead of H3K4me3, the same

analysis was performed for PU.1 binding sites (Figure S5E-F).

Relationship analysis of monocyte-derived macrophages (M") with other cell types.

As outlined in Figure 1A and Figure S1A, macrophages (Mb, baseline) were generated from
blood-derived CD14" monocytes by either stimulating them with rhGMCSF; rhMCSF (n=275)
or M-CSF (n=24) and compared to other immune cells including monocyte-derived DCs,
further maturated DCs, T-cells, B-cells and NK-cells (Table S1, n=384). For comparison, we
used co-regulation analysis of transcriptome data (Figure S1B-E). Differences between GM-
CSF-induced and M-CSF-induced macrophages as previously described (Bailey et al., 2011;
Lacey et al., 2012) were assessed. Furthermore, macrophages were compared with CD14"
monocytes, GM-CSF+IL4 stimulated monocyte-derived immature DCs, differentiated DCs
(CD83" DCs, CD25" DCs, DCs stimulated with upLPS), T-, B-, and NK-cells. Transcriptome data

were substantiated by flow cytometry (Figure S1F, G).

Link to specialized online resource on human macrophage activation

For this resource dataset of human macrophage activation, we have established an
additional web resource that can be reached at the following web address:

http://www.macrophages.uni-bonn.de. On this web resource tables with normalized data of

the complete dataset, ANOVA-model based comparisons of different conditions, scripts and
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software tools used in the study as well as additional information can be found and used for

own research purposes.

Tables available on http://www.macrophages.uni-bonn.de

matrix_unnormalized.txt: gene expression matrix of log2 transformed unnormalized data
matrix_normalized.txt: gene expression matrix of log2 transformed quantile normalized and
batch corrected data

annotation of HumanHT12v3 arrays.csv: annotation file of HumanHT12v3 array type for
matrix data

ANOVA-baseline vs. other 28 conditions.txt: ANOVA model comparing baseline macrophages
with other 28 in vitro conditions

ANOVA-IFNb vs. other 28 conditions.txt: ANOVA model comparing IFNB-stimulated
macrophages with other 28 in vitro conditions

ANOVA-HDL vs. other 28 conditions.txt: ANOVA model comparing HDL-stimulated
macrophages with other 28 in vitro conditions

ANOVA-IL10 vs. other 28 conditions.txt: ANOVA model comparing IL10-stimulated
macrophages with other 28 in vitro conditions

ANOVA-GC vs. other 28 conditions.txt: ANOVA model comparing GC-stimulated
macrophages with other 28 in vitro conditions

ANOVA-IL4 vs. other 28 conditions.txt: ANOVA model comparing IL4-stimulated
macrophages with other 28 in vitro conditions

ANOVA-IL13 vs. other 28 conditions.txt: ANOVA model comparing IL13-stimulated
macrophages with other 28 in vitro conditions

ANOVA-ILA_upLPS vs. other 28 conditions.txt: ANOVA model comparing IL4+upLPS-
stimulated macrophages with other 28 in vitro conditions

ANOVA- upLPS_IC vs. other 28 conditions.txt: ANOVA model comparing upLPS+IC -stimulated
macrophages with other 28 in vitro conditions

ANOVA- upLPS vs. other 28 conditions.txt: ANOVA model comparing upLPS-stimulated
macrophages with other 28 in vitro conditions

ANOVA-P3C_PGE2 vs. other 28 conditions.txt: ANOVA model comparing P3C+PGE, -
stimulated macrophages with other 28 in vitro conditions

ANOVA- P3C vs. other 28 conditions.txt: ANOVA model comparing P3C-stimulated
macrophages with other 28 in vitro conditions

ANOVA- PGE2 vs. other 28 conditions.txt: ANOVA model comparing PGE,-stimulated
macrophages with other 28 in vitro conditions

ANOVA-LA vs. other 28 conditions.txt: ANOVA model comparing LA-stimulated macrophages
with other 28 in vitro conditions

ANOVA-OA vs. other 28 conditions.txt: ANOVA model comparing OA-stimulated
macrophages with other 28 in vitro conditions

ANOVA-LIA vs. other 28 conditions.txt: ANOVA model comparing LiA-stimulated
macrophages with other 28 in vitro conditions

ANOVA-SA vs. other 28 conditions.txt: ANOVA model comparing SA-stimulated macrophages
with other 28 in vitro conditions
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ANOVA-PA vs. other 28 conditions.txt: ANOVA model comparing PA-stimulated macrophages
with other 28 in vitro conditions

ANOVA-IFNg vs. other 28 conditions.txt: ANOVA model comparing IFNy-stimulated
macrophages with other 28 in vitro conditions

ANOVA-TNF vs. other 28 conditions.txt: ANOVA model comparing TNF-stimulated
macrophages with other 28 in vitro conditions

ANOVA-IFNg_TNF vs. other 28 conditions.txt: ANOVA model comparing IFNy+TNF -
stimulated macrophages with other 28 in vitro conditions

ANOVA-sLPS vs. other 28 conditions.txt: ANOVA model comparing sLPS-stimulated
macrophages with other 28 in vitro conditions

ANOVA-sLPS_IFNg vs. other 28 conditions.txt: ANOVA model comparing sLPS+IFNy-
stimulated macrophages with other 28 in vitro conditions

ANOVA-sLPS_IC vs. other 28 conditions.txt: ANOVA model comparing sLPS+IC -stimulated
macrophages with other 28 in vitro conditions

ANOVA-TNF_PGE2 vs. other 28 conditions.txt: ANOVA model comparing TNF+PGE, -
stimulated macrophages with other 28 in vitro conditions

ANOVA-TNF_P3C vs. other 28 conditions.txt: ANOVA model comparing TNF+P3C-stimulated
macrophages with other 28 in vitro conditions

ANOVA-TPP vs. other 28 conditions.txt: ANOVA model comparing TNF+ P3C+PGE, (TPP)-
stimulated macrophages with other 28 in vitro conditions

ANOVA-TPP_IFNb vs. other 28 conditions.txt: ANOVA model comparing TPP+IFNB-stimulated
macrophages with other 28 in vitro conditions

ANOVA-TPP_IFNb_IFNg vs. other 28 conditions.txt: ANOVA model comparing
TPP+IFNB+IFNy-stimulated macrophages with other 28 in vitro conditions
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