Supporting Information

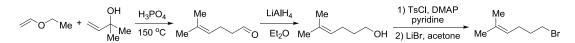
I.	General Procedures	SI-2
II.	Preparation of Organomagnesium Reagents	SI-3
III.	Demonstration of Cross-Coupling Stereochemical Course	SI-4
IV.	Synthesis and Characterization of Substrates	SI-5
V.	General Procedure for Cross-Coupling Reactions	SI-12
VI.	Characterization Data for Products	SI-12
VII.	Mechanistic Studies	SI-22
VIII.	Biological Experiments	SI-26
IX.	References for Supporting Information	SI-29
Х.	Crystallographic Data	SI-30
XI.	¹ H and ¹³ C NMR spectra	SI-44
XII.	SFC traces	SI-108

I. <u>General Procedures</u>

All reactions were carried out under an atmosphere of N_2 using glassware that was either oven- or flamedried prior to use. Hexanes, tetrahydrofuran (THF), diethyl ether (Et₂O), and toluene (PhMe), were degassed with argon and then passed through two 4 x 36 inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon at 350 °C for 12 h) to remove H_2O . All other solvents utilized were purchased "anhydrous" commercially, or purified as described (vide infra). ¹H NMR spectra were recorded on Bruker GN-500 (500 MHz ¹H, 125.7 MHz ¹³C), CRYO-500 (500 MHz⁻¹H, 125.7 MHz⁻¹³C) or DRX-400 (400 MHz⁻¹H, 100 MHz⁻¹³C) spectrometers. Proton chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS, δ 0.00). Data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br s), doublet (d), doublet of doublets (dd), triplet (t), doublet of triplets (dt), doublet of doublet of triplets (dd), triplet of triplets (tt), quartet (q), quintet (quint), multiplet (m), apparent singlet (ap s), apparent doublet (ap d), apparent quartet (ap q), broad doublet (br d) and broad multiplet (br m)], coupling constants [Hz], integration). Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ 77.16 ppm). Unless otherwise indicated, NMR data were collected at 25 °C. Analytical thin-layer chromatography (TLC) was performed using Silica Gel 60 F₂₅₄ pre-coated plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or staining with KMnO₄ solution. Flash chromatography was performed using Silica Gel 60Å (170-400 mesh) from Fisher Scientific. Preparatory HPLC was performed on an Agilent 1100 using an Alltima Silica 5 µm, 250 x 22 mm column. Melting points (m.p.) were obtained using a Mel-Temp melting point apparatus and are uncorrected. Infrared spectra were obtained on a Mattson Instruments Galaxy 5000 (thin film) and Perkin-Elmer Spectrum 1000 FT-IR Systems and are reported in terms of frequency of absorption (cm⁻¹). High resolution mass spectrometry was performed by the University of California, Irvine Mass Spectrometry Center. Optical rotations were measured with a Rudolph Research Analytical Autopol IV Automatic Polarimeter or a Jasco P-1010 digital polarimeter. SFC determinations of enantiopurity were performed on a Berger Analytical instrument using a Daicel[™] Chiralpak® column (OD-H, OJ-H, or AD-H; 100 bar, 50 °C, 215 nm).

Ni(cod)₂ was purchased from Strem, stored in a glovebox freezer (-20 °C) under an atmosphere of N₂, and used as received. Ni(PPh₃)₄ was purchased from Aldrich and used as received. Ni(acac)₂ was purchased from Strem, stored in a glovebox under an atmosphere of N₂, and used as received. 1,2-Bis(diphenylphosphino)ethane (dppe) was purchased from Alfa Aesar, stored in a glovebox under an atmosphere of N₂, and used as received. 1,2-Bis(diphenylphosphino)ethane nickel (II) chloride (Ni(dppe)Cl₂) was purchased from Strem and used as received.

Organomagnesium reagents for substrate synthesis were freshly prepared from the halide precursor in THF and molarities were determined by titration with I_2 .¹ Activated MnO₂ was prepared according to a procedure reported by Attenburrow and co-workers.² All other chemicals were purchased commercially and used as received.

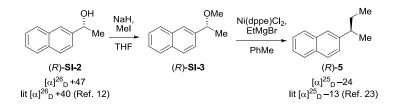

II. Preparation of Organomagnesium Reagents for Cross-Coupling Reactions

For satisfactory yields and enantiospecificities in the cross-coupling reactions, the Grignard reagent must be prepared from the alkyl bromide in diethyl ether.

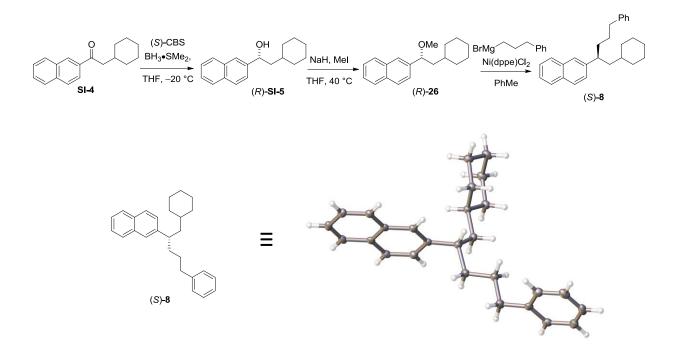
General Procedure: Magnesium turnings (1.08 g, 45.0 mmol) were added to a round-bottom flask equipped with a stir bar and condenser. The reaction apparatus was flame-dried under vacuum and cooled under N₂. Et₂O (5.0 mL) was added to the reaction apparatus, followed by a single crystal of I₂ (ca. 2 mg). The organohalide³ (15.0 mmol) was added portion-wise over 30 min. The reaction was stirred at ambient temperature for an additional two hours. The resulting Grignard reagents was typically between 2.0 and 3.0 M as titrated using Knochel's method,¹ and could be stored (sealed, under nitrogen) for at least 4 weeks without detrimental effects.

p-(*N*,*N*-Dimethylamino)phenylmagnesium bromide was prepared according to a procedure reported by Jarvo and co-workers.⁴

(5-methylhex-4-enyl)magnesium bromide was prepared from 5-methylhex-4-enylbromide. The latter has been prepared via the following synthetic route:

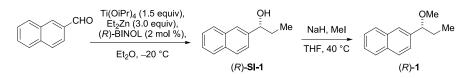


5-methylhex-4-enal was prepared according to a modified procedure reported by Saucy and co-workers.⁵ A sealed tube was charged with ethoxyethane (11.6 mL, 121 mmol), 2-methylbut-3-en-2-ol (6.40 mL, 60 mmol), and 85% phosphoric acid (59 μ L, 0.60 mmol). The tube was sealed, heated to 150 °C, and allowed to stir for 2.5 h. The reaction mixture was cooled to room temp, opened, and neutralized with triethylamine. Purification by fractional distillation (120 °C, 50 torr) afforded the title compound as a clear, colorless oil (2.41 g, 21.5 mmol, 36%). Analytical data is consistent with literature values.⁶

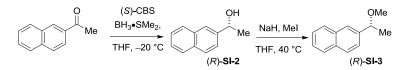

5-methylhex-4-ene-1-ol was prepared according to the procedure reported by Heathcock and coworkers.⁷ Analytical data was consistent with literature values.⁸

6-Bromo-2-methylhex-2-ene was prepared according to the procedure reported by Boyer.⁹ Analytical data was consistent with literature values.⁹

III. Demonstration of Cross-Coupling Stereochemical Course


Enantioenriched alcohol (*R*)-**SI-2** was prepared by CBS reduction using (*S*)-2-methyl-CBSoxazaborolidine (vide infra), and the stereochemistry was verified by comparison of the optical rotation to the literature value. Conversion to ether (*R*)-**SI-3** followed by stereospecific cross-coupling produced (*R*)-**5**, the stereochemistry of which was determined by comparison of the optical rotation to the literature value. This product corresponds to net inversion in the cross-coupling reaction.

Enantioenriched alcohol (*R*)-SI-5 was prepared by CBS reduction of SI-4 using (*S*)-2-methyl-CBSoxazaborolidine. Absolute configuration was assigned as *R* based on the accepted model for selectivity in CBS reduction¹⁰ and confirmed by Competing Enantioselective Conversion (CEC).¹¹ Conversion to ether (*R*)-26 followed by stereospecific cross-coupling produced (*S*)-8, the stereochemistry of which was determined by X-ray crystallographic analysis (vide infra). This product corresponds to net inversion in the cross-coupling reaction. See SI section X for crystallographic data.


The absolute configurations of all other products were assigned based on the assumption that the crosscoupling reaction proceeds with inversion.

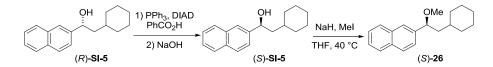
IV. Synthesis and Characterization of Substrates

(*R*)-1-(naphthalen-2-yl)propan-1-ol ((*R*)-SI-1). Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (500 MHz, CDCl₃) δ 7.80 (m, 3H), 7.73 (s, 1H), 7.45 (m, 3H), 4.72 (t, *J* = 6.8 Hz, 1 H), 2.17 (s, 1H), 1.79–1.90 (m, 2H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 133.3, 133.1, 128.3, 128.0, 127.8, 126.2, 125.9, 124.8, 124.2, 76.2, 31.8, 10.3; $[\alpha]^{24}{}_{D}$ +39.5 (*c* 1.01, CHCl₃, 98% ee), lit. $[\alpha]^{23}{}_{D}$ +41.9 (*c* 1.02, CHCl₃, 96% ee);¹² SFC analysis (OD-H, 10% IPA, 2.5 mL/min) indicated 95% ee: t_R (minor) = 9.1 minutes, t_R (major) = 9.9 minutes.

(*R*)-2-(1-methoxypropyl)naphthalene ((*R*)-1). Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 3H), 7.70 (s, 1H), 7.45 (m, 3H), 4.17 (t, *J* = 6.6 Hz, 1 H), 3.24 (s, 3H), 1.92 (m, 1H), 1.75 (m, 1H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.8, 133.3, 133.2, 128.4, 128.0, 127.8, 126.17, 126.16, 125.8, 124.7, 85.8, 56.9, 30.9, 10.4; $[\alpha]^{24}{}_{\text{D}}$ +110.5 (*c* 1.07, CHCl₃), lit. $[\alpha]^{23}{}_{\text{D}}$ +92.2 (*c* 1.82, CHCl₃, 96% ee);¹² SFC analysis (OD-H, 1% IPA, 2.5 mL/min) indicated 95% ee: t_R (minor) = 5.8 minutes, t_R (major) = 6.2 minutes.

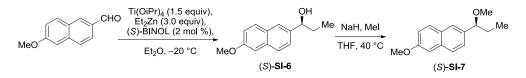
(*R*)-1-(naphthalen-2-yl)ethanol ((*R*)-SI-2). Prepared according to a modified procedure by Panek and co-workers.¹³ To a cooled (–30 °C) solution (*S*)-2-methyl-CBS-oxazaborolidine (0.083 g, 0.30 mmol) in THF (10 mL) was added borane dimethyl sulfide (0.60 mL, 6.0 mmol) and the reaction mixture was stirred for 45 min. Naphthylmethylketone (0.510 g, 3.0 mmol) in THF (5 mL) was added drop-wise and the reaction was further stirred at –30 °C for 12 h. The reaction was quenched by slow addition of MeOH (5 mL), warmed to room temperature and diluted with water. The product was extracted with Et₂O (2 x 20 mL) and the combined organics were washed with brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (30% EtOAc in hexanes) afforded the title compound as a white solid (0.48 g, 2.8 mmol, 92%). The product was recrystallized from hexanes to yield higher enantiopurity. Analytical data is consistent with literature values:¹⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.76 (m, 4H), 7.42 (m, 3H), 4.95 (q, *J* = 6.0 Hz, 1H), 2.59 (s, 1H), 1.51 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 133.4, 133.0, 128.4, 128.0, 127.8, 126.2, 125.9, 123.93, 123.93; [α]²⁶_D +46.6 (*c* 0.86, CHCl₃), lit. [α]²⁵_D +40.0 (*c* 1.00, CHCl₃, 92% ee);¹⁴ SFC analysis (OD-H, 10% IPA, 2.5 mL/min) indicated 92% ee: t_R (minor) = 8.8 minutes, t_R (major) = 9.5 minutes.

(*R*)-2-(1-methoxyethyl)naphthalene ((*R*)-SI-3). To a solution of NaH (0.081 g, 3.4 mmol) in THF (10 mL) was added a solution of (*R*)-SI-2 (0.291 g, 1.68 mmol) in THF (2 mL) and the mixture was stirred at 40 °C for 30 min. MeI (0.31 mL, 5.1 mmol) was added and stirring was continued for 8 h. Reaction was quenched with MeOH and the solvent was removed in vacuo. The crude mixture was taken up in CH₂Cl₂ (100 mL), filtered through Celite, and concentrated in vacuo. Purification by flash chromatography (5% EtOAc in hexanes) afforded the title compound as a colorless oil (0.305 g, 1.64 mmol, 97%). Analytical data is consistent with literature values:¹⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 3H), 7.71 (s, 1H), 7.44

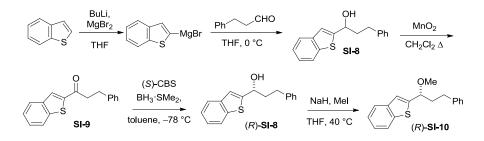

(m, 3H), 4.42 (q, J = 6.4 Hz, 1H), 3.23 (s, 3H), 1.50 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 133.4, 133.1, 128.5, 127.9, 127.8, 126.2, 125.8, 125.2, 124.2, 79.8, 56.6, 24.0; $[\alpha]^{26}_{D}$ +105.0 (*c* 0.85, CHCl₃); SFC analysis (OD-H, 1% IPA, 2.5 mL/min) indicated 92% ee: t_R (minor) = 7.6 minutes, t_R (major) = 8.3 minutes.

2-cyclohexyl-1-(naphthalen-2-yl)ethanone (SI-4). Prepared according to the procedure reported by Jarvo and co-workers.¹⁶ Analytical data is consistent with literature values:¹⁶ ¹H NMR (500 MHz, CDCl₃) δ 8.45 (s, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 9.0 Hz, 2H), 7.46–7.61 (m, 2H), 2.95 (d, J = 6.5 Hz, 2H), 2.10–1.97 (m, 1H), 1.85–1.75 (m, 2H), 1.70–1.65 (m, 3H), 1.31–1.26 (m, 2H), 1.22–1.17 (m, 1H), 1.15–1.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 200.4, 135.7, 135.0, 132.7, 129.9, 129.7, 128.52, 128.47, 127.9, 126.8, 124.2, 46.4, 34.9, 33.7, 26.4, 26.3.

(*R*)-2-cyclohexyl-1-(naphthalen-2-yl)ethanol ((*R*)-SI-5). Prepared according to the procedure reported by Jarvo and co-workers.¹⁶ Analytical data is consistent with literature values:¹⁶ ¹H NMR (500 MHz, CDCl₃) δ 7.84 (m, 3H), 7.78 (s, 1H), 7.49–7.45 (m, 3H), 4.96 (m, 1H), 1.85–1.77 (m, 4H), 1.71–1.60 (m, 4H), 1.51–1.40 (m, 1H), 1.29–1.13 (m, 3H), 1.04–0.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 142.8, 133.5, 133.1, 128.4, 128.1, 127.8, 126.3, 125.9, 124.6, 124.3, 72.4, 47.1, 34.4, 34.1, 33.1, 26.7, 26.4, 26.3; [α]²⁵_D +33.3 (*c* 0.17, CHCl₃), lit. [α]²⁸_D +23.8 (*c* 1.0, CHCl₃, 87% ee);¹⁶ SFC analysis (AS-H, 3% IPA, 3 mL/min) indicated 96% ee; t_R (minor) = 12.2 minutes, t_R (major) = 12.8 minutes. Absolute configuration was assigned as *R* based on the accepted model for selectivity in CBS reduction¹⁰ and confirmed by Competing Enantioselective Conversion (CEC).¹¹


(*R*)-2-(2-cyclohexyl-1-methoxyethyl)naphthalene ((*R*)-26). To a solution of NaH (0.514 g, 21.4 mmol) in THF (100 mL) was added (*R*)-SI-5 (2.72 g, 10.7 mmol) and mixture was stirred at 40 °C for 30 min. MeI (2.00 mL, 32.1 mL) was added and stirring was continued for 8 h. The reaction was quenched with MeOH and the solvent was removed in vacuo. The crude mixture was taken up in CH₂Cl₂ (100 mL), washed with sat. NaCO₃, brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (5% EtOAc in hexanes) afforded the title compound as a white solid (2.85 g, 10.6 mmol, 99%): TLC R_f = 0.4 (5% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 3H), 7.70 (s, 1H), 7.49–7.43 (m, 3H), 4.36 (dd, *J* = 8.6, 5.7 Hz, 1H), 3.21 (s, 3H), 1.84–1.76 (m, 3H), 1.69–1.62 (m, 3H), 1.54–1.49 (m, 1H), 1.42–1.37 (m, 1H), 1.25–1.10 (m, 3H), 0.99–0.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 133.4, 133.2, 128.4, 127.9, 127.8, 126.2, 125.9, 125.8, 124.6, 81.9, 56.8, 46.2, 34.3, 34.0, 33.3, 26.7, 26.4, 26.3; [*a*]²⁵_D +63.2 (*c* 1.06, CHCl₃); SFC analysis (OJ-H, 3% IPA, 2.5 mL/min) indicated 97% ee t_R (minor) = 7.1 minutes, t_R (major) = 8.8 minutes.

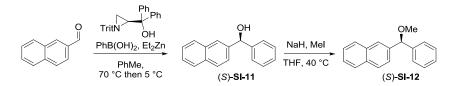
(S)-2-cyclohexyl-1-(naphthalen-2-yl)ethanol ((S)-SI-5). Prepared according to a modified procedure reported by Presnell and co-workers.¹⁷ To a cooled (brine ice bath) solution of (R)-SI-5 (0.15 g, 0.59 mmol), benzoic acid (0.29 g, 2.4 mmol), and PPh₃ (0.62 g, 2.4 mmol) in THF (5 mL) was added DIAD (0.46 mL, 2.4 mmol) drop-wise over 30 min. After the addition was complete the reaction was allowed to


warm to room temperature and stir for 12 h then heated up to 40 °C and stirred for an additional 3 h. The reaction mixture was diluted with Et₂O (10 mL), washed with sat. NaHCO₃, dried over NaSO₄, and concentrated in vacuo. Trituration with hexanes removed the PPh₃ by-products and purification by flash chromatography (10% EtOAc in hexanes) afforded the title compound as a white solid (0.112 g, 0.43 mmol, 73%). The product was recrystallized from hexanes to yield higher enantiopurity. Analytical data is consistent with literature values:¹⁶ ¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (m, 3H), 7.78 (s, 1H), 7.49–7.45 (m, 3H), 4.96 (m, 1H), 1.85–1.79 (m, 4H), 1.71–1.60 (m, 4H), 1.51–1.40 (m, 1H), 1.29–1.13 (m, 3H), 1.04–0.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 142.8, 133.5, 133.1, 128.4, 128.1, 127.8, 126.3, 125.9, 124.6, 124.3, 72.4, 47.1, 34.4, 34.1, 33.1, 26.7, 26.4, 26.3; [a]²⁶_D –27.4 (c 1.02, CHCl₃); **SFC analysis** (AS-H, 3% IPA, 3 mL/min) indicated 94% ee; t_R (major) = 11.8 minutes, t_R (minor) = 12.7 minutes.

(*S*)-2-(2-cyclohexyl-1-methoxyethyl)naphthalene ((*S*)-26). Prepared according to the procedure reported above for (*R*)-26. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 3H), 7.70 (s, 1H), 7.49–7.43 (m, 3H), 4.36 (dd, *J* = 8.6, 5.7 Hz, 1H), 3.21 (s, 3H), 1.84–1.76 (m, 3H), 1.69–1.62 (m, 3H), 1.54–1.49 (m, 1H), 1.42–1.37 (m, 1H), 1.25–1.10 (m, 3H), 0.99–0.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 133.4, 133.2, 128.4, 127.9, 127.8, 126.2, 125.9, 125.8, 124.6, 81.9, 56.8, 46.2, 34.3, 34.0, 33.3, 26.7, 26.4, 26.3; $[\alpha]^{25}_{\ D}$ –58.1 (*c* 1.30, CHCl₃); SFC analysis (OJ-H, 3% IPA, 2.5 mL/min) indicated 92% ee t_R (major) = 7.0 minutes, t_R (minor) = 8.9 minutes.

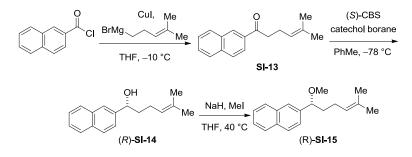
(*S*)-1-(6-methoxynaphthalen-2-yl)propan-1-ol ((*S*)-SI-6) Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (500 MHz, CDCl₃) δ 7.72 (m, 3H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.14 (d, *J* = 11.5 Hz, 2H), 4.72 (t, *J* = 6.5 Hz, 1 H), 3.92 (s, 3H), 1.92–1.82 (m, 3H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 139.8, 134.2, 129.5, 128.8, 127.2, 124.83, 124.80, 119.1, 105.8, 76.3, 55.5, 31.9, 10.3; $[\alpha]^{28}_{\ D}$ –37.3 (*c* 0.44, CHCl₃), lit. $[\alpha]^{23}_{\ D}$ –28.9 (*c* 0.97, CHCl₃, 90% ee);¹² SFC analysis (OD-H, 12.5% IPA, 3 mL/min) indicated 94% ee: t_R (major) = 5.3 minutes, t_R (minor) = 6.5 minutes. Absolute configuration was assigned as *S* based on analogy with the titanium-catalyzed ethylation of aldehydes with Et₂Zn¹⁸ and confirmed by Competing Enantioselective Conversion (CEC).¹¹

(*S*)-2-methoxy-6-(1-methoxypropyl)naphthalene ((*S*)-SI-7). Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, *J* = 5.0, 8.0 Hz, 2H), 7.63 (s, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.14 (m, 2H), 4.14 (t, *J* = 6.8 Hz, 1 H), 3.92 (s, 3H), 3.23 (s, 3H), 1.91 (p, *J* = 7.0 Hz, 1H), 1.74 (quint, *J* = 7.0 Hz, 1H), 0.88 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.7, 137.4, 134.3, 129.4, 128.8, 127.2, 126.1, 125.2, 119.0, 105.8, 85.8, 56.8, 55.5, 30.9, 10.4; $[\alpha]^{24}{}_{D}$ –82.3 (*c* 0.86, CHCl₃), lit. $[\alpha]^{23}{}_{D}$ –81.9 (*c* 1.09, CHCl₃, 90% ee);¹² SFC analysis (OD-H, 4% IPA, 2.5 mL/min) indicated 93% ee: t_R (major) = 5.4 minutes, t_R (minor) = 5.9 minutes.


(*rac*)-1-(benzo[*b*]thiophen-2-yl)-3-phenylpropan-1-ol ((*rac*)-SI-8). Prepared according to a modified procedure reported by Guinchard and co-workers.¹⁹ To a cooled (ice bath) solution of benzothiophene (3.35 g, 25.0 mmol) in Et₂O (15 mL) was added *n*-BuLi (21 mL, 28 mmol, 1.3 M in hexane) and the reaction was stirred for two hours allowing it to warm to room temperature. The solution was then cooled to -78 °C and hydrocinnamaldehyde (2.57 mL, 20.0 mmol) was slowly added. The reaction was stirred overnight allowing it to warm up to room temperature. The reaction was quenched with MeOH (10 mL) and diluted with Et₂O (100 mL). The solution was washed with water, brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (10–15% EtOAc in hexanes) afforded the title compound as a white solid (3.42 g, 12.7 mmol, 64%). **m.p.** 95–97 °C; **TLC R**_f = 0.5 (20% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.2 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.36–7.19 (m, 8H), 5.00 (dd, *J* = 10.8, 5.6 Hz, 1H), 2.84–2.71 (m, 2H), 2.31–2.15 (m, 2H), 2.13 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.2, 141.4, 139.6, 139.5, 128.63, 128.62, 126.2, 124.5, 124.4, 123.6, 122.7, 120.5, 70.2, 40.5, 32.0; **I.R.** (neat) 2929, 1181, 1085, 1054, 873 cm⁻¹; **HRMS** (TOF MS EI+) *m* / *z* calcd for C₁₇H₁₆OS [M]⁺ 268.0922, found 268.0912.

1-(benzo[*b***]thiophen-2-yl)-3-phenylpropan-1-one (SI-9).** To a solution of *rac*-SI-8 (2.83 g, 10.5 mmol) in CH₂Cl₂ (10 mL) was added MnO₂ (4.58 g, 52.7 mmol) and the reaction mixture was stirred overnight. Upon completion as judged by TLC, the reaction mixture was cooled to room temperature, passed through a plug of Celite, and the solvent was removed in vacuo. The resulting solid was purified by flash chromatography (10–30% EtOAc in hexanes) followed by recrystallization from EtOAc/hexanes to afford the title compound as an colorless crystalline solid (2.03 g, 7.62 mmol, 73% yield): m.p. 118–120 °C; TLC R_f = 0.6 (20% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.85 (d, *J* = 9.2 Hz, 2H), 7.45 (m, 1H), 7.39 (m, 1H), 7.32–7.19 (m, 5H), 3.33 (t, *J* = 4.0 Hz, 2H), 3.10 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 143.6, 142.6, 141.0, 139.2, 129.1, 128.7, 128.6, 127.5, 126.4, 126.0, 125.1, 123.1, 41.2, 30.5; I.R. (neat) 3052, 3024, 2920, 1665, 1162, 752, 698 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₁₇H₁₄OS [M+Na]⁺ 289.0663, found 289.0663.

(*R*)-1-(benzo[*b*]thiophen-2-yl)-3-phenylpropan-1-ol ((*R*)-SI-8). Prepared according to a modified procedure by Panek and co-workers.¹³ To a cooled (-78 °C) solution (*S*)-2-methyl-CBS-oxazaborolidine (0.211 g, 0.762 mmol) and SI-9 (2.03 g, 7.62 mmol) in toluene (50 mL) was added dropwise BH₃·Me₂S (1.56 mL, 15.2 mmol) and the reaction mixture was stirred for 20 h. The reaction was quenched by slow addition of water (5 mL), warmed to room temperature and extracted with Et₂O (3 x 50 mL). The compbined organics were washed with brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (3% EtOAc in hexanes) afforded the title compound as a white solid (1.92 g, 7.15 mmol, 94%). The product was recrystallized from EtOAc and hexanes to yield higher enantiopurity. $[\alpha]^{27}{}_{\rm D}$ +99.2 (*c* 0.89, CHCl₃); SFC analysis (AD-H, 15% MeOH, 3 mL/min) indicated 99% ee t_R (major) = 10.8 minutes, t_R (minor) = 13.6 minutes. Absolute configuration was assigned as *R* based on the accepted model for selectivity in CBS reductions.¹⁰


(*R*)-2-(1-methoxy-3-phenylpropyl)benzo[*b*]thiophene ((*R*)-SI-10). To a solution of NaH (0.291 g, 12.1 mmol) in THF (30 mL) was added a solution of (*R*)-SI-8 (1.63 g, 6.07 mmol) in THF (10 mL) and the mixture was stirred at 40 °C for 30 min. MeI (1.13 mL, 18.22 mmol) was added and stirring was

continued for 8 h. Reaction was quenched with MeOH and the solvent was removed in vacuo. The crude mixture was taken up in CH₂Cl₂ (100 mL), filtered, and concentrated in vacuo. Purification by flash chromatography (5% EtOAc in hexanes) afforded the title compound as a white solid (1.63 g, 5.77 mmol, 95%). **m.p.** 52–54 °C; **TLC R**_f = 0.7 (15% EtOAc in hexanes); ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.35–7.26 (m, 4H), 7.21–7.17 (m, 4H), 4.40 (t, *J* = 6.8 Hz, 1H), 3.30 (s, 3H), 2.72 (m, 2H), 2.29 (m, 1H), 2.10 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 147.1, 141.6, 139.8, 139.5, 128.6, 128.5, 126.0, 124.3 (2C), 123.5, 122.7, 122.3, 79.1, 56.8, 39.6, 32.0; **IR** (neat) 3022, 2930, 2860, 1456, 1099, 839, 750 cm⁻¹; **HRMS** (TOF MS EI⁺) *m* / *z* cacld for C₁₈H₁₈OS [M]⁺ 282.1078 found 282.1074; [α]²⁷_D +16.6 (*c* 1.20, CHCl₃); **SFC analysis** (AD-H, 10% IPA, 3 mL/min) indicated 99% ee t_R (major) = 6.2 minutes, t_R (minor) = 7.4 minutes.

(*S*)-naphthalen-2-yl(phenyl)methanol ((*S*)-SI-11). Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.83–7.78 (m, 3H), 7.49–7.41 (m, 5H), 7.35 (m, 2H), 7.27 (m, 1H), 6.00 (d, *J* = 3.5 Hz, 1H), 2.33 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.8, 141.2, 133.4, 133.0, 128.7, 128.5, 128.2, 127.83, 127.81, 126.8, 126.3, 126.1, 125.1, 124.9, 76.5; $[\alpha]^{29}_{\ D}$ –4.1 (*c* 1.22, benzene), lit. $[\alpha]^{19}_{\ D}$ – 3.8 (*c* 1.70, benzene, >98% ee);²⁰ SFC analysis (OD-H, 20% IPA, 3 mL/min) indicated 99% ee: t_R (major) = 6.6 minutes, t_R (minor) = 7.6 minutes.

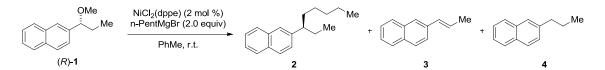
(*S*)-2-(methoxy(phenyl)methyl)naphthalene ((*S*)-SI-12). Prepared according to the procedure reported by Jarvo and co-workers.¹² Analytical data is consistent with literature values:¹² ¹H NMR (500 MHz, CDCl₃) δ 7.84–7.78 (m, 4H), 7.48–7.39 (m, 5H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (m, 1H), 5.40 (s, 1H), 3.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.1, 139.6, 133.4, 133.0, 128.6, 128.4, 128.1, 127.8, 127.7, 127.1, 126.2, 126.0, 125.9, 125.1, 85.6, 57.2; $[\alpha]^{25}{}_{D}$ –29.1 (*c* 1.20, CHCl₃), lit. $[\alpha]^{23}{}_{D}$ –32.0 (*c* 1.11, CHCl₃, >99% ee);¹² SFC analysis (OD-H, 5% IPA, 3 mL/min, 110 psi) indicated >99% ee: t_R (major) = 5.3 minutes, t_R (minor) = 6.4 minutes.

5-methyl-1-(naphthalen-2-yl)hex-4-en-1-one (SI-13). Prepared according to a modified procedure reported by Hultzsch and co-workers.²¹ To a cooled (brine/ice bath) solution of CuI (0.059 g, 0.31 mmol) and 2-naphthoyl chloride (1.19 g, 6.25 mmol) in THF (7 mL) was slowly added (4-methylpent-3-enyl)magnesium bromide (10.9 mL, 6.25 mmol, 0.574 M in THF) and the reaction mixture was stirred for 1 h. The reaction was quenched by the addition of MeOH and the solvent was removed in vacuo. The crude reaction mixture was taken up in EtOAc (30 mL), washed with 1 N HCl (10 mL), sat. NaHCO₃ (10 mL), brine (10 mL), dried with NaSO₄, and concentrated in vacuo. Purification by flash chromatography (4% EtOAc in hexanes) afforded the title compound as a colorless oil (1.01 g, 4.22 mmol, 68% yield).

This compound has been previously reported. ²² Our spectral data is not fully consistent with the reported literature values, therefore we provide full characterization data to support our structural assignment: **TLC R**_f = 0.4 (10% EtOAc in hexanes); ¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 7.4 Hz, 2H), 7.56 (m, 2H), 5.22 (t, *J* = 7.2 Hz, 1H), 3.12 (t, *J* = 7.4 Hz, 2H), 2.48 (q, *J* = 7.4 Hz, 2H), 1.70 (s, 3H), 1.65 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 200.0, 135.6, 134.4, 132.8, 132.6, 129.7, 129.6, 128.43, 128.39, 127.8, 126.8, 124.0, 123.1, 38.9, 25.8, 23.2, 17.8; **IR** (neat) 3058, 2967, 2913, 1678, 1277, 1180, 1123 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₁₇H₁₈O [M+H]⁺239.1436, found 239.1429.

(*R*)-5-methyl-1-(naphthalen-2-yl)hex-4-en-1-ol ((*R*)-SI-14). Prepared according to a modified procedure by Okamura and co-workers. ²³ To a cooled (-78 °C) solution (*S*)-2-methyl-CBSoxazaborolidine (0.12 g, 0.42 mmol) and ketone SI-13 (1.01 g, 4.22 mmol) in toluene (20 mL) was added dropwise catecholborane (0.90 mL, 8.4 mmol) and the reaction mixture was stirred for 20 h. The reaction was quenched by slow addition of MeOH (2 mL) followed by sat. NH₄Cl (10 mL), warmed to room temperature and extracted with Et_2O (3 x 20 mL). The combined organics were washed with sat. NaCO₃, brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (10-20% EtOAc in hexanes) afforded the title compound as a white solid (0.703 g, 2.91 mmol, 69%). The product was recrystallized from hexanes to yield higher enantiopurity. m.p. 53–55 °C; TLC $R_f = 0.5$ (20% EtOAc in hexanes); ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 3H), 7.76 (s, 1H), 7.46 (m, 3H), 5.16 (t, J = 7.0 Hz, 1H), 4.83 (t, J = 5.8 Hz, 1H), 2.12–2.04 (m, 3H), 1.94–1.82 (m, 2H), 1.69 (s, 3H), 1.58 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.3, 133.4, 133.1, 132.5, 128.4, 128.1, 127.8, 126.2, 125.9, 124.7, 124.3, 123.9, 74.5, 39.0, 25.9, 24.6, 17.9; **IR** (neat) 3263, 2924, 2856, 1059, 1016 cm⁻¹; **HRMS** (TOF MS Cl⁺) m/z cacld for C₁₇H₂₀O [M+NH₄]⁺ 258.1858, found 258.1847. [α]²⁶ +4.9 (c 1.16, CHCl₃); SFC analysis (OD-H, 15% IPA, 3 mL/min) indicated 93% ee t_R (minor) = 4.9 minutes, t_R (major) = 5.3 minutes. Absolute configuration was assigned as R based on the accepted model for selectivity in CBS reductions.¹⁰

(*R*)-2-(1-methoxy-5-methylhex-4-enyl)naphthalene ((*R*)-SI-15). To a solution of NaH (0.032 g, 1.3 mmol) in THF (3 mL) was added a solution of (*R*)-SI-14 (0.160 g, 0.67 mmol) in THF (3 mL) and the mixture was stirred at 40 °C for 30 min. MeI (0.124 mL, 2.00 mmol) was added and stirring was continued for 5 h. Reaction was quenched with MeOH and the solvent was removed in vacuo. The crude mixture was taken up in CH₂Cl₂ (10 mL), filtered, and concentrated in vacuo. Purification by flash chromatography (5% EtOAc in hexanes) afforded the title compound as a colorless oil (0.164 g, 0.64 mmol, 96%). TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (10% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (app d, J = 8.0 Hz, 3H), 7.70 (s, 1H), 7.46 (m, 3H), 5.12 (t, J = 6.8 Hz, 1H), 4.24 (t, J = 6.6 Hz, 1H), 3.23 (s, 3H), 2.04 (m, 2H), 1.93 (m, 1H), 1.73 (m, 4H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.0, 133.4, 133.2, 132.2, 128.4, 128.0, 127.9, 126.2, 126.1, 125.8, 124.6, 124.0, 83.6, 56.8, 38.1, 25.9, 24.5, 17.9; IR (neat) 3055, 2966, 2926, 1445, 1099, 745 cm⁻¹; HRMS (TOF MS Cl⁺) m / z cacld for C₁₈H₂₂O [M]⁺ 254.1671, found 254.1652; $[\mathbf{a}]^{27}{}_{\mathbf{D}}$ +30.2 (*c* 1.11, CHCl₃); SFC analysis (OD-H, 5% IPA, 2.5 mL/min) indicated 94% ee t_R (minor) = 4.2 minutes, t_R (major) = 4.6 minutes.

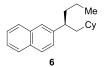

1-(benzofuran-2-yl)-3-methylbutan-1-one (SI-16). Prepared according to a modified procedure reported by Hultzsch and co-workers.²¹ To a cooled (brine/ice bath) solution of CuI (0.050 g, 0.260 mmol) and benzofuran-2-carbonyl chloride (0.944 g, 5.23 mmol) in THF (15 mL) was slowly added isobutylmagnesium bromide (7.47 mL, 5.23 mmol, 0.700 M in THF) and the reaction mixture was stirred for 1 h. The reaction was quenched by the addition of MeOH and the solvent was removed in vacuo. The

crude reaction mixture was taken up in EtOAc (30 mL), washed with 1 N HCl (10 mL), sat. NaHCO₃ (10 mL), brine (10 mL), dried with NaSO₄, and concentrated in vacuo. Purification by flash chromatography (4% EtOAc in hexanes) afforded the title compound as a colorless oil (0.833 g, 4.12 mmol, 79% yield): **TLC R**_f = 0.4 (10% EtOAc in hexanes); ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.50–7.46 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 2.83 (d, *J* = 6.8 Hz, 2H), 2.35 (sept, *J* = 6.6 Hz, 1H), 1.03 (d, *J* = 6.4 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 191.5, 155.8, 153.1, 128.3, 127.2, 124.0, 123.4, 112.9, 112.6, 47.9, 25.6, 22.9; **IR** (neat) 2957, 2871, 1678, 1556, 1298, 1161, 1143 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₁₃H₁₄O₂ [M+H]⁺ 203.1072, found 203.1069.

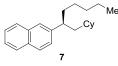
(R)-1-(benzofuran-2-yl)-3-methylbutan-1-ol ((R)-SI-17). Prepared according to a modified procedure by Panek and co-workers.¹³ To a cooled (-20 °C) solution (S)-2-methyl-CBS-oxazaborolidine (0.114 g, 0.41 mmol) in THF (30 mL) was added BH₃·Me₂S (0.800 mL, 8.43 mmol) and the reaction mixture was stirred for 30 min. A solution of SI-16 (0.700 g, 3.46 mmol) in THF (5 mL) was added and the reaction mixture was stirred for 17 h. at -20 °C. The reaction was quenched by slow addition of MeOH (5 mL) followed by sat. NH₄Cl (30 mL), warmed to room temperature and extracted with EtOAc (3 x 30 mL). The combined organics were washed with sat. NaCO₃, brine, dried over NaSO₄, and concentrated in vacuo. Purification by flash chromatography (5-10% EtOAc in hexanes) followed by recrystallization from hexanes afforded the title compound as white needles (0.461 g, 2.25 mmol, 65%). **m.p.** 72-73 °C; **TLC R_f** = 0.5 (20% EtOAc in hexanes); ¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.26 (m, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.60 (s, 1H), 4.88 (d, J = 4.0 Hz, 1H), 2.05 (d, J = 4.0 Hz, 2.05 (d, J = 4.0 Hz, 2.05 (d, J = 4.0 H 4.0 Hz, 1H), 1.87–1.75 (m, 3H), 0.98 (t, J = 5.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 154.9, 128.3, 124.2, 122.9, 121.1, 111.4, 102.5, 66.7, 44.6, 24.7, 23.2, 22.3; IR (neat) 3339, 2955, 2869, 1454, 1253 cm⁻¹; **HRMS** (TOF MS Cl⁺) m / z cacld for C₁₃H₁₆O₂ [M]⁺204.1150, found 204.1155. $[\alpha]^{24}_{D}$ +25.3 (c 1.17, CHCl₃); SFC analysis (AD-H, 5% MeOH, 3 mL/min) indicated 95% ee $t_{\rm R}$ (minor) = 4.9 minutes, t_{R} (major) = 5.2 minutes. Absolute configuration was assigned as R based on the accepted model for selectivity in CBS reductions.¹⁰

(*R*)-2-(1-methoxy-3-methylbutyl)benzofuran ((*R*)-SI-18). To a solution of NaH (0.103 g, 4.30 mmol) in THF (5 mL) was added a solution of (*R*)-SI-17 (0.439 g, 2.15 mmol) in THF (3 mL) and the mixture was stirred at 40 °C for 30 min. MeI (0.402 mL, 6.44 mmol) was added and stirring was continued for 8 h. Reaction was quenched with MeOH and the solvent was removed in vacuo. The crude mixture was taken up in CH₂Cl₂ (100 mL), filtered, and concentrated in vacuo. Purification by flash chromatography (5% EtOAc in hexanes) afforded the title compound as a colorless oil (0.467 g, 2.14 mmol, 99%): TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (10% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.28–7.19 (m, 2H), 6.64 (s, 1H), 4.35 (t, *J* = 7.2 Hz, 1H), 3.32 (s, 3H), 1.90 (m, 1H), 1.75–1.68 (m, 2H), 0.94 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 155.1, 128.2, 124.2, 122.8, 121.0, 111.5, 104.6, 75.7, 56.9, 43.3, 24.8, 23.0, 22.5; IR (neat) 2955, 2931, 2869, 1454, 1252, 1093 cm⁻¹; HRMS (TOF MS Cl⁺) *m* / *z* cacld for C₁₄H₁₈O₂ [M]⁺ 218.1307, found 218.1302; [*a*]²⁴_D +100.3 (*c* 1.05, CHCl₃); SFC analysis (AD-H, 3% IPA, 3 mL/min) indicated 97% ee t_R (major) = 2.0 minutes, t_R (minor) = 2.2 minutes.

V. Representative Procedure for Cross-Coupling Reactions

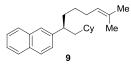


(-)-2-(octan-3-yl)naphthalene (2, Table 1, entry 16): A vial was charged with (*R*)-1 (0.100 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), flushed with nitrogen and capped. Toluene (3.0 mL) was added, followed by *n*-pentylmagnesium bromide (0.60 mL, 1.0 mmol, 1.7 M in Et₂O) and the reaction was allowed to stir at room temperature for 24 h. The reaction was quenched by the addition of EtOAc (1 mL) and the entire reaction mixture was adsorbed onto silica gel (1 g). The solvents were removed in vacuo and the crude was purified by flash column chromatography (100% hexanes). The resulting colorless oil (0.118 g) was a mixture of the title compound (96% calculated yield), the product of reduction (2% calculated yield), and the product of elimination (1% calculated yield). Further purification (100% heptanes) afforded a pure sample of (*R*)-2: TLC R_f = 0.6 (100% hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.76 (m, 3H), 7.56 (s, 1H), 7.46–7.38 (m, 2H), 7.30 (dd, *J* = 8.4, 0.8 Hz, 1H), 2.56 (m, 1H), 1.78–1.60 (m, 4H), 1.26–1.10 (m, 6H), 0.82 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 133.7, 132.2, 127.9, 127.7, 127.6, 126.5, 126.2, 125.8, 125.1, 48.2, 36.6, 32.2, 29.8, 27.5, 22.7, 14.2, 12.4; IR (neat) 3056, 2981, 2918, 2850, 1107, 1067 cm⁻¹; HRMS (TOF MS CI⁺) *m* / *z* cacld for C₁₈H₂₄ [M]⁺ 240.1878, found 240.1871; [α]²⁷_D –1.6 (*c* 1.83, CHCl₃); SFC analysis (OJ-H, 2% hexanes, 2 mL/min) indicated 96% ee: t_R (minor) = 10.0 minutes, t_R (major) = 10.6 minutes.

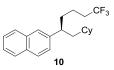

VI. Characterization Data for Products

(*R*)-2-sec-butylnaphthalene ((*R*)-5, table 2, entry 1): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-SI-3 (0.093 g, 0.50 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), ethylmagnesium bromide (0.36 mL, 1.0 mmol, 2.8 M in Et₂O) and toluene (3.0 mL). Purification by flash column chromatography (100% hexanes) afforded the title compound as a colorless oil (0.73 g, 80%). Analytical data is consistent with literature values:¹² ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.76 (m, 3H), 7.60 (s, 1H), 7.46–7.34 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 2.76 (sextet, *J* = 7.2 Hz, 1H), 1.73–1.65 (m, 2H), 1.32 (d, *J* = 6.8 Hz, 3H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 133.8, 132.3, 128.0, 127.71, 127.68, 126.0, 125.9, 125.3, 125.1, 42.0, 31.2, 22.0, 12.4; [α]²⁷_D –26.5 (*c* 1.17, CHCl₃), [α]²⁵_D –24.4 (*c* 1.00, heptane), lit. [α]²⁵_D –12.7 (*c* 2.4, heptane, 42% ee);²⁴ SFC analysis (OD-H, 1% hexanes, 2.0 mL/min) indicated 91% ee t_R (minor) = 9.9 minutes, t_R (major) = 10.4 minutes.

(+)-2-(1-cyclohexylpentan-2-yl)naphthalene (6, table 2, entry 2): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), *n*-propylmagnesium bromide (0.44 mL, 1.0 mmol, 2.3 M in Et₂O) and toluene (3.0 mL). Purification by flash column chromatography (100% hexanes) afforded a colorless oil (0.137 g) as a mixture of the title compound (calculated yield 93%) and the product of elimination (5% calculated yield). Further purification (100% heptanes) afforded a sample of analytically pure material: $\mathbf{R}_{f} = 0.7$ (100% hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.80–7.76 (m, 3H), 7.55 (s, 1H), 7.45–7.39 (dquint, J = 5.5, 1.2 Hz, 2H), 7.32 (dd, J = 8.5, 1.5 Hz, 1H), 2.84–2.79 (dq J = 9.3, 5.5 Hz, 1H), 1.84 (d, J = 12.8 Hz, 1H), 1.85–1.47 (m, 8H), 1.26–1.05 (m, 6H), 0.91–0.86 (m, 5H); ¹³C NMR (500 MHz, CDCl₃) δ 144.1, 133.7, 132.3, 128.0, 127.73, 127.65, 126.4, 126.2, 125.8, 125.1, 44.9, 42.7, 39.9, 35.0, 34.4, 33.0, 26.8, 26.4, 26.3, 20.9, 14.3; IR (thin film) 3052, 2661, 1915, 1633, 1600 cm⁻¹; HRMS (TOF MS Cl+) *m* / *z* cacld for C₂₁H₂₈[M]⁺280.2191, found 280.2187; [*a*]²⁹_D+17.8 (*c* 1.11, CHCl₃); SFC analysis (OJ-H, 2% hexanes, 2.0 mL/min) indicated 97% ee t_R (major) = 11.4 minutes, t_R (minor) = 12.3 minutes.

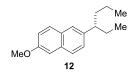


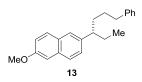
(+)-2-(1-cyclohexylheptan-2-yl)naphthalene (7, table 2, entry 3): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), *n*-pentylmagnesium bromide (0.50 mL, 1.0 mmol, 2.0 M in Et₂O), and toluene (3.0 mL). Purification by flash column chromatography (100% hexanes) afforded a colorless oil (0.147 g) as a mixture of the title compound (91% calculated yield) and the product of elimination (6% calculated yield). Further purification (100% heptanes) afforded a sample of analytically pure material: $\mathbf{R_f} = 0.3$ (100% hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.75 (m, 3H), 7.55 (s, 1H), 7.44–7.37 (m, 2H), 7.31 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.79 (m, 1H), 1.84 (d, *J* = 12.8 Hz, 1H), 1.63–1.44 (m, 8H), 1.21–1.04 (m, 10H), 0.89–0.81 (m, 5H); ¹³C NMR (500 MHz, CDCl₃) δ 144.2, 133.7, 132.3, 128.0, 127.74, 127.67, 126.4, 126.1, 125.8, 125.1, 45.0, 43.0, 37.6, 35.0, 34.4, 33.0, 32.2, 27.5, 26.8, 26.4, 26.3, 22.7, 14.3; IR (neat) 3020, 2920, 2850, 815, 744, 697 cm⁻¹; HRMS (TOF MS CI+) *m* / *z* cacld for C₂₃H₃₂ [M]⁺ 308.2504, found 308.2507; $[\alpha]^{27}{}_{\mathbf{D}} + 9.4$ (*c* 1.20, CHCl₃); SFC analysis (OJ-H, 2% hexanes, 2.0 mL/min) indicated 97% ee t_R (minor) = 11.4 minutes, t_R (major) = 12.3 minutes.



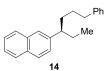
(*S*)-2-(1-cyclohexyl-5-phenylpentan-2-yl)naphthalene (8, table 2, entry 4): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.401 g, 1.50 mmol), NiCl₂(dppe) (15.8 mg, 0.030 mmol), (3-phenylpropyl)magnesium bromide (1.59 mL, 1.89 mmol, 1.9 M in Et₂O), and toluene (22 mL). Purification by flash column chromatography (0–5% EtOAc in hexanes) afforded a colorless oil (0.522 g) as a mixture of the title compound (88% calculated yield) and the product of Wurtz coupling of the organomagnesium reagent (1,6-diphenylhexane). Further purification by flash chromatography (100% pentane) afforded a sample of analytically pure material: **TLC R**_f = 0.3 (100% hexanes); **m.p.** 81–81 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.54 (s, 1H), 7.46–7.39 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.22 (m, 2H), 7.13 (t, *J*)

= 7.5 Hz, 1H), 7.08 (d, J = 7.0 Hz, 2H), 2.82 (p, J = 5.0 Hz, 1H), 2.54 (m, 2H), 1.82 (d, J = 12.5 Hz, 1H), 1.69–1.43 (br m, 10H), 1.11–1.00 (m, 4H), 0.85 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 142.7, 133.7, 132.3, 128.5, 128.3, 128.0, 127.73, 127.68, 126.4, 126.1, 125.9, 125.7, 125.1, 44.9, 42.9, 37.2, 36.1, 34.9, 34.4, 32.9, 29.6, 26.8, 26.4, 26.3; **IR** (neat) 2918, 2850, 1442, 822, 745, 696 cm⁻¹; **HRMS** (TOF MS CI+) m / z cacld for C₂₇H₃₂ [M]⁺ 356.2504, found 356.2509; $[\alpha]^{20}{}_{\rm D}$ +1.0 (*c* 1.03, CHCl₃); **SFC** analysis (OJ-H, 20% IPA, 2.5 mL/min) indicated 97% ee t_R (minor) = 4.2 minutes, t_R (major) = 5.2 minutes. Crystals suitable for X-ray diffraction (vide infra) were grown by slow evaporation of solvent from a solution of the title compound in a mixture of methanol and pentane.

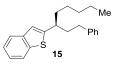

(+)-2-(1-cyclohexyl-7-methyloct-6-en-2-yl)naphthalene (9, table 2, entry 5): Prepared according to the representative procedure outlined above using the following amounts of reagents: (R)-26 (0.0537 g, 0.200 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), (5-methylhex-4-enyl)magnesium bromide (0.48 mL, 0.40 mmol, 0.83 M in Et₂O), and toluene (3.0 mL) for 48 h. Purification by flash column chromatography (100% pentane) afforded a colorless oil (0.054 g) as a mixture of the title compound (81% calculated yield) and the product of elimination (12% calculated yield). Further purification by flash chromatography on silver-impregnated silica (0-3% Et₂O in pentane) afforded a sample of analytically pure material: **TLC** $\mathbf{R}_{f} = 0.4$ (100% pentane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.81–7.76 (m, 3H), 7.55 (s, 1H), 7.46–7.39 (dp, J = 8.4, 1.2 Hz, 2H), 7.31 (dd, J = 8.5, 1.5 Hz, 1H), 5.01 (t, J = 7.1 Hz 1H), 2.80 (dq J = 14.8, 5.3 Hz, 1H), 1.96–1.82 (m, 3H), 1.68–1.47 (m, 14H), 1.36–1.18 (m, 2H), 1.16–1.01 (m, 4H), 0.94–0.80 (m, 2H); ¹³C NMR (500 MHz, CDCl₃) δ 144.0, 133.7, 132.3, 131.3, 128.0, 127.7, 127.6, 126.4, 126.1, 125.8, 125.1, 124.9, 44.9, 42.9, 37.2, 35.0, 34.4, 32.9, 28.2, 28.0, 26.8, 26.4, 26.3, 25.8, 17.8; IR (neat) 2919, 2850, 1447, 853, 815, 743 cm⁻¹; **HRMS** (TOF MS EI+) m/z cacld for C₂₅H₃₄[M]⁺334.2661, found 334.2660; [α]²⁴_D+11.8 (c 5.33, CHCl₃); SFC analysis (OJ-H, 3% IPA, 2.5 mL/min) indicated 97% ee t_R (minor) = 6.5 minutes, t_R (major) = 6.9 minutes.


(+)-2-(1-cyclohexyl-6,6,6-trifluorohexan-2-yl)naphthalene (10, table 2, entry 6): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.0537 g, 0.200 mmol) and NiCl₂(dppe) (10.6 mg, 0.0200 mmol), (4,4,4-trifluorobutyl)magnesium bromide (0.20 mL, 0.40 mmol, 2.0 M in Et₂O), and toluene (3.0 mL) for a period of 48 h. Purification by flash column chromatography (100% pentane) afforded a colorless oil (0.054 g) as a mixture of the title compound (67% calculated yield) and the product of elimination (15% calculated yield). Further purification by flash chromatography on silver-impregnated silica (100% pentane) afforded a sample of analytically pure material: **TLC R**_f = 0.4 (100% pentane); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.78 (m, 3H), 7.55 (s, 1H), 7.48–7.40 (dp, *J* = 6.9, 1.3 Hz, 2H), 7.29 (dd, *J* = 8.5, 1.5 Hz, 1H), 2.81 (dq *J* = 14.8, 4.9 Hz, 1H), 2.11–1.90 (m, 2H), 1.83 (d, *J* = 12.9 Hz, 1H), 1.75–1.25 (m, 10H), 1.15–1.01 (m, 4H), 0.93–0.81 (m, 2H); ¹³C NMR (500 MHz, CDCl₃) δ 142.9, 133.7, 132.4, 128.3, 127.8, 127.7, 126.4, 126.0, 125.7,125.3, 44.8, 42.8, 36.5, 34.9, 34.3, 33.9 (q, *J* = 28.3 Hz, 1C), 32.9, 26.7, 26.7, 26.3, 26.2, 20.3 (q, *J* = 2.8 Hz, 1C); IR (neat) 2920, 2850, 1448, 1253, 1131, 816, 744 cm⁻¹; HRMS (TOF MS EI+) *m* / *z* cacld for C₂₂H₂₇F₃ [M]⁺ 348.2065; found 348.2065; [**a**]²⁶_D+19.7 (*c* 1.2, CHCl₃); SFC analysis (OJ-H, 10% hexanes, 2.5 mL/min) indicated 97% ee t_R (major) = 4.7 minutes, t_R (minor) = 5.3 minutes.

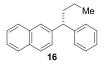
(+)-2-(1-cyclohexyl-4-methylpentan-2-yl)naphthalene (11, table 2, entry 7): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*S*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), *i*-butylmagnesium bromide (0.40 mL, 1.0 mmol, 2.5 M in Et₂O), and toluene (3.0 mL). Purification by flash column chromatography (100% hexanes) afforded a colorless oil (0.067 g) as a mixture of the title compound (40% calculated yield), the product of reduction (8% calculated yield), and the product of elimination (7% calculated yield). Further purification (100% heptanes) afforded a sample of analytically pure material: **TLC R**_f = 0.7 (100% hexanes); ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (q, *J* = 7.5 Hz, 3H), 7.56 (s, 1H), 7.43 (m, 2H), 7.32 (d, *J* = 9.0 Hz, 1H), 2.92 (hept, *J* = 5.0 Hz, 1H), 1.85 (d, *J* = 12.5 Hz, 1H), 1.66–1.54 (m, 6H), 1.49–1.39 (m, 2H), 1.33 (m, 1H), 1.14–1.03 (m, 4H), 0.92–0.84 (m, 5H), 0.80 (d, *J* = 6.5 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 144.2, 133.7, 132.3, 128.0, 127.7, 127.6, 126.3, 126.1, 125.8, 125.1, 46.9, 45.4, 40.5, 34.9, 34.3, 33.0, 26.8, 26.4, 26.3, 25.5, 23.7, 22.0; **IR** (neat) 2919, 2849, 1447, 853, 813, 743 cm⁻¹; **HRMS** (TOF MS EI⁺) *m* / *z* cacld for C₂₂H₃₀ [M]⁺294.2347, found 294.2350; [**a**]²⁷_D + 14.9 (*c* 0.80, CHCl₃); **SFC** analysis (OJ-H, 2% hexanes, 2.0 mL/min) indicated 90% ee: t_R (major) = 7.0 minutes, t_R (minor) = 8.4 minutes.

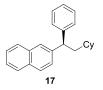


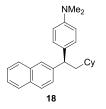
(-)-2-(hexan-3-yl)-6-methoxynaphthalene (12, table 2, entry 8): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*S*)-SI-7 (0.115 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), *n*-propylmagnesium bromide (0.44 mL, 1.0 mmol, 2.3 M in Et₂O), and toluene (3.0 mL). Purification by flash column chromatography (3% EtOAc in hexanes) afforded a white solid (0.108 g) as a mixture of the title compound (80% calculated yield), the product of reduction (6% calculated yield), and the product of elimination (5% calculated yield). Further purification (100% hexanes) afforded a sample of analytically pure material: TLC $\mathbf{R}_{\mathbf{f}} = 0.4$ (5% EtOAc in hexanes); m.p. 57–58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (m, 2H), 7.49 (s, 1H), 7.28 (m, 1H), 7.12 (dd, *J* = 6.0, 2.8 Hz, 2H), 3.91 (s, 3H), 2.54 (m, 1H), 1.73–1.60 (m, 4H), 1.21–1.14 (m, 2H), 0.84 (t, *J* = 7.2, 3H), 0.78 (t, *J* = 7.4, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 141.3, 133.2, 129.1 (2C), 126.8, 126.7, 126.4, 118.6, 105.8, 55.5, 47.7, 39.0, 29.8, 20.9, 14.3, 12.4; IR (neat) 2953, 2920, 2856, 816, 744, 697 cm⁻¹; HRMS (TOF MS CI⁺) *m* / *z* cacld for C₁₇H₂₂O [M+H]⁺ 243.1749, found 243.1741; [**a**]²⁸ – 8.2 (*c* 0.97, CHCl₃); SFC analysis (OD-H, 10% hexanes, 3.5 mL/min) indicated 92% ee: t_R (minor) = 4.4 minutes, t_R (major) = 4.6 minutes.



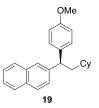
(+)-2-methoxy-6-(6-phenylhexan-3-yl)naphthalene (13, table 2, entry 9): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*S*)-SI-7 (0.115 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), (3-phenylpropyl)magnesium bromide (0.50 mL, 1.0 mmol, 2.0 M in Et₂O), and toluene (3.0 mL). Purification by flash column chromatography (3% Et₂O in heptanes) afforded a colorless oil (0.145 g) as a mixture of the title compound (88% calculated yield), the


product of reduction (4% calculated yield), and the product of elimination (1% calculated yield). Further purification (preparatory TLC, 2% Et₂O in heptanes) afforded a sample of analytically pure material: **TLC R_f** = 0.4 (5% EtOAc in hexanes); ¹**H NMR** (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 2H), 7.47 (s, 1H), 7.22 (m, 3H), 7.14–7.07 (m, 5H), 3.90 (s, 3H), 2.61–2.49 (m, 3H), 1.74–1.57 (m, 4H), 1.52–1.46 (m, 2H), 0.76 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 157.2, 142.8, 140.9, 133.3, 129.1 (2C), 128.5, 128.3, 126.9, 126.6, 126.4, 125.7, 118.6, 105.7, 55.4, 47.9, 36.3, 36.1, 29.9, 29.6, 12.4; **IR** (neat) 3025, 2930, 2856, 1605, 1264, 1032, 850 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₂₃H₂₆O [M]⁺ 318.1984, found 318.1994; $[\alpha]^{26}{}_{\rm D}$ +12.1 (*c* 0.50, CHCl₃); **SFC** analysis (OJ-H, 15% IPA, 2.0 mL/min) indicated 93% ee: t_R (minor) = 6.9 minutes, t_R (major) = 8.5 minutes.

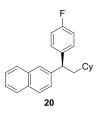

(-)-2-(6-phenylhexan-3-yl)naphthalene (14, table 2, entry 10): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-1 (0.040 g, 0.20 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), (3-phenylpropyl)magnesium bromide (0.24 mL, 0.40 mmol, 1.7 M in Et₂O), and toluene (3.0 mL). Purification by flash column chromatography (100% heptanes) afforded a colorless oil (0.054 g) as a mixture of the title compound (93% calculated yield) and the product of Wurtz coupling of the organomagnesium reagent (1,6-diphenylhexane). Further purification (flash column chromatography in 100% pentanes) afforded a sample of analytically pure material: **TLC R**_f = 0.6 (100% hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.54 (s, 1H), 7.42 (dt, J = 17.4, 6.7 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 1H), 7.22 (m, 2H), 7.12 (m, 1H), 7.08 (d, *J* = 7.3 Hz, 2H), 2.61–2.49 (m, 3H), 1.79–1.59 (m, 4H), 1.57–1.41 (m, 2H), 0.77 (t, *J* = 7.3Hz, 3H) ¹³C NMR (125 MHz, CDCl₃) δ 143.3, 142.7, 133.7, 132.4, 128.5, 128.5, 128.3, 128.0, 127.7, 127.7, 126.6, 126.1, 125.9, 125.7, 125.2, 48.1, 36.2, 36.2, 29.8, 29.6, 12.4; IR (neat) 3024, 2928, 2856, 815, 743 cm⁻¹; HRMS (TOF MS Cl⁺) *m*/*z* cacld for C₂₂H₂₄ [M]⁺ 288.1878, found 288.1880; [*a*]²⁴_D-15.1 (*c* 1.08, CHCl₃); SFC analysis (OJ-H, 15% IPA, 2.0 mL/min) indicated 97% ee: t_R (minor) = 6.3 minutes, t_R (major) = 7.8 minutes.


(+)-2-(1-phenyloctan-3-yl)benzo[b]thiophene (15, table 2, entry 11): A 7 mL vial was charged with (R)-SI-10 (0.056 g, 0.200 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), flushed with nitrogen and capped. Toluene (3 mL) was added, followed by *n*-pentylmagnesium bromide (0.18 mL, 0.40 mmol, 2.3 M in Et₂O) and the reaction was allowed to stir at room temperature for 10 h. The vial was cracked open and another batch of NiCl₂(dppe) (5.3 mg, 0.010 mmol) was added. After further stirring for 14 h, the reaction was guenched by the addition of EtOAc (1 mL) and the entire reaction mixture was adsorbed onto silica gel (1 g). The solvents were removed in vacuo and the crude was purified by flash column chromatography (100% hexanes) to afford 15 as a colorless oil (0.035 g, 0.11 mmol, 54%): TLC $\mathbf{R}_{\mathbf{f}} = 0.4$ (100% hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.26 (m, 3H), 7.18 (d, J = 7.5 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.03 (s, 1H), 2.93 (hept, J = 5.0 Hz, 1H), 2.60 (m, 1H), 2.54 (m, 1H), 2.03 (m, 1H), 1.94 (m, 1H), 1.55–1.70 (m, 2H), 1.26– 1.13 (m, 6H), 0.82 (t, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.2, 142.3, 140.1, 139.2, 128.6, 128.5, 125.9, 124.1, 123.5, 122.9, 122.5, 120.9, 42.0, 39.4, 37.8, 33.8, 31.9, 27.2, 22.7, 14.2; IR (neat) 3060, 2925, 2854, 1455, 1436, 821 cm⁻¹; **HRMS** (TOF MS CI⁺) m / z cacld for C₂₂H₂₆S [M+H]⁺ 323.1833, found 323.1833; [α]²⁶_D+13.4 (c 0.95, CHCl₃); SFC analysis (OD-H, 3% IPA, 2.5 mL/min) indicated 96% ee: t_R (major) = 20.0 minutes, t_R (minor) = 21.4 minutes.

(-)-2-(1-phenylbutyl)naphthalene (16, table 2, entry 12): A 7 mL vial was charged with (*S*)-SI-12 (0.124 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), flushed with nitrogen and capped. Toluene (3 mL) was added and the reaction was cooled to 0 °C. *n*-Propylmagnesium bromide (0.18 mL, 0.40 mmol, 2.3 M in Et₂O) was added and the reaction was allowed to stir at 0 °C for 48 h. The reaction was quenched by the addition of EtOAc (1 mL) and the entire reaction mixture was adsorbed onto silica gel (1 g). The solvents were removed in vacuo and the crude was purified by flash column chromatography (100% hexanes). The resulting colorless oil (0.104 g) was an inseparable mixture of the title compound (67% calculated yield) and the product of reduction²⁵ (15% calculated yield). Purification by preparatory HPLC (100 hexanes) afforded a small sample of analytically pure 16: TLC R_f = 0.5 (100% hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (t, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.70 (s, 1H), 7.42 (m, 2H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.28 (m, 4H), 7.17 (m, 1H), 4.02 (t, *J* = 8.2 Hz, 1H), 2.13 (hept, *J* = 5.6 Hz, 2H), 1.32 (sextet, *J* = 7.6 Hz, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.3, 142.9, 133.7, 132.2, 128.5, 128.13, 128.12, 127.8, 127.7, 127.0, 126.2, 126.02, 125.99, 125.4, 51.2, 37.8, 21.3, 14.3; IR (neat) 3055, 3024, 2954, 2928, 1599, 1506, 1493 cm⁻¹; HRMS (TOF MS Cl⁺) *m* / *z* cacld for C₂₀H₂₀ [M]⁺ 260.1565, found 260.1567; [α]²⁴_D -25.2 (*c* 0.54, CHCl₃); SFC analysis (OD-H, 2% IPA, 2.5 mL/min) indicated 91% ee: t_R (minor) = 5.9 minutes, t_R (major) = 7.5 minutes.



(-)-2-(2-cyclohexyl-1-phenylethyl)naphthalene (17, table 3, entry 1): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), phenylmagnesium bromide (0.37 mL, 1.0 mmol, 2.7 M in Et₂O), and toluene (7.5 mL) for a period of 24 h. Purification by flash column chromatography (100% pentane) afforded the title compound as a colorless oil (0.105 g, 0.33 mmol, 67%): TLC R_f = 0.2 (100% pentane); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (t, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.69 (s, 1H), 7.41 (quintd, *J* = 6.9, 1.3 Hz, 2H), 7.34 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.29–7.24 (m, 4H), 7.15 (m, 1H), 4.23 (t, *J* = 7.9 Hz, 1H), 2.08–1.95 (m, 2H), 1.80 (t, *J* = 11.7 Hz, 2H), 1.66–1.58 (m, 3H), 1.26–1.05 (m, 4H), 1.01–0.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 143.0, 133.7, 132.3, 128.5, 128.1, 127.9, 127.7, 127.0, 126.2, 126.0, 125.4, 48.2, 43.5, 35.0, 33.7, 33.5, 26.8, 26.3 IR (neat) 2919, 2849, 1448, 3055, 1490, 743, 698 cm⁻¹; HRMS (TOF MS ES⁺) *m*/*z* cacld for C₂₄H₂₆ [M]⁺314.2035, found 314.2030; [α]²⁵_D -10.8 (*c* 1.99, CHCl₃); SFC analysis (OJ-H, 15% IPA, 2.5 mL/min) indicated 92% ee: t_R (major) = 6.1 minutes, t_R (minor) = 6.9 minutes.

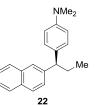


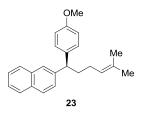
(-)-4-(2-cyclohexyl-1-(naphthalen-2-yl)ethyl)-*N*,*N*-dimethylaniline (18, table 3, entry 2): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26

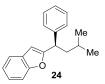
(0.054 g, 0.20 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), 4-(*N*,*N*-dimethylamino) phenylmagnesium bromide (0.133 g, 0.40 mmol), and toluene (3.0 mL) for a period of 48 h. Purification by flash column chromatography (1% Et₃N, 5% Et₂O in pentane) afforded the title compound as a yellow oil (0.057 g, 0.16 mmol, 79%): **TLC R**_f = 0.3 (1% Et₃N, 5% Et₂O in pentane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (t, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.44–7.32 (m, 3H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.7 Hz), 4.14 (t, *J* = 7.9 Hz), 2.88 (s, 6H), 2.04–1.91 (m, 2H), 1.80 (t, *J* = 12.6, 2H), 1.66 (m, 3H), 1.25–1.05 (m, 4H), 1.01–0.92 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 149.1, 143.9, 133.7, 133.5, 132.1, 128.7, 128.0, 127.8, 127.7, 127.1, 125.8, 125.7, 125.2, 112.9, 47.1, 43.7. 40.9, 35.0, 33.7, 33.6, 26.8, 26.3; **IR** (neat) 2918, 2848, 1614, 1519, 1446, 1345, 813, 731 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₂₆H₃₁N [M+H]⁺ 358.2535, found 358.2529; **[a**]²⁶_D –1.55 (*c* 2.59, CHCl₃).

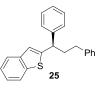
(-)-2-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)naphthalene (19, table 3, entry 3): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), 4-methoxyphenylmagnesium bromide (0.53 mL, 1.0 mmol, 1.9 M in Et₂O), and toluene (7.5 mL) for a period of 24 h. Purification by flash column chromatography (5% Et₂O in pentane) afforded a colorless oil (0.157 g) as a mixture of the title compound (86% calculated yield) and the starting material (15% calculated yield). Further purification by column chromatography (1–15% benzene in hexanes) afforded a pure sample of 17: TLC R_f = 0.7 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (t, *J* = 9.3 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.66 (s, 1H), 7.41 (m, 2H), 7.32 (d, *J* = 8.5 Hz, 1H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 4.18 (t, *J* = 7.3 Hz, 1H), 3.74 (s, 3H), 1.98 (m, 2H), 1.79 (m, 2H), 1.70–1.55 (m, 3H), 1.23–1.04 (m, 4H), 1.02–0.91 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 143.4, 137.6, 133.7, 132.2, 129.0, 128.5, 128.1, 127.8, 127.7, 127.0, 126.0, 125.8, 125.4, 113.9, 55.3, 47.2, 43.7, 35.0, 33.62, 33.57, 26.8, 26.3; IR (neat) 2919, 2848, 1509, 1447, 1245, 1177, 1037 cm⁻¹; HRMS (TOF MS Cl⁺) *m* / *z* cacld for C₂₅H₂₈O [M]⁺ 344.2140, found 344.2131; [**a**]²⁴_D –6.3 (*c* 1.17, CHCl₃); **SFC** analysis (AD-H, 15% IPA, 3.0 mL/min) indicated 97% ee: t_R (major) = 9.0 minutes, t_R (minor) = 9.6 minutes.

(-)-2-(2-cyclohexyl-1-(4-fluorophenyl)ethyl)naphthalene (20, table 3, entry 4): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.134 g, 0.500 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), 4-flourophenylmagnesium bromide (0.46 mL, 1.0 mmol, 2.2 M in Et₂O), and toluene (7.5 mL) for a period of 48 h. Purification by flash column chromatography (100% hexanes) afforded a colorless oil (0.147 g) as a mixture of the title compound (82% calculated yield) and the product of Wurtz coupling of the organomagnesium reagent. Further purification by column chromatography (100% pentane) afforded a pure sample of 18: TLC R_f = 0.8 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (t, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.66 (s, 1H), 7.43 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.22 (dd, *J* = 8.5, 6.0 Hz, 2H), 6.95 (app t, *J* = 8.5 Hz, 2H), 4.21 (t, *J* = 8.0 Hz, 1H), 2.02 (quint, *J* = 7.1 Hz, 1H), 1.94 (quint, *J* = 7.0 Hz, 1H), 1.79 (t, *J* = 12.3


Hz, 2H), 1.70–1.56 (m, 3H), 1.22–1.04 (m, 4H), 0.99 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 161.4 (d, *J* = 242.5 Hz, 1C), 142.8, 141.1 (d, *J* = 3.3 Hz, 1C), 133.7, 132.2, 129.5 (d, *J* = 7.8 Hz, 2C), 128.2, 127.8, 127.7, 126.8, 126.1, 125.9, 125.5, 115.3 (d, *J* = 84.0 Hz, 2C), 47.3, 43.6, 35.0, 33.6, 33.5, 26.7, 26.2 (2C); **IR** (neat) 3053, 2920, 2850, 1506, 1222, 793 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₂₄H₂₅F [M]⁺ 332.1940, found 332.1930; $[\alpha]^{20}{}_{\rm D}$ –11.1 (*c* 0.91, CHCl₃); **SFC** analysis (OJ-H, 15% IPA, 2.5 mL/min) indicated 87% ee: t_R (major) = 4.3 minutes, t_R (minor) = 5.6 minutes.

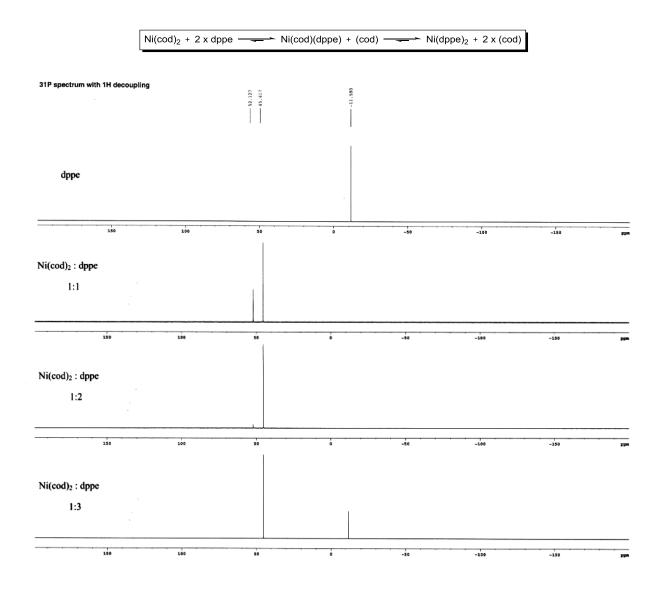

(+)-2-(2-cyclohexyl-1-(naphthalen-2-yl)ethyl)thiophene ((+)-21, table 3, entry 5): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-26 (0.054 g, 0.20 mmol) and NiCl₂(dppe) (10.6 mg, 0.0200 mmol), 2-thienylmagnesium bromide (0.15 mL, 0.40 mmol, 2.6 M in Et₂O), and toluene (3.0 mL) for a period of 48 h. Purification by flash column chromatography (2% Et₂O in pentane) afforded the title compound as a yellow oil (0.049 g, 0.15 mmol, 76%): **TLC R**_f = 0.5 (100% hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (t, *J* = 9.0 Hz, 3H), 7.70 (s, 1H), 7.42 (m, 3H), 7.12 (d, *J* = 4.4 Hz, 1H), 6.91 (dd, *J* = 5.2, 3.2 Hz, 1H), 6.83 (d, *J* = 3.2 Hz, 1H), 4.45 (t, *J* = 8.0 Hz, 1H), 2.05 (t, *J* = 7.4 Hz, 2H), 1.85 (d, *J* = 12.4 Hz, 1H), 1.73 (d, *J* = 12.4 Hz, 1H), 1.64–1.50 (m, 3H), 1.30–0.96 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 150.2, 142.5, 133.7, 132.5, 128.4, 127.9, 127.8, 126.7, 126.3, 126.2, 126.1, 125.6, 123.9, 123.6, 45.1, 43.9, 35.1, 33.8, 33.1, 26.7, 26.3, 26.2; **IR** (neat) 3026, 2922, 2853, 1453, 743, 697 cm⁻¹; **HRMS** (TOF MS Cl⁺) *m* / *z* cacld for C₂₂H₂₄S [M+H]⁺ 321.1677, found 321.1672; [*α*]²⁴ +42.4 (*c* 1.20, CHCl₃); **SFC** analysis (OD-H, 20% hexanes, 3.0 mL/min) indicated 93% ee: t_R (minor) = 14.9 minutes, t_R (major) = 17.5 minutes.


(-)-2-(2-cyclohexyl-1-(naphthalen-2-yl)ethyl)thiophene ((-)-21). Prepared according to the representative procedure outlined above using the following amounts of reagents: (*S*)-26 (0.039 g, 0.15 mmol) and NiCl₂(dppe) (7.7 mg, 0.015 mmol), 2-thienylmagnesium bromide (0.17 mL, 0.29 mmol, 2.0 M in Et₂O), and toluene (2.2 mL) for a period of 48 h. Purification by flash column chromatography (2% Et₂O in pentane) afforded the title compound as a yellow oil (0.033 g, 0.10 mmol, 70%): ¹H NMR (500 MHz, CDCl₃) δ 7.78 (t, *J* = 8.6 Hz, 3H), 7.70 (s, 1H), 7.42 (m, 3H), 7.13 (d, *J* = 5.2 Hz, 1H), 6.91 (dd, *J* = 5.2, 3.6 Hz, 1H), 6.84 (d, *J* = 3.6 Hz, 1H), 4.45 (t, *J* = 8.0 Hz, 1H), 2.05 (t, *J* = 7.4 Hz, 2H), 1.86 (d, *J* = 12.8 Hz, 1H), 1.73 (d, *J* = 12.4 Hz, 1H), 1.64–1.54 (m, 3H), 1.26–0.96 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 142.5, 133.7, 132.5, 128.4, 127.9, 127.8, 126.7, 126.3, 126.14, 126.09, 125.6, 123.9, 123.6, 45.1, 43.8, 35.1, 33.8, 33.1, 26.7, 26.25, 26.21; $[\alpha]^{24}{}_{\rm D}$ –42.9 (*c* 0.98, CHCl₃); SFC analysis (OD-H, 20% hexanes, 3.0 mL/min) indicated 92% ee: t_R (major) = 14.3 minutes, t_R (minor) = 17.5 minutes.


(-)-N,N-dimethyl-4-(1-(naphthalen-2-yl)propyl)aniline (22, table 3, entry 7): A 7 mL vial was equipped with a stir bar, flame dried, and pumped into a glove box while still warm. (R)-1 (0.040 g, 0.20 mmol), NiCl₂(dppe) (5.3 mg, 0.010 mmol), and 4-(N,N-dimethylamino) phenylmagnesium bromide (0.133 g, 0.400 mmol) were added. The vial was capped, removed from the glove box and put under a nitrogen atmosphere. Toluene (3 mL) was added and the reaction mixture was stirred for 24 h at which point the reaction was quenched with methanol. The crude mixture was eluted through a silica plug (100% Et₂O) and concentrated in vacuo. Purification by flash column chromatography (1% Et₃N, 5% Et₂O in pentane) afforded the title compound as a yellow oil (0.047 g, 0.16 mmol, 80% yield). Trace amounts (<5%) of Wurtz coupling product of the organomagnesium reagent could not be separated from the product: **TLC R**_f = 0.2 (1% Et₃N, 5% EtOAc in hexanes) ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (t, J = 8.0 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.68 (s, 1H), 7.40 (quint, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 3.87 (t, J = 7.6 Hz, 1H), 2.89 (s, 6H), 2.17–2.08 (quint, J = 7.2 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.2, 143.6, 133.7, 133.3, 132.2, 128.7, 128.0, 127.8, 127.7, 127.1, 125.9, 125.8, 125.2, 112.9, 52.4, 40.9, 28.6, 13.0; $[\alpha]_{D}^{26} -3.4$ (c 1.17, CHCl₃); IR (neat) 2958, 2928, 2871, 2797, 1613, 1564, 1818, 1345, 811, 780, 747; HRMS (TOF MS ES⁺) m/z cacld for C₂₁H₂₃N [M+H]⁺ 290.1909, found 290.1903; $[\alpha]^{25}_{D}$ –3.4 (c 1.16, CHCl₃) SFC analysis (AD-H, 20% IPA, 2.5 mL/min) indicated 95% ee: t_R (major) = 6.1 minutes, t_R (minor) = 7.4 minutes.

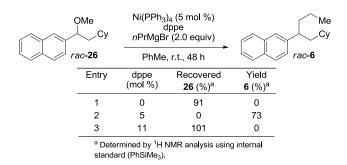
(-)-2-(1-(4-methoxyphenyl)-5-methylhex-4-enyl)naphthalene (23, table 3, entry 8): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-SI-15 (0.071 g, 0.28 mmol) and NiCl₂(dppe) (5.3 mg, 0.010 mmol), (4-methoxy)phenylmagnesium bromide (0.32 mL, 0.56 mmol, 1.8 M in Et₂O), and toluene (4.2 mL) for a period of 48 h. Purification by flash column chromatography (2% Et₂O in pentane) afforded an oil (0.091 g) as a mixture of the title compound (94% calculated yield) and the product of Wurtz coupling of the organomagnesium reagent. Further purification by column chromatography (1% Et₂O in pentane) afforded a pure sample of 21: TLC R_f = 0.7 (2% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (t, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.68 (s, 1H), 7.41 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.19 (d, *J* = 9.0 Hz, 2H), 6.81 (d, *J* = 9.0 Hz, 2H), 5.17 (t, *J* = 7.0 Hz, 1H), 4.02 (t, *J* = 7.8 Hz, 1H), 3.75 (s, 3H), 2.14 (m, 2H), 1.97 (app q, *J* = 7.5 Hz, 2H), 1.69 (s, 3H), 1.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.0, 143.1, 137.3, 133.7, 132.22, 132.16, 129.1, 128.1, 127.8, 127.7, 126.9, 126.0, 125.9, 125.4, 124.3, 113.9, 55.3, 49.9, 35.8, 26.5, 25.9, 17.9; IR (neat) 2925, 1608, 1509, 1440, 1245 cm⁻¹; HRMS (TOF MS Cl⁺) *m* / *z* cacld for C₂₄H₂₆O [M]⁺ 330.1984, found 330.1986; [α]²⁰ – 2.7 (*c* 1.06, CHCl₃); SFC analysis (AD-H, 10% IPA, 3.0 mL/min) indicated 78% ee: t_R (major) = 8.5 minutes, t_R (minor) = 9.2 minutes.

(-)-2-(3-methyl-1-phenylbutyl)benzofuran (24, table 3, entry 9): Prepared according to the representative procedure outlined above using the following amounts of reagents: (*R*)-SI-18 (0.044 g, 0.20 mmol) and NiCl₂(dppe) (10.6 mg, 0.020 mmol), phenylmagnesium bromide (0.13 mL, 0.40 mmol, 3.1 M in Et₂O), and toluene (3.0 mL) for a period of 48 h. Purification by flash column chromatography (100% hexanes) afforded the title compound as a colorless oil (0.037 g, 0.14 mmol, 71%): TLC R_f = 0.6 (5% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.0 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.30 (m, 4H), 7.23–7.14 (m, 3H), 6.43 (s, 1H), 4.16 (t, *J* = 8.0 Hz, 1H) 2.08 (m, 1H), 1.89 (m, 1H), 1.51 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 3H), 0.93 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 154.9, 142.3, 128.8, 128.7, 128.1, 126.8, 123.4, 122.6, 120.5, 111.1, 102.4, 43.7, 43.6, 25.6, 23.0, 22.4; IR (neat) 3028, 2954, 2926, 2867, 1453, 1253 cm⁻¹; HRMS (TOF MS CI⁺) *m* / *z* cacld for C₁₉H₂₀O [M+H]⁺ 265.1592, found 265.1594; [α]²⁴_D –45.5 (*c* 1.05, CHCl₃); SFC analysis (OD-H, 2% IPA, 3.0 mL/min) indicated 95% ee: t_R (minor) = 5.2 minutes, t_R (major) = 5.7 minutes.



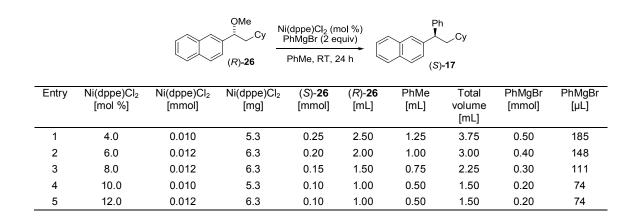
(-)-2-(1,3-diphenylpropyl)benzo[*b*]thiophene (25, table 3, entry 10): A 7 mL vial was charged with (*R*)-SI-10 (0.056 g, 0.20 mmol) and NiCl₂(dppe) (10.6 mg, 0.0200 mmol), flushed with nitrogen and capped. Toluene (3 mL) was added, followed by phenylmagnesium bromide (0.13 mL, 0.40 mmol, 3.1 M in Et₂O) and the reaction was allowed to stir at room temperature for 12 h. The vial was cracked open and another batch of NiCl₂(dppe) (10.6 mg, 0.0200 mmol) was added. After further stirring for 14 h, the reaction was quenched by the addition of EtOAc (1 mL) and the entire reaction mixture was adsorbed onto silica gel (1 g). The solvents were removed in vacuo and the crude was purified by flash column chromatography (2% EtOAc in hexanes) to afford the title compound as a colorless oil (0.050 g, 0.15 mmol, 76%): TLC $\mathbf{R}_{\mathbf{f}} = 0.4$ (5% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.35–7.16 (m, 12H), 7.08 (s, 1H), 4.20 (t, J = 7.6 Hz, 1H), 2.66 (m, 2H), 2.56–2.40 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 143.7, 141.8, 140.0, 139.5, 128.8, 128.63, 128.56, 128.0, 127.0, 126.1, 124.3, 123.8, 123.2, 122.3, 120.5, 47.0, 38.4, 34.0; IR (neat) 3026, 2922, 2853, 1453 cm⁻¹; HRMS (TOF MS CI⁺) m / z cacld for $C_{23}H_{20}S$ [M+H]⁺ 329.1364, found 329.1362; $|\mathbf{a}|^{24}_{\mathbf{D}} - 8.4$ (c 1.00, CHCl₃); SFC analysis (OD-H, 5% IPA, 3.0 mL/min) indicated 93% ee: t_R (minor) = 16.6 minutes, t_R (major) = 17.7 minutes.

VII. Mechanistic Studies


Activity of Ni⁰ Complexes

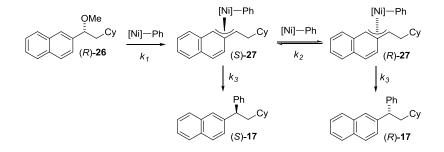
Procedure for NMR studies: In a glovebox, a vial was charged with $Ni(cod)_2$ (11 mg, 0.040 mmol), dppe (16 mg, 0.040 mmol) and toluene (3.0 mL). The solution was transferred to a NMR tube and a ³¹P NMR spectrum was collected. Experiment was repeated with 2 and 3 equiv of dppe, (32 mg, 0.080 mmol) and (48 mg, 0.012 mmol) respectively, as well as a control experiment without Ni(cod)₂.

 31 P NMR analysis revealed that the thermodynamically favorable Ni(dppe)₂ complex (45.4 ppm) is the major observed product. At equimolar ratio of Ni and dppe, we observed a peak at 51.1 ppm, which is attributed to a Ni(dppe)(cod) complex. Over time (20 min) this peak disappears and only a signal due to Ni(dppe)₂ is observed.


Procedure for Ni(PPh₃)₄ studies: In a glovebox, a vial was charged with Ni(PPh₃)₄ (11 mg, 0.010 mmol), dppe (4.0 mg, 0.010 mmol), *rac*-**26** (0.054 g, 0.20 mmol) and toluene (3.0 mL). The vial was capped, taken out of the glovebox and placed under N₂ atmosphere. *n*-PrMgBr (0.17 mL, 0.40 mmol, 2.3 M in Et₂O) was added and the mixture was stirred for 48 h. The reaction was quenched by the addition of EtOAc (1 mL), passed through a silica plug (100% Et₂O), the organics were removed under reduced pressure, and the crude was analyzed by ¹H NMR spectroscopy with PhSiMe₃ as internal standard. Experiment was repeated with 12 mol % dppe (9.6 mg), as well as in the absence of dppe.

We postulated that the ligand exchange rate between dppe and PPh₃ will be slower than in the case with cod. This difference in rates could preclude the swift formation of the Ni(dppe)₂ complex, thus restoring reactivity in the system. The cross-coupling reaction of *n*-propylmagnesium bromide employing Ni(PPh₃)₄ as the nickel source afforded **6** in 73% yield. Notably, in the absence of dppe as well as when there is an excess of dppe (>2:1 dppe:Ni) no desired reactivity is observed.

Effect of Catalyst Loading on Enantiospecificity

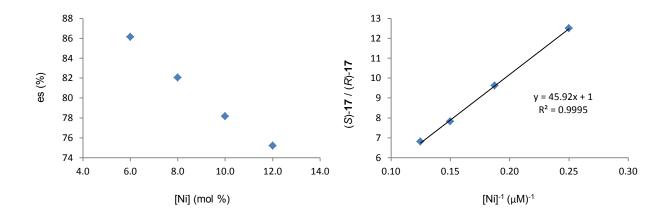

Procedure: Experiments were performed following the general procedure outlined in Section V. For consistency purposes, only two amounts of NiCl₂(dppe) were weighed out, while the amounts of other reagents were varied to achieve the desired catalyst loading. Benzylic ether (*R*)-26 was dispensed as a 0.100 M solution in toluene. Phenylmagnesium bromide was dispensed as a 2.8 M solution in Et₂O. For precise amounts of reagents used see Table SI-1 below.

Results:

OMe 	Ni(dppe)Cl ₂ PhMgBr (2 PhMe, RT	equiv)	Pr V (S)	∩ Cy -17
Entry	Ni(dppe)Cl ₂ [mol %]	ee [%]	es [%]	
1	4.0	92.918	93.936	
2	6.0	85.178	86.111	
3	8.0	81.158	82.047	
4	10.0	77.298	78.145	
5	12.0	74.358	75.173	

Derivation:

We reasoned that one could use a steady state approximation to describe intermediate (R)-27 and express it in terms of concentration of Ni (Eq. 1 and 2). There are a few key assumptions that have to be made: (1) the complex that undergoes oxidative addition and the nucleophilic nickel species responsible for racemization are one and the same or in a fast equilibrium with each other and (2) the above complexes also need to be in fast equilibrium with the precatalyst. Thus, the ratio of the two enantiomers of product formed in the reaction should be inversely proportional to the concentration of nickel (Eq. 3).


$$\frac{d[(R)-27]}{dt} = k_2^*[(S)-27]^*[Ni] - k_3^*[(R)-17] - k_2^*[(R)-27]^*[Ni] = 0 \quad (1)$$

$$[(R)-27] = \frac{k_2^*[(S)-27]^*[Ni]}{k_3 + k_2^*[Ni]} \quad (2)$$

$$\frac{(S)-17}{(R)-17} = \frac{k_3^*[(S)-27]}{k_3^*[(R)-27]} = \frac{[(S)-27]}{\frac{k_2^*[(S)-27]^*[Ni]}{k_3 + k_2^*[Ni]}} = \frac{k_3 + k_2^*[Ni]}{k_2^*[Ni]} = \frac{k_3}{k_2^*[Ni]} + 1 = \frac{k_{obs}}{[Ni]} + 1 \quad (3)$$

P	ots	:

Entry	Ni(dppe)Cl ₂ [mol %]	[Ni] [µM]	[Ni]⁻¹ [µM⁻¹]	(S)- 17 [%]	(<i>R</i>)- 17 [%]	(S)- 17 / (R)- 17
1	6.0	4.00	0.250	92.589	7.411	12.493
2	8.0	5.33	0.188	90.579	9.421	9.615
3	10.0	6.67	0.150	88.649	11.351	7.810
4	12.0	8.00	0.125	87.179	12.821	6.800

VIII. **Biological Experiments**

General Information

Biological experiments were performed according to a modified procedure by Sigman et al.²⁶

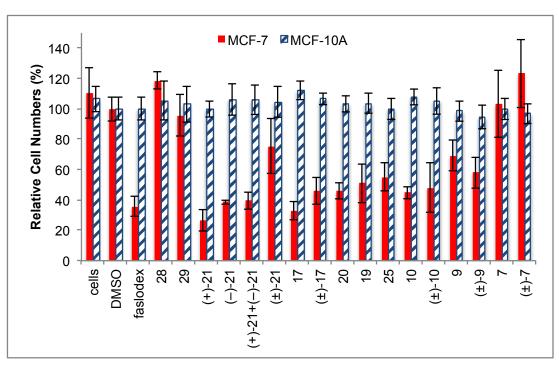
Materials: The following reagents were obtained from commercial sources as indicated: Dulbecco's Modified Eagle's Medium (DMEM)/high glucose containing 4.5 g/L glucose and 4.0 mM L-glutamine (HyClone); fetal bovine serum (FBS), heat-inactivated (Omega Scientific); L-glutamine, 200 mM (Gibco); penicillin/streptomycin solution 50X (Mediatech); DMEM/Ham's Nutrient Mixture F12 containing 2.5 mM L-glutamine, 3151 mg/L dextrose, and 55 mg/L sodium pyruvate (Sigma-Aldrich); horse serum (Sigma-Aldrich); 50 µM hydrocortisone solution (Sigma-Aldrich); human insulin solution (Sigma-Aldrich); cholera toxin (Sigma-Aldrich); human Epidermal Growth Factor (EGF), recombinant (Sigma-Aldrich); 0.25% Trypsin-EDTA (Gibco); nuclease-free sterile water (Fisher Scientific); molecular biology grade DMSO (Sigma-Aldrich); ICI 182,780 (faslodex) (Tocris Bioscience).

Cell Lines and Culture Conditions: MCF-7 cells were maintained in DMEM/high glucose supplemented with 10% FBS, L-glutamine, and penicillin/streptomycin. Experiments with MCF-7 cells were performed in DMEM/high glucose supplemented with 2% FBS, L-glutamine, and penicillin/streptomycin.

MCF-10A cells were maintained in standard medium according to a modified recipe by Brugge et al.²⁷: DMEM/F12 supplemented with 5% horse serum, 10 μ g/mL human insulin, 0.5 μ g/mL hydrocortisone, 10 ng/mL EGF, 100 ng/mL cholera toxin, and penicillin/streptomycin. Experiments with MCF-10A cells were performed in the same medium.

Evaluation of Compounds Against MCF-7 Cells

Procedure: MCF-7 cells were centrifuged in 1X PBS for 20 min, then the pellet was resuspended in DMEM supplemented with 10% FBS and filtered through a 40 μ m nylon cell strainer (Fisher Scientific) to prevent clumping. The cells were seeded at 1,500 cells per well in 96-well flat bottom plates suitable for fluorimetry, using 175 μ L per well DMEM supplemented with 10% FBS, and incubated with 5% CO₂ at 37 °C for 24 h. The compounds (including the faslodex positive control) were dissolved in molecular biology grade DMSO to achieve a 3.5 mM stock, then sterile filtered through a 0.45 μ m PVDF syringe filter unit (Fisher Scientific). The 3.5 mM stock solutions were subsequently diluted to a final concentration of 10 μ M in DMEM supplemented with 2% FBS. Additionally, the corresponding DMSO vehicle control was diluted using the same medium.

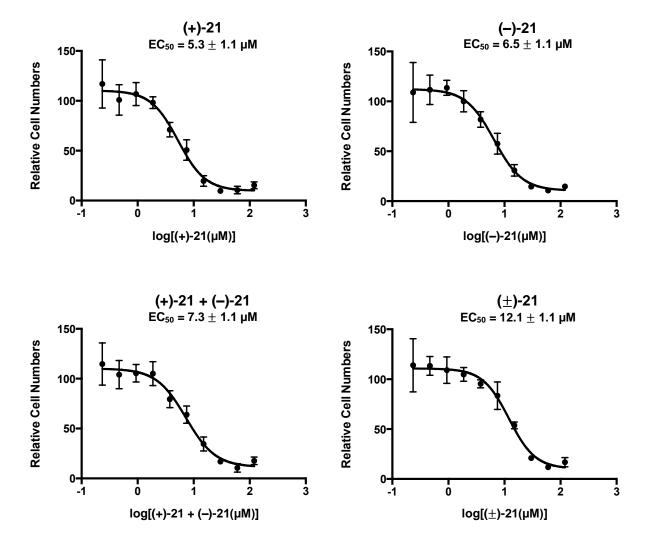

The medium was aspirated from the 96-well plates containing the MCF-7 cells using a multichannel pipettor and the medium containing the compounds and controls was added (day 0). The outer row of wells contained medium only to negate edge effects due to the evaporation of the medium. The cells were incubated with compound for 48 h then treated again by aspirating the medium and adding fresh medium containing the compounds and controls (day 2). This procedure was repeated after an additional 48 h (day 4). After incubating a final 24 h, the 96-well plates were flicked dry of medium, rinsed with 1X PBS, blotted dry, and then frozen at -78 °C overnight (day 5). On day 6, cell proliferation was measured using the fluorescence-based CyQUANT Cell Proliferation Assay Kit (Invitrogen).

Fluorimetry analysis was performed according to a modified procedure by McGowan et al.²⁸ Cells were stained with 200 μ L/well of 1X CyQUANT GR dye in cell lysis buffer for 10 min in the dark at RT and quantified by fluorimetry at 535 nm with 485 nm excitation, measured using a PerkinElmer VICTOR³ 1420 Multilabel Counter. The fluorescence values were normalized to the DMSO vehicle control. The normalized values were plotted as an average ± standard deviation of 4 wells per compound.

Evaluation of Compounds Against MCF-10A Cells

Procedure: MCF-10A cells were centrifuged in 1X PBS for 20 min, then the pellet was resuspended in DMEM/F12 and filtered through a 40 μ m nylon cell strainer (Fisher Scientific) to prevent clumping. The cells were seeded at 9,000 cells per well in 96-well flat bottom plates suitable for fluorimetry, using 175 μ L per well DMEM/F12, and incubated with 5% CO₂ at 37 °C for 24 h. The 3.5 mM stock solutions of compound in DMSO were subsequently diluted to a final concentration of 10 μ M in DMEM/F12. Additionally, the corresponding DMSO vehicle control was diluted using the same medium.

Addition of compounds was performed as specified above for days 0 through 6. Fluorimetry analysis was performed as specified above for MCF-7 cells, with the exception of staining MCF-10A cells with 200 μ L/well of 5X CyQUANT GR dye in cell lysis buffer for 10 min in the dark at RT before quantification by fluorimetry. The fluorescence values were normalized to the DMSO vehicle control. The normalized values were plotted as an average ± standard deviation of 6 wells per compound.



Results:

Dose Response of Compounds (+)-21, (-)-21, (+)-21 + (-)-21, and (±)-21

Procedure: MCF-7 cells were centrifuged in 1X PBS for 20 min, then the pellet was resuspended in DMEM supplemented with 10% FBS and filtered through a 40 μ m nylon cell strainer (Fisher Scientific) to prevent clumping. The cells were seeded at 1,500 cells per well in 96-well flat bottom plates suitable for fluorimetry, using 175 μ L per well DMEM supplemented with 10% FBS, and incubated with 5% CO₂ at 37 °C for 24 h. The compounds (+)-**21**, (-)-**21**, (+)-**21** + (-)-**21**, and (±)-**21**²⁹ were dissolved in molecular biology grade DMSO to achieve a 42 mM stock, then sterile filtered through a 0.45 μ m PVDF syringe filter unit (Fisher Scientific). The 42 mM stock solutions in DMSO were subsequently diluted to 120 μ M in DMEM supplemented with 2% FBS, and then serially diluted to achieve 10 different concentrations. Additionally, the corresponding DMSO vehicle controls for each concentration were serially diluted using the same medium.

Addition of compounds was performed as specified above for days 0 through 6. Fluorimetry analysis was performed as specified above for the evaluation of compounds against MCF-7 cells. The fluorescence values were normalized to the DMSO vehicle controls corresponding to each concentration. The normalized values were plotted as an average \pm standard deviation of 4 wells per concentration and these data were analyzed using the dose response nonlinear regression fitting function (log[inhibitor] vs. response with variable slope (four parameters)) with GraphPad Prism 6.

Dose Response Curves:

IX. <u>References</u>

⁹ Boyer, F. D.; Hanna, I. Org. Lett. 2007, 9, 2293–2295.

¹⁰ Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986–2012.

¹¹ (a) Experiment performed by Alexander J. Wagner using the method described in Wagner, A. J.; David, J. G.; Rychnovsky, S. D. *Org. Lett.* **2011**, *13*, 4470–4473. (b) Wagner, A. J.; Rychnovsky, S. D. J. Org. Chem. **2013**, *78*, 4594–4598.

¹² Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389-391.

¹³ (a) Li, J. J.; Limberakis, C.; Pflum, D. A. Reductions. *Modern Organic Synthesis in the Laboratory: A Collection of Standard Experimental Procedures*; Oxford University Press: New York, 2007; pp 96–97. (b) Dakin, L. A.; Panek, J. S. *Org. Lett.* **2003**, *5*, 3995–3998.

¹⁴ Inagaki, T.; Phong, L. T.; Furuta, A.; Ito, J.-i.; Nishiyama, H. Chem. Eur. J. 2010, 16, 3090–3096.

¹⁵ Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. **2008**, 130, 3268–3269.

¹⁶ Wisniewska, H. M.; Swift, E. C.; Jarvo, E. R. J. Am. Chem. Soc. 2013, 135, 9083–9090.

¹⁷ Dodge, J. A.; Nissen, J. S.; Presnell, M. Org. Synth. **1996**, 73, 110–112.

¹⁸ Zhang, F.-Y.; Yip, C.-W.; Rong, C.; Chan, A. S. C. Tetrahedron Asymmetry **1997**, *8*, 585–588.

- ¹⁹ Denis, J.; Guinchard, X. J. Org. Chem. 2008, 73, 2028–2031.
- ²⁰ Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis **2006**, 1360–1364.
- ²¹ Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748–3759.
- ²² Narender, T.; Sarkar, S.; Rajendar, K.; Tiwari, S. Org. Lett. **2011**, 13, 6140–6143.
- ²³ Lee, A. S.; Norman, A. W.; Okamura, W. H. J. Org. Chem. 1992, 57, 3846–3854.
- ²⁴ Caporusso, A. M.; Zampieri, A.; Aronica, L. A.; Banti, D. J. Org. Chem. 2006, 71, 1902–1910.
- ²⁵ Cho, C.-H.; Sun, M.; Seo, Y.-S.; Kim, C.-B.; Park, K. J. Org. Chem. 2005, 70, 1482–1485.
- ²⁶ Pathak, T. P.; Gligorich, K. M.; Welm, B. E.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870–7871.

²⁷ Debnath, J.; Muthuswamy, S. K.; Brugge, J. S. *Methods* **2003**, *30*, 256–268.

²⁸ McGowan, E. M.; Alling, N.; Jackson, E. A.; Yagoub, D.; Haass, N. K.; Allen, J. D.; Martinello-Wilks, R. *PLoS ONE* 2011, *6*, e20623.
 ²⁹ (+)-21 and (-)-21 are samples of each single enantiomer with 93% ee and 92% ee, respectively; (±)-21 is a sample

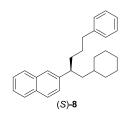
 29 (+)-21 and (-)-21 are samples of each single enantiomer with 93% ee and 92% ee, respectively; (±)-21 is a sample of the racemic standard; (+)-21 + (-)-21 is a sample containing an equimolar ratio of the two enantiomers, combined in DMSO prior to biological testing.

¹ Krasovskiy, A.; Knochel, P. Synthesis 2006, 5, 890–891.

² Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; Jansen, A. B. A.; Walker, T. J. *Chem. Soc.* **1952**, 1094–1111.

³ All alkyl and arylhalides were commercially available and used as received without any purification unless otherwise noted.

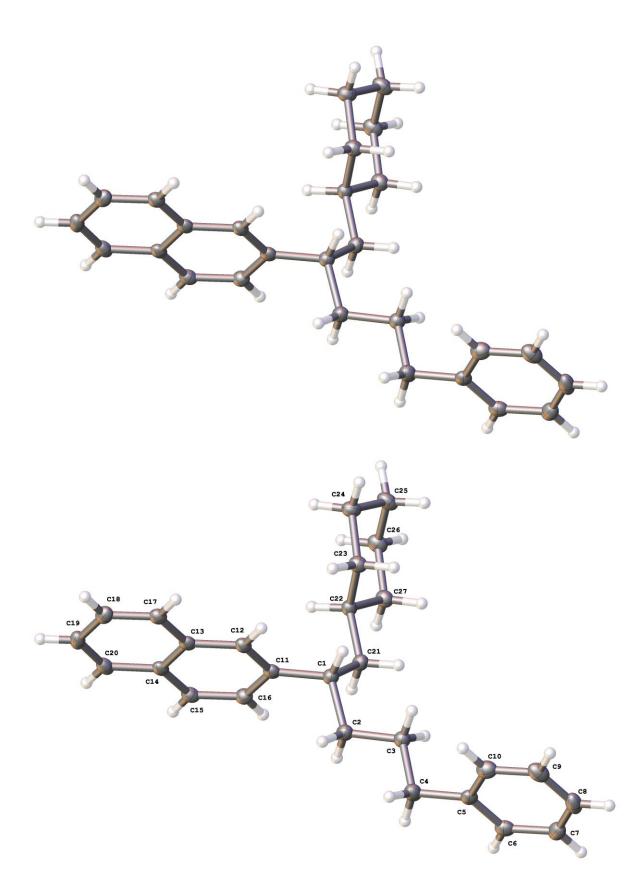
⁴ Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem. Int. Ed. **2012**, 51, 7790–7793.


⁵ (a) Marbet, R.; Saucy, G. *Helv. Chim. Acta* **1967**, *50*, 2095–2100. (b) Liu, C.; Kudo, K; Hashimoto, Y.; Saigo, K. J. Org. Chem. **1996**, *61*, 494–502.

⁶ Wei, X.; Lorenz, J. C.; Kapdia, S.; Saha, A.; Haddad, N.; Busacca, C. A.; Senanayake, C. H. *J. Org. Chem.* 2007, 72, 4250–4253.

⁷ Wallace, A. G.; Heathcock, C. H. J. Org. Chem. 2001, 66, 450–454.

⁸ Corey, E. J.; Cheng, H.; Backer, C. H.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. **1997**, 119, 1277–1288.


X. Crystallographic Data

X-ray Data Collection, Structure Solution and Refinement for (S)-8 (Table 2, entry 4).

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX CCD diffractometer equipped with Cu K_{α} radiation ($\lambda = 1.5478$). Crystals of the subject compound were grown by slow evaporation of solvent from a solution of the title compound in a mixture of methanol and pentane. A 0.217 x 0.095 x 0.053 mm colorless needle was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 90(2) K using ϕ and ϖ scans. Data was collected at two crystal-to-detector distances, 45mm or 60mm, using variable exposure time (2s-10s) depending on θ with a scan width of 1.0°. Data collection was 98.7% complete to 68.00° in θ . A total of 57312 reflections were collected covering the indices, -7<=h<=7, -16<=k<=16, -17<=l<=17. 7355 reflections were found to be symmetry independent, with a R_{int} of 0.0524. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be *P*1. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2013). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2013. Crystallographic data are summarized in Table 1.

Table 1. Crystal data and structure refinement for	Jarvo02.		
Identification code	ERJ-14		
Empirical formula	C27 H32		
Molecular formula	C27 H32		
Formula weight	356.52		
Temperature	90 K		
Wavelength	1.54178 Å		
Crystal system	Triclinic		
Space group	P 1		
Unit cell dimensions	a = 5.9031(2) Å	α= 106.3499(15)°.	
	b = 13.8552(5) Å	β= 98.3273(14)°.	
	c = 14.0936(5) Å	$\gamma = 101.5540(15)^{\circ}.$	
Volume	1058.56(7) Å ³		
Z	2		
Density (calculated)	1.119 Mg/m ³		
Absorption coefficient	0.463 mm ⁻¹		
F(000)	388		
Crystal size	0.217 x 0.095 x 0.053 mm ³		
Crystal color, habit	Colorless Needle		
Theta range for data collection	3.345 to 69.358°.		
Index ranges	-7<=h<=7, -16<=k<=16, -17<=l<=17		
Reflections collected	57312		
Independent reflections	7355 [R(int) = 0.0524]		
Completeness to theta = 68.000°	98.7 %		
Absorption correction	Semi-empirical from equivale	ents	
Max. and min. transmission	0.7532 and 0.7017		
Refinement method	Full-matrix least-squares on F	72	
Data / restraints / parameters7355 / 3 / 487			
Goodness-of-fit on F^2 1.029			
Final R indices [I>2sigma(I)] $R1 = 0.0312$, wR2 = 0.0787			
R indices (all data) $R1 = 0.0324, wR2 = 0.0799$			
Absolute structure parameter	0.065(347)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.120 and -0.172 e.Å ⁻³		

(2) $8982(4)$ $1839(2)$ $10204(2)$ $23(1)$ (3) $9335(3)$ $883(2)$ $9445(1)$ $21(1)$ (3) $10054(4)$ $108(2)$ $9944(2)$ $27(1)$ (3) $10507(3)$ $-808(2)$ $9186(1)$ $21(1)$ (3) $10507(3)$ $-808(2)$ $9186(1)$ $21(1)$ (3) $9312(4)$ $-2603(2)$ $8126(2)$ $27(1)$ (3) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (3) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (3) $112964(4)$ $-1513(2)$ $8083(2)$ $28(1)$ (3) $12546(4)$ $-689(2)$ $8797(2)$ $26(1)$ (11) $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ (11) $8776(3)$ $3692(2)$ $10932(1)$ $18(1)$ (12) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ (13) $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ (14) $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ (15) $7078(3)$ $4622(2)$ $11945(1)$ $20(1)$ (16) $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ (17) $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ (20) $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ (21) $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (22) $5748(3)$ $3152(2)$		X	у	Z	U(eq)
(3) $9335(3)$ $883(2)$ $9445(1)$ $21(1)$ (3) $10054(4)$ $108(2)$ $9944(2)$ $27(1)$ (3) $10507(3)$ $-808(2)$ $9186(1)$ $21(1)$ (3) $8896(3)$ $-1776(2)$ $8845(2)$ $23(1)$ (3) $9312(4)$ $-2603(2)$ $8126(2)$ $27(1)$ (3) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (3) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (3) $12964(4)$ $-1513(2)$ $8083(2)$ $28(1)$ (3) $12944(4)$ $-1513(2)$ $8083(2)$ $28(1)$ (3) $12924(4)$ $-689(2)$ $8797(2)$ $26(1)$ (11) $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ (212) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ (213) $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ (214) $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ (215) $7078(3)$ $4622(2)$ $11945(1)$ $20(1)$ (216) $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ (217) $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ (219) $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (22) $5748(3)$ $3159(2)$ $7036(2)$ $22(1)$ (24) $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ (25) $4963(4)$ 3	C(1)	8627(3)	2712(2)	9759(1)	20(1)
(4)10054(4)108(2)9944(2)27(1) (5) 10507(3)-808(2)9186(1)21(1) (6) 8896(3)-1776(2)8845(2)23(1) (7) 9312(4)-2603(2)8126(2)27(1) (7) 9312(4)-2473(2)7748(2)29(1) (8) 11349(4)-2473(2)7748(2)29(1) (70) 12964(4)-1513(2)8083(2)28(1) (71) 12546(4)-689(2)8797(2)26(1) (11) 8776(3)3692(2)10609(1)18(1) (71) 10775(3)4502(2)10932(1)18(1) (71) 10775(3)4502(2)1193(1)11(1) (71) 10778(3)4622(2)11945(1)21(1) (71) 13086(3)6234(2)12111(1)20(1) (71) 13086(3)6234(2)12111(1)20(1) (71) 13086(3)6234(2)12111(1)20(1) (71) 13086(3)6355(2)13131(2)22(1) (72) 9373(4)6355(2)13131(2)22(1) (72) 9373(4)6355(2)13131(2)22(1) (72) 9373(4)6355(2)13131(2)22(1) (72) 9373(4)6355(2)13131(2)22(1) (72) 748(3)3152(2)8446(1)19(1) (72) 748(3)3596(2)8012(2)22(1) (72) 748(3)3389(2)7036(2)25(1) (72) 4963(3)67	C(2)	8982(4)	1839(2)	10204(2)	23(1)
325 $10507(3)$ $-808(2)$ $9186(1)$ $21(1)$ 326 $8896(3)$ $-1776(2)$ $8845(2)$ $23(1)$ $32(7)$ $9312(4)$ $-2603(2)$ $8126(2)$ $27(1)$ $32(7)$ $9312(4)$ $-2603(2)$ $8126(2)$ $27(1)$ $32(7)$ $9312(4)$ $-2473(2)$ $7748(2)$ $29(1)$ $32(9)$ $12964(4)$ $-1513(2)$ $8083(2)$ $28(1)$ $32(10)$ $12546(4)$ $-689(2)$ $8797(2)$ $26(1)$ $32(11)$ $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ $32(12)$ $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ $32(13)$ $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $32(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $32(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $32(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $32(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $32(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $32(16)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $32(2)$ $5748(3)$ $3152(2)$ $8940(2)$ $21(1)$ $32(2)$ $7748(3)$ $3152(2)$ $8940(2)$ $21(1)$ $32(2)$ $7360(3)$ $3596(2)$ $8012(2)$ $22(1)$ $32(2)$ $7360(3)$ $3596(2)$ $7036(2)$ $25(1)$ $32(2)$ $7036(3)$ $7036(2)$ $25(1)$ $327(1)$ $21(1)$ <	C(3)	9335(3)	883(2)	9445(1)	21(1)
(6) $8896(3)$ $-1776(2)$ $8845(2)$ $23(1)$ (7) $9312(4)$ $-2603(2)$ $8126(2)$ $27(1)$ (8) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (8) $11349(4)$ $-2473(2)$ $7748(2)$ $29(1)$ (9) $12964(4)$ $-1513(2)$ $8083(2)$ $28(1)$ (10) $12546(4)$ $-689(2)$ $8797(2)$ $26(1)$ (11) $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ (12) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ (13) $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ (14) $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ (15) $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ (16) $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ (217) $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ (219) $1135(4)$ $7148(2)$ $13438(2)$ $24(1)$ (210) $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (22) $5748(3)$ $3596(2)$ $8012(2)$ $27(1)$ (24) $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ (25) $4963(4)$ $3801(2)$ $6602(2)$ $77(1)$ (25) $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ (27) $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ (26) $2893(3)$ 33	C(4)	10054(4)	108(2)	9944(2)	27(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	10507(3)	-808(2)	9186(1)	21(1)
(8)11349(4) $-2473(2)$ $7748(2)$ $29(1)$ (9) 12964(4) $-1513(2)$ $8083(2)$ $28(1)$ (10) 12546(4) $-689(2)$ $8797(2)$ $26(1)$ (11) $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ (21) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ (212) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ (213) $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ (214) $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ (215) $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ (216) $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ (217) $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ (219) $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ (210) $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (23) $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ (24) $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ (25) $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ (25) $4963(4)$ $3801(2)$ $6602(2)$ $22(1)$ (27) $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ (27) $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ (27) $10172(4)$	C(6)	8896(3)	-1776(2)	8845(2)	23(1)
2(9) $12964(4)$ $-1513(2)$ $8083(2)$ $28(1)$ $2(10)$ $12546(4)$ $-689(2)$ $8797(2)$ $26(1)$ $2(11)$ $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ $2(12)$ $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ $2(13)$ $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $22(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(7)	9312(4)	-2603(2)	8126(2)	27(1)
2(10) $12546(4)$ $-689(2)$ $8797(2)$ $26(1)$ $2(11)$ $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ $2(12)$ $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ $2(13)$ $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8940(2)$ $21(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $22(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(8)	11349(4)	-2473(2)	7748(2)	29(1)
2(11) $8776(3)$ $3692(2)$ $10609(1)$ $18(1)$ $2(12)$ $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ $2(13)$ $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(9)	12964(4)	-1513(2)	8083(2)	28(1)
2(12) $10775(3)$ $4502(2)$ $10932(1)$ $18(1)$ $2(13)$ $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(10)	12546(4)	-689(2)	8797(2)	26(1)
2(13) $11023(3)$ $5399(2)$ $11773(1)$ $18(1)$ $2(14)$ $9133(3)$ $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(11)	8776(3)	3692(2)	10609(1)	18(1)
2(14)9133(3) $5458(2)$ $12292(1)$ $19(1)$ $2(15)$ 7078(3) $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $22(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(12)	10775(3)	4502(2)	10932(1)	18(1)
2(15) $7078(3)$ $4622(2)$ $11945(1)$ $21(1)$ $2(16)$ $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $22(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(13)	11023(3)	5399(2)	11773(1)	18(1)
2(16) $6901(3)$ $3768(2)$ $11136(1)$ $20(1)$ $2(17)$ $13086(3)$ $6234(2)$ $12111(1)$ $20(1)$ $2(18)$ $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8940(2)$ $21(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(14)	9133(3)	5458(2)	12292(1)	19(1)
2(17)13086(3) $6234(2)$ 12111(1) $20(1)$ $2(18)$ 13267(3) $7090(2)$ 12923(2) $23(1)$ $2(19)$ 11385(4) $7148(2)$ 13438(2) $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ 13131(2) $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1)$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2)$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3)$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(15)	7078(3)	4622(2)	11945(1)	21(1)
2(18) $13267(3)$ $7090(2)$ $12923(2)$ $23(1)$ $2(19)$ $11385(4)$ $7148(2)$ $13438(2)$ $24(1)$ $2(20)$ $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ $2(21)$ $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $2(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $2(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $2(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $2(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(16)	6901(3)	3768(2)	11136(1)	20(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	13086(3)	6234(2)	12111(1)	20(1)
(20) $9373(4)$ $6355(2)$ $13131(2)$ $22(1)$ (21) $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ (22) $5748(3)$ $3152(2)$ $8940(2)$ $21(1)$ (22) $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ (23) $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ (24) $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ (25) $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ (26) $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ (27) $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(18)	13267(3)	7090(2)	12923(2)	23(1)
X(21) $6322(3)$ $2349(2)$ $8940(2)$ $21(1)$ $X(22)$ $5748(3)$ $3152(2)$ $8446(1)$ $19(1)$ $X(23)$ $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $X(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $X(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $X(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $X(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $X(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $X(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $X(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(19)	11385(4)	7148(2)	13438(2)	24(1)
x(22)5748(3)3152(2)8446(1)19(1) $x(23)$ 7800(3)3596(2)8012(2)22(1) $x(24)$ 7172(4)4332(2)7439(2)24(1) $x(25)$ 4963(4)3801(2)6602(2)27(1) $x(26)$ 2893(3)3389(2)7036(2)25(1) $x(27)$ 3503(3)2646(2)7602(2)22(1) $x(1')$ 9460(3)671(2)3372(1)21(1) $x(2')$ 10172(4)1568(2)2946(2)24(1) $x(3')$ 11922(4)2533(2)3706(2)23(1)	C(20)	9373(4)	6355(2)	13131(2)	22(1)
x(23) $7800(3)$ $3596(2)$ $8012(2)$ $22(1)$ $x(24)$ $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $x(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $x(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $x(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $x(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $x(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $x(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(21)	6322(3)	2349(2)	8940(2)	21(1)
x(24) $7172(4)$ $4332(2)$ $7439(2)$ $24(1)$ $x(25)$ $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $x(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $x(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $x(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $x(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $x(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(22)	5748(3)	3152(2)	8446(1)	19(1)
2(25) $4963(4)$ $3801(2)$ $6602(2)$ $27(1)$ $2(26)$ $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(23)	7800(3)	3596(2)	8012(2)	22(1)
2(26) $2893(3)$ $3389(2)$ $7036(2)$ $25(1)$ $2(27)$ $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(24)	7172(4)	4332(2)	7439(2)	24(1)
2(27) $3503(3)$ $2646(2)$ $7602(2)$ $22(1)$ $2(1')$ $9460(3)$ $671(2)$ $3372(1)$ $21(1)$ $2(2')$ $10172(4)$ $1568(2)$ $2946(2)$ $24(1)$ $2(3')$ $11922(4)$ $2533(2)$ $3706(2)$ $23(1)$	C(25)	4963(4)	3801(2)	6602(2)	27(1)
C(1')9460(3) $671(2)$ $3372(1)$ $21(1)$ $C(2')$ 10172(4)1568(2)2946(2)24(1) $C(3')$ 11922(4)2533(2)3706(2)23(1)	C(26)	2893(3)	3389(2)	7036(2)	25(1)
$\mathcal{L}(2')$ 10172(4)1568(2)2946(2)24(1) $\mathcal{L}(3')$ 11922(4)2533(2)3706(2)23(1)	C(27)	3503(3)	2646(2)	7602(2)	22(1)
2(3') 11922(4) 2533(2) 3706(2) 23(1	C(1')	9460(3)	671(2)	3372(1)	21(1)
	C(2')	10172(4)	1568(2)	2946(2)	24(1)
2(4') 12998(4) 3309(2) 3205(2) 28(1	C(3')	11922(4)	2533(2)	3706(2)	23(1)
	C(4')	12998(4)	3309(2)	3205(2)	28(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for Jarvo02. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(5')	14500(4)	4307(2)	3977(2)	23(1)
C(6')	13548(4)	5157(2)	4278(2)	25(1)
C(7')	14867(4)	6067(2)	5020(2)	28(1)
C(8')	17162(4)	6145(2)	5474(2)	29(1)
C(9')	18138(4)	5304(2)	5183(2)	28(1)
C(10')	16815(4)	4395(2)	4438(2)	26(1)
C(11')	7920(3)	-281(2)	2526(1)	19(1)
C(12')	8759(3)	-1134(2)	2159(1)	19(1)
C(13')	7410(3)	-2009(2)	1326(1)	18(1)
C(14')	5111(3)	-1999(2)	863(1)	19(1)
C(15')	4255(3)	-1114(2)	1263(2)	21(1)
C(16')	5600(3)	-288(2)	2066(2)	21(1)
C(17')	8279(3)	-2891(2)	942(1)	20(1)
C(18')	6937(4)	-3720(2)	136(2)	23(1)
C(19')	4663(3)	-3706(2)	-327(2)	23(1)
C(20')	3773(3)	-2862(2)	29(2)	22(1)
C(21')	8305(3)	988(2)	4284(2)	22(1)
C(22')	7554(3)	139(2)	4758(1)	19(1)
C(23')	9615(3)	-298(2)	5085(2)	23(1)
C(24')	8856(4)	-1122(2)	5585(2)	26(1)
C(25')	7787(4)	-692(2)	6486(2)	28(1)
C(26')	5719(4)	-262(2)	6172(2)	27(1)
C(27')	6475(3)	559(2)	5667(2)	24(1)

C(1)-H(1)	1.0000	С(16)-Н(16)	0.9500
C(1)-C(2)	1.546(3)	C(17)-H(17)	0.9500
C(1)-C(11)	1.514(3)	C(17)-C(18)	1.370(3)
C(1)-C(21)	1.542(3)	C(18)-H(18)	0.9500
C(2)-H(2A)	0.9900	C(18)-C(19)	1.415(3)
C(2)-H(2B)	0.9900	C(19)-H(19)	0.9500
C(2)-C(3)	1.523(3)	C(19)-C(20)	1.366(3)
C(3)-H(3A)	0.9900	C(20)-H(20)	0.9500
C(3)-H(3B)	0.9900	C(21)-H(21A)	0.9900
C(3)-C(4)	1.533(3)	C(21)-H(21B)	0.9900
C(4)-H(4A)	0.9900	C(21)-C(22)	1.536(3)
C(4)-H(4B)	0.9900	C(22)-H(22)	1.0000
C(4)-C(5)	1.510(3)	C(22)-C(23)	1.533(3)
C(5)-C(6)	1.388(3)	C(22)-C(27)	1.538(3)
C(5)-C(10)	1.392(3)	C(23)-H(23A)	0.9900
C(6)-H(6)	0.9500	C(23)-H(23B)	0.9900
C(6)-C(7)	1.389(3)	C(23)-C(24)	1.534(3)
C(7)-H(7)	0.9500	C(24)-H(24A)	0.9900
C(7)-C(8)	1.384(3)	C(24)-H(24B)	0.9900
C(8)-H(8)	0.9500	C(24)-C(25)	1.522(3)
C(8)-C(9)	1.382(3)	C(25)-H(25A)	0.9900
C(9)-H(9)	0.9500	C(25)-H(25B)	0.9900
C(9)-C(10)	1.384(3)	C(25)-C(26)	1.526(3)
C(10)-H(10)	0.9500	C(26)-H(26A)	0.9900
C(11)-C(12)	1.373(3)	C(26)-H(26B)	0.9900
C(11)-C(16)	1.424(3)	C(26)-C(27)	1.533(3)
C(12)-H(12)	0.9500	C(27)-H(27A)	0.9900
C(12)-C(13)	1.421(3)	C(27)-H(27B)	0.9900
C(13)-C(14)	1.423(3)	C(1')-H(1')	1.0000
C(13)-C(17)	1.416(3)	C(1')-C(2')	1.539(3)
C(14)-C(15)	1.415(3)	C(1')-C(11')	1.519(3)
C(14)-C(20)	1.420(3)	C(1')-C(21')	1.538(3)
C(15)-H(15)	0.9500	C(2')-H(2'A)	0.9900
C(15)-C(16)	1.366(3)	C(2')-H(2'B)	0.9900

Table 3. Bond lengths [Å] and angles [°] for Jarvo02.

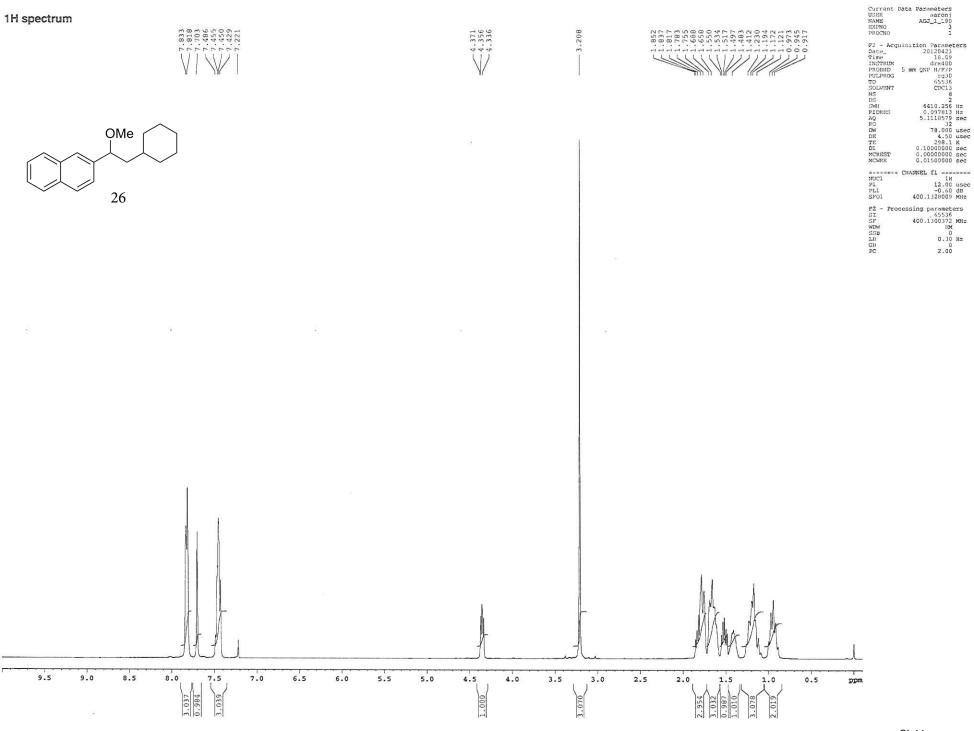
C(2')-C(3')	1.524(3)	C(21')-H(21C)	0.9900
C(3')-H(3'A)	0.9900	C(21')-H(21D)	0.9900
C(3')-H(3'B)	0.9900	C(21')-C(22')	1.531(3)
C(3')-C(4')	1.531(3)	C(22')-H(22')	1.0000
C(4')-H(4'A)	0.9900	C(22')-C(23')	1.533(3)
C(4')-H(4'B)	0.9900	C(22')-C(27')	1.533(3)
C(4')-C(5')	1.505(3)	C(23')-H(23C)	0.9900
C(5')-C(6')	1.391(3)	C(23')-H(23D)	0.9900
C(5')-C(10')	1.392(3)	C(23')-C(24')	1.530(3)
C(6')-H(6')	0.9500	C(24')-H(24C)	0.9900
C(6')-C(7')	1.385(3)	C(24')-H(24D)	0.9900
C(7')-H(7')	0.9500	C(24')-C(25')	1.524(3)
C(7')-C(8')	1.381(3)	C(25')-H(25C)	0.9900
C(8')-H(8')	0.9500	C(25')-H(25D)	0.9900
C(8')-C(9')	1.388(3)	C(25')-C(26')	1.524(3)
C(9')-H(9')	0.9500	C(26')-H(26C)	0.9900
C(9')-C(10')	1.386(3)	C(26')-H(26D)	0.9900
C(10')-H(10')	0.9500	C(26')-C(27')	1.531(3)
C(11')-C(12')	1.369(3)	C(27')-H(27C)	0.9900
C(11')-C(16')	1.425(3)	C(27')-H(27D)	0.9900
C(12')-H(12')	0.9500		
C(12')-C(13')	1.422(3)	C(2)-C(1)-H(1)	107.4
C(13')-C(14')	1.423(2)	C(11)-C(1)-H(1)	107.4
C(13')-C(17')	1.417(3)	C(11)-C(1)-C(2)	109.61(15)
C(14')-C(15')	1.421(3)	C(11)-C(1)-C(21)	113.87(16)
C(14')-C(20')	1.413(3)	C(21)-C(1)-H(1)	107.4
C(15')-H(15')	0.9500	C(21)-C(1)-C(2)	110.96(16)
C(15')-C(16')	1.366(3)	C(1)-C(2)-H(2A)	108.7
C(16')-H(16')	0.9500	C(1)-C(2)-H(2B)	108.7
C(17')-H(17')	0.9500	H(2A)-C(2)-H(2B)	107.6
C(17')-C(18')	1.369(3)	C(3)-C(2)-C(1)	114.19(16)
C(18')-H(18')	0.9500	C(3)-C(2)-H(2A)	108.7
C(18')-C(19')	1.411(3)	C(3)-C(2)-H(2B)	108.7
C(19')-H(19')	0.9500	C(2)-C(3)-H(3A)	109.1
C(19')-C(20')	1.373(3)	C(2)-C(3)-H(3B)	109.1
C(20')-H(20')	0.9500	C(2)-C(3)-C(4)	112.66(16)

H(3A)-C(3)-H(3B)	107.8	C(15)-C(14)-C(13)	118.46(18)
C(4)-C(3)-H(3A)	109.1	C(15)-C(14)-C(20)	122.61(18)
C(4)-C(3)-H(3B)	109.1	C(20)-C(14)-C(13)	118.94(18)
C(3)-C(4)-H(4A)	109.3	C(14)-C(15)-H(15)	119.4
C(3)-C(4)-H(4B)	109.3	C(16)-C(15)-C(14)	121.24(18)
H(4A)-C(4)-H(4B)	107.9	C(16)-C(15)-H(15)	119.4
C(5)-C(4)-C(3)	111.74(16)	C(11)-C(16)-H(16)	119.4
C(5)-C(4)-H(4A)	109.3	C(15)-C(16)-C(11)	121.12(18)
C(5)-C(4)-H(4B)	109.3	C(15)-C(16)-H(16)	119.4
C(6)-C(5)-C(4)	121.28(18)	C(13)-C(17)-H(17)	119.6
C(6)-C(5)-C(10)	118.54(19)	C(18)-C(17)-C(13)	120.76(18)
C(10)-C(5)-C(4)	120.17(19)	C(18)-C(17)-H(17)	119.6
C(5)-C(6)-H(6)	119.8	C(17)-C(18)-H(18)	119.9
C(5)-C(6)-C(7)	120.47(19)	C(17)-C(18)-C(19)	120.16(19)
C(7)-C(6)-H(6)	119.8	C(19)-C(18)-H(18)	119.9
C(6)-C(7)-H(7)	119.8	C(18)-C(19)-H(19)	119.8
C(8)-C(7)-C(6)	120.3(2)	C(20)-C(19)-C(18)	120.5(2)
C(8)-C(7)-H(7)	119.8	C(20)-C(19)-H(19)	119.8
C(7)-C(8)-H(8)	120.2	C(14)-C(20)-H(20)	119.7
C(9)-C(8)-C(7)	119.6(2)	C(19)-C(20)-C(14)	120.66(19)
C(9)-C(8)-H(8)	120.2	C(19)-C(20)-H(20)	119.7
C(8)-C(9)-H(9)	120.0	C(1)-C(21)-H(21A)	108.3
C(8)-C(9)-C(10)	120.0(2)	C(1)-C(21)-H(21B)	108.3
C(10)-C(9)-H(9)	120.0	H(21A)-C(21)-H(21B)	107.4
C(5)-C(10)-H(10)	119.5	C(22)-C(21)-C(1)	116.10(16)
C(9)-C(10)-C(5)	121.0(2)	C(22)-C(21)-H(21A)	108.3
C(9)-C(10)-H(10)	119.5	C(22)-C(21)-H(21B)	108.3
C(12)-C(11)-C(1)	120.95(17)	C(21)-C(22)-H(22)	108.5
C(12)-C(11)-C(16)	118.36(18)	C(21)-C(22)-C(27)	109.54(16)
C(16)-C(11)-C(1)	120.57(18)	C(23)-C(22)-C(21)	111.91(15)
C(11)-C(12)-H(12)	119.0	C(23)-C(22)-H(22)	108.5
C(11)-C(12)-C(13)	121.99(17)	C(23)-C(22)-C(27)	109.80(15)
C(13)-C(12)-H(12)	119.0	C(27)-C(22)-H(22)	108.5
C(12)-C(13)-C(14)	118.84(17)	C(22)-C(23)-H(23A)	109.1
C(17)-C(13)-C(12)	122.18(17)	C(22)-C(23)-H(23B)	109.1
C(17)-C(13)-C(14)	118.98(18)	C(22)-C(23)-C(24)	112.37(15)

H(23A)-C(23)-H(23B)	107.9	C(3')-C(2')-C(1')	114.09(16)
C(24)-C(23)-H(23A)	109.1	C(3')-C(2')-H(2'A)	108.7
C(24)-C(23)-H(23B)	109.1	C(3')-C(2')-H(2'B)	108.7
C(23)-C(24)-H(24A)	109.3	C(2')-C(3')-H(3'A)	109.1
C(23)-C(24)-H(24B)	109.3	C(2')-C(3')-H(3'B)	109.1
H(24A)-C(24)-H(24B)	108.0	C(2')-C(3')-C(4')	112.48(16)
C(25)-C(24)-C(23)	111.43(17)	H(3'A)-C(3')-H(3'B)	107.8
C(25)-C(24)-H(24A)	109.3	C(4')-C(3')-H(3'A)	109.1
C(25)-C(24)-H(24B)	109.3	C(4')-C(3')-H(3'B)	109.1
C(24)-C(25)-H(25A)	109.6	C(3')-C(4')-H(4'A)	109.3
C(24)-C(25)-H(25B)	109.6	C(3')-C(4')-H(4'B)	109.3
C(24)-C(25)-C(26)	110.29(16)	H(4'A)-C(4')-H(4'B)	107.9
H(25A)-C(25)-H(25B)	108.1	C(5')-C(4')-C(3')	111.69(16)
C(26)-C(25)-H(25A)	109.6	C(5')-C(4')-H(4'A)	109.3
C(26)-C(25)-H(25B)	109.6	C(5')-C(4')-H(4'B)	109.3
C(25)-C(26)-H(26A)	109.4	C(6')-C(5')-C(4')	120.02(19)
C(25)-C(26)-H(26B)	109.4	C(6')-C(5')-C(10')	118.34(19)
C(25)-C(26)-C(27)	110.99(16)	C(10')-C(5')-C(4')	121.6(2)
H(26A)-C(26)-H(26B)	108.0	C(5')-C(6')-H(6')	119.5
C(27)-C(26)-H(26A)	109.4	C(7')-C(6')-C(5')	120.91(19)
C(27)-C(26)-H(26B)	109.4	C(7')-C(6')-H(6')	119.5
C(22)-C(27)-H(27A)	109.1	C(6')-C(7')-H(7')	119.9
C(22)-C(27)-H(27B)	109.1	C(8')-C(7')-C(6')	120.3(2)
C(26)-C(27)-C(22)	112.43(17)	C(8')-C(7')-H(7')	119.9
C(26)-C(27)-H(27A)	109.1	C(7')-C(8')-H(8')	120.2
C(26)-C(27)-H(27B)	109.1	C(7')-C(8')-C(9')	119.6(2)
H(27A)-C(27)-H(27B)	107.9	C(9')-C(8')-H(8')	120.2
C(2')-C(1')-H(1')	107.3	C(8')-C(9')-H(9')	120.0
C(11')-C(1')-H(1')	107.3	C(10')-C(9')-C(8')	119.99(19)
C(11')-C(1')-C(2')	109.48(15)	C(10')-C(9')-H(9')	120.0
C(11')-C(1')-C(21')	113.10(16)	C(5')-C(10')-H(10')	119.5
C(21')-C(1')-H(1')	107.3	C(9')-C(10')-C(5')	120.9(2)
C(21')-C(1')-C(2')	112.20(17)	C(9')-C(10')-H(10')	119.5
C(1')-C(2')-H(2'A)	108.7	C(12')-C(11')-C(1')	120.97(17)
C(1')-C(2')-H(2'B)	108.7	C(12')-C(11')-C(16')	118.38(18)
H(2'A)-C(2')-H(2'B)	107.6	C(16')-C(11')-C(1')	120.59(18)

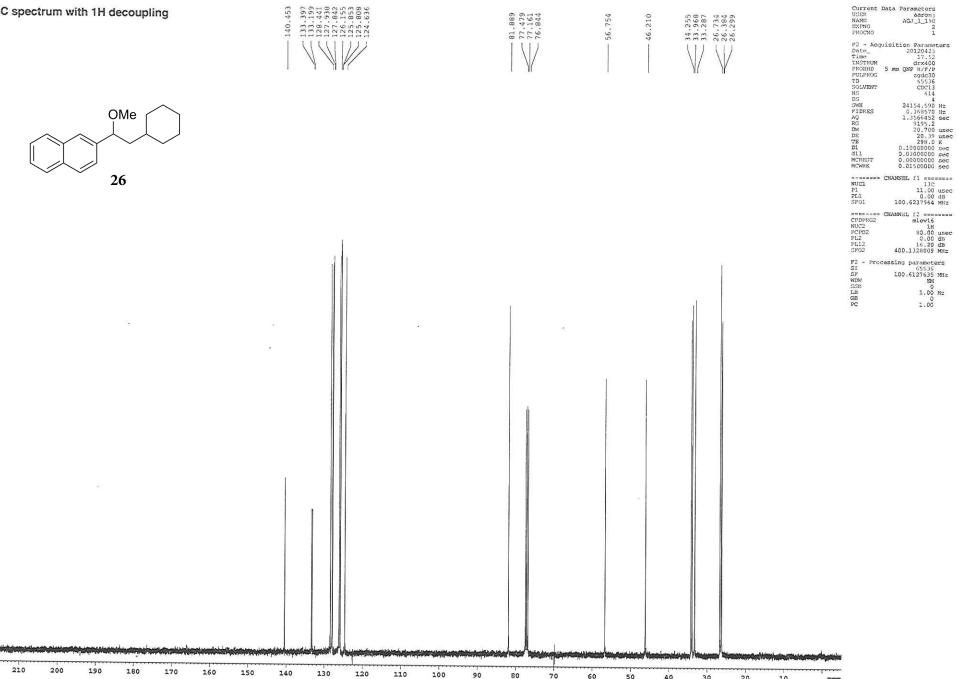
C(11')-C(12')-H(12')	118.9	C(21')-C(22')-C(27')	110.28(16)
C(11')-C(12')-C(13')	122.11(17)	C(23')-C(22')-H(22')	108.1
C(13')-C(12')-H(12')	118.9	C(23')-C(22')-C(27')	109.76(15)
C(12')-C(13')-C(14')	118.90(18)	C(27')-C(22')-H(22')	108.1
C(17')-C(13')-C(12')	122.20(17)	C(22')-C(23')-H(23C)	109.3
C(17')-C(13')-C(14')	118.90(18)	C(22')-C(23')-H(23D)	109.3
C(15')-C(14')-C(13')	118.23(18)	H(23C)-C(23')-H(23D)	107.9
C(20')-C(14')-C(13')	119.09(18)	C(24')-C(23')-C(22')	111.76(15)
C(20')-C(14')-C(15')	122.68(17)	C(24')-C(23')-H(23C)	109.3
C(14')-C(15')-H(15')	119.4	C(24')-C(23')-H(23D)	109.3
C(16')-C(15')-C(14')	121.23(17)	C(23')-C(24')-H(24C)	109.4
C(16')-C(15')-H(15')	119.4	C(23')-C(24')-H(24D)	109.4
C(11')-C(16')-H(16')	119.4	H(24C)-C(24')-H(24D)	108.0
C(15')-C(16')-C(11')	121.13(18)	C(25')-C(24')-C(23')	111.14(18)
C(15')-C(16')-H(16')	119.4	C(25')-C(24')-H(24C)	109.4
C(13')-C(17')-H(17')	119.6	C(25')-C(24')-H(24D)	109.4
C(18')-C(17')-C(13')	120.72(18)	C(24')-C(25')-H(25C)	109.4
C(18')-C(17')-H(17')	119.6	C(24')-C(25')-H(25D)	109.4
C(17')-C(18')-H(18')	119.8	C(24')-C(25')-C(26')	110.98(17)
C(17')-C(18')-C(19')	120.34(19)	H(25C)-C(25')-H(25D)	108.0
C(19')-C(18')-H(18')	119.8	C(26')-C(25')-H(25C)	109.4
C(18')-C(19')-H(19')	119.9	C(26')-C(25')-H(25D)	109.4
C(20')-C(19')-C(18')	120.27(19)	C(25')-C(26')-H(26C)	109.5
C(20')-C(19')-H(19')	119.9	C(25')-C(26')-H(26D)	109.5
C(14')-C(20')-H(20')	119.7	C(25')-C(26')-C(27')	110.94(17)
C(19')-C(20')-C(14')	120.68(18)	H(26C)-C(26')-H(26D)	108.0
C(19')-C(20')-H(20')	119.7	C(27')-C(26')-H(26C)	109.5
C(1')-C(21')-H(21C)	108.4	C(27')-C(26')-H(26D)	109.5
C(1')-C(21')-H(21D)	108.4	C(22')-C(27')-H(27C)	109.2
H(21C)-C(21')-H(21D)	107.5	C(22')-C(27')-H(27D)	109.2
C(22')-C(21')-C(1')	115.48(16)	C(26')-C(27')-C(22')	112.16(17)
C(22')-C(21')-H(21C)	108.4	C(26')-C(27')-H(27C)	109.2
C(22')-C(21')-H(21D)	108.4	C(26')-C(27')-H(27D)	109.2
C(21')-C(22')-H(22')	108.1	H(27C)-C(27')-H(27D)	107.9
C(21')-C(22')-C(23')	112.32(15)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	23(1)	19(1)	18(1)	7(1)	3(1)	6(1)
C(2)	30(1)	20(1)	18(1)	7(1)	2(1)	7(1)
C(3)	24(1)	20(1)	19(1)	7(1)	3(1)	7(1)
C(4)	38(1)	24(1)	21(1)	9(1)	6(1)	13(1)
C(5)	26(1)	20(1)	17(1)	9(1)	1(1)	9(1)
C(6)	22(1)	27(1)	22(1)	13(1)	2(1)	8(1)
C(7)	34(1)	22(1)	20(1)	6(1)	-4(1)	5(1)
C(8)	41(1)	31(1)	18(1)	5(1)	2(1)	20(1)
C(9)	27(1)	39(1)	24(1)	14(1)	7(1)	16(1)
C(10)	24(1)	28(1)	26(1)	12(1)	1(1)	4(1)
C(11)	21(1)	21(1)	16(1)	9(1)	1(1)	8(1)
C(12)	20(1)	21(1)	16(1)	8(1)	3(1)	9(1)
C(13)	22(1)	21(1)	16(1)	10(1)	2(1)	9(1)
C(14)	24(1)	22(1)	15(1)	10(1)	3(1)	11(1)
C(15)	21(1)	26(1)	20(1)	11(1)	6(1)	9(1)
C(16)	20(1)	21(1)	19(1)	8(1)	1(1)	4(1)
C(17)	21(1)	23(1)	18(1)	10(1)	2(1)	8(1)
C(18)	24(1)	21(1)	21(1)	7(1)	-3(1)	5(1)
C(19)	32(1)	21(1)	16(1)	4(1)	-1(1)	12(1)
C(20)	28(1)	28(1)	16(1)	10(1)	6(1)	15(1)
C(21)	25(1)	18(1)	19(1)	6(1)	1(1)	5(1)
C(22)	22(1)	18(1)	16(1)	6(1)	3(1)	7(1)
C(23)	22(1)	25(1)	21(1)	9(1)	4(1)	7(1)
C(24)	28(1)	26(1)	24(1)	13(1)	7(1)	9(1)
C(25)	30(1)	36(1)	19(1)	13(1)	5(1)	12(1)
C(26)	23(1)	31(1)	21(1)	10(1)	1(1)	9(1)
C(27)	22(1)	25(1)	19(1)	7(1)	2(1)	5(1)
C(1')	24(1)	21(1)	18(1)	8(1)	4(1)	5(1)
C(2')	30(1)	22(1)	18(1)	7(1)	3(1)	4(1)
C(3')	28(1)	22(1)	20(1)	8(1)	4(1)	3(1)
C(4')	36(1)	25(1)	21(1)	9(1)	5(1)	2(1)

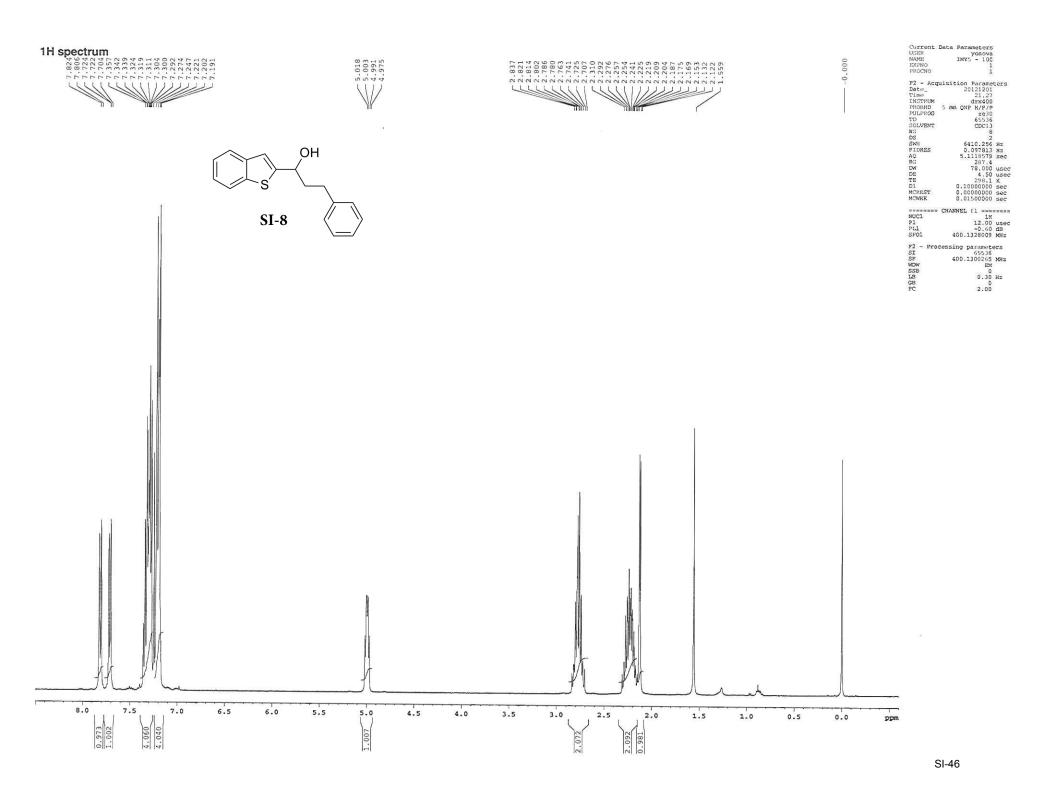

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Jarvo02. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

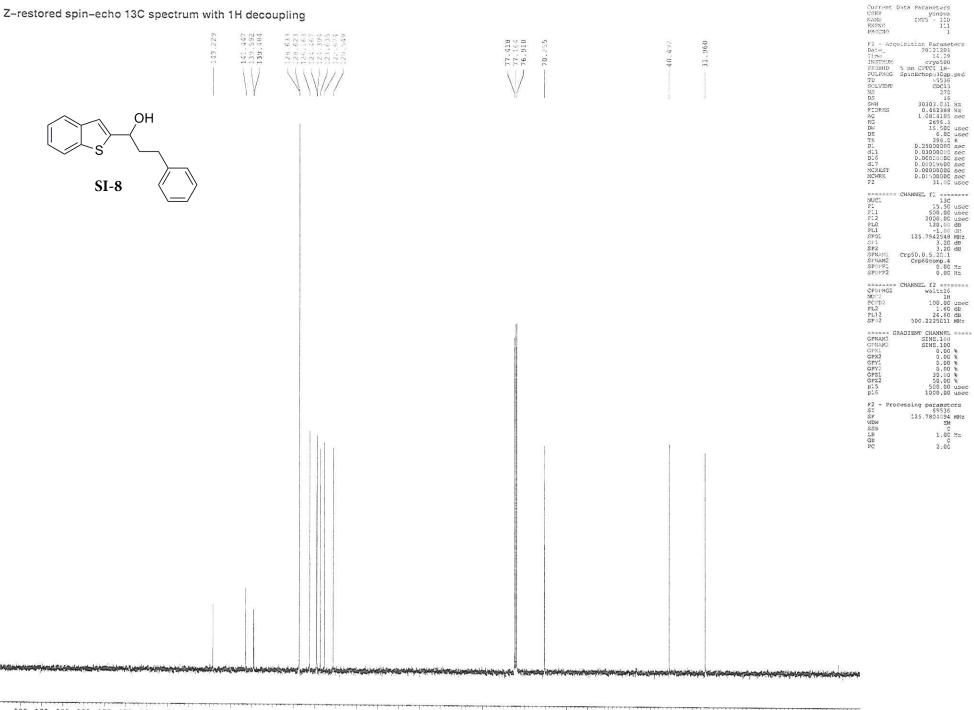
C(5')	28(1)	24(1)	19(1)	12(1)	6(1)	3(1)
C(6')	26(1)	29(1)	21(1)	12(1)	2(1)	6(1)
C(7')	37(1)	25(1)	24(1)	10(1)	5(1)	9(1)
C(8')	36(1)	26(1)	19(1)	9(1)	0(1)	-2(1)
C(9')	22(1)	39(1)	22(1)	14(1)	1(1)	2(1)
C(10')	29(1)	30(1)	24(1)	13(1)	10(1)	9(1)
C(11')	21(1)	21(1)	16(1)	10(1)	4(1)	4(1)
C(12')	18(1)	23(1)	17(1)	10(1)	3(1)	4(1)
C(13')	21(1)	21(1)	15(1)	10(1)	5(1)	5(1)
C(14')	19(1)	24(1)	17(1)	11(1)	4(1)	5(1)
C(15')	18(1)	27(1)	20(1)	12(1)	3(1)	8(1)
C(16')	24(1)	21(1)	22(1)	9(1)	7(1)	10(1)
C(17')	20(1)	23(1)	19(1)	9(1)	3(1)	7(1)
C(18')	28(1)	22(1)	21(1)	8(1)	7(1)	8(1)
C(19')	24(1)	24(1)	16(1)	4(1)	0(1)	2(1)
C(20')	20(1)	27(1)	18(1)	9(1)	2(1)	6(1)
C(21')	28(1)	18(1)	19(1)	6(1)	4(1)	6(1)
C(22')	22(1)	18(1)	17(1)	5(1)	4(1)	4(1)
C(23')	23(1)	27(1)	23(1)	11(1)	7(1)	9(1)
C(24')	27(1)	29(1)	26(1)	15(1)	7(1)	10(1)
C(25')	30(1)	36(1)	23(1)	15(1)	8(1)	11(1)
C(26')	27(1)	33(1)	25(1)	12(1)	11(1)	9(1)
C(27')	27(1)	23(1)	22(1)	6(1)	7(1)	8(1)

	Х	у	Z	U(eq)
H(1)	9972	2865	9422	24
H(2A)	10378	2122	10774	27
H(2B)	7583	1624	10479	27
H(3A)	10576	1106	9092	25
H(3B)	7846	532	8931	25
H(4A)	11504	466	10479	32
H(4B)	8780	-144	10268	32
H(6)	7500	-1873	9104	27
H(7)	8192	-3260	7893	32
H(8)	11636	-3041	7260	35
H(9)	14362	-1419	7824	33
H(10)	13667	-32	9025	31
H(12)	12031	4461	10582	22
H(15)	5797	4654	12280	25
H(16)	5504	3215	10921	24
H(17)	14359	6200	11771	24
H(18)	14659	7645	13142	27
H(19)	11522	7743	14001	28
H(20)	8121	6405	13482	27
H(21A)	6416	1730	8401	25
H(21B)	4988	2127	9248	25
H(22)	5437	3736	8972	23
H(23A)	8240	3016	7546	26
H(23B)	9192	3979	8572	26
H(24A)	6906	4953	7920	29
H(24B)	8515	4567	7142	29
H(25A)	5272	3218	6086	32
H(25B)	4559	4303	6268	32
H(26A)	1488	3019	6480	30
H(26B)	2496	3980	7506	30

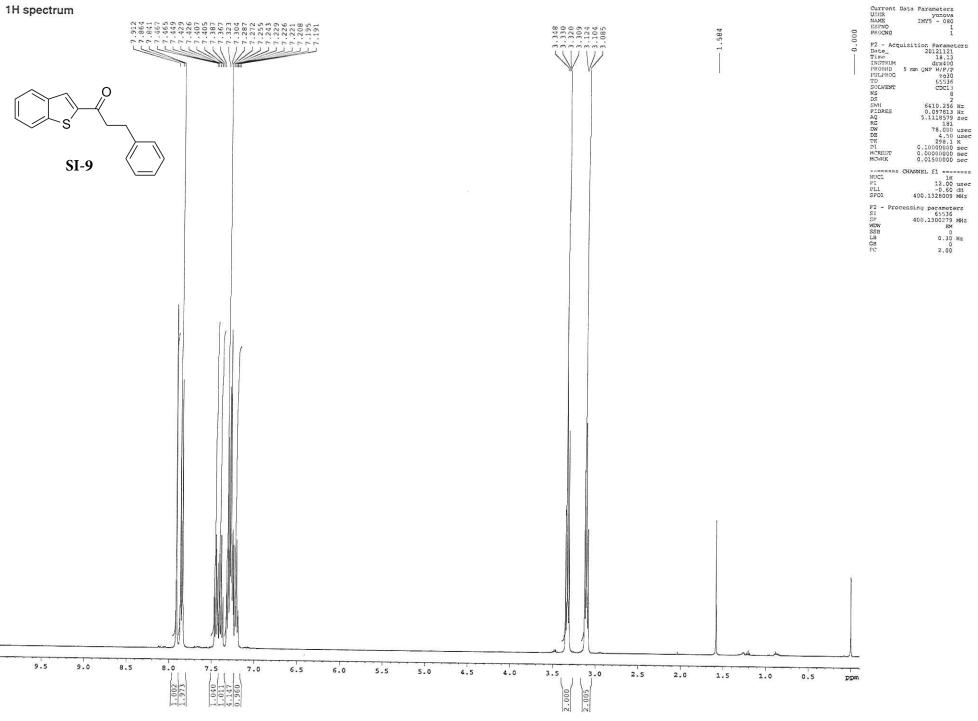

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Jarvo02.

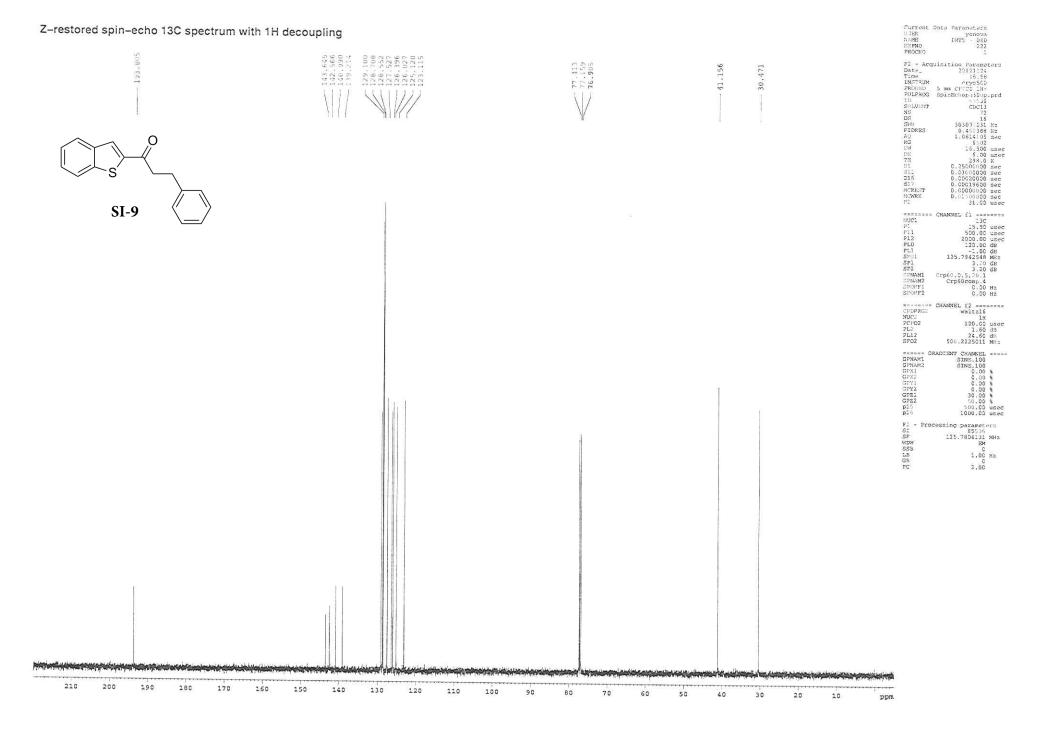
H(27A)	3735	2022	7114	27
H(27B)	2157	2418	7901	27
H(1')	10945	490	3617	25
H(2'A)	10880	1318	2357	29
H(2'B)	8727	1763	2700	29
H(3'A)	13209	2320	4063	28
H(3'B)	11102	2878	4216	28
H(4'A)	13979	2994	2755	33
H(4'B)	11710	3462	2783	33
H(6')	11971	5113	3971	30
H(7')	14190	6640	5217	34
H(8')	18067	6770	5981	34
H(9')	19713	5351	5495	34
H(10')	17498	3824	4239	31
H(12')	10291	-1142	2470	22
H(15')	2720	-1095	966	25
H(16')	4978	291	2321	25
H(17')	9809	-2908	1246	24
H(18')	7540	-4306	-113	27
H(19')	3744	-4283	-886	27
H(20')	2243	-2859	-289	26
H(21C)	9433	1592	4813	26
H(21D)	6892	1219	4068	26
H(22')	6310	-444	4239	23
H(23C)	10234	-608	4486	28
H(23D)	10908	277	5567	28
H(24C)	7677	-1729	5083	31
H(24D)	10247	-1361	5815	31
H(25C)	9015	-132	7019	34
H(25D)	7232	-1251	6771	34
H(26C)	5121	53	6777	32
H(26D)	4417	-837	5696	32
H(27C)	7651	1167	6169	28
H(27D)	5081	796	5439	28

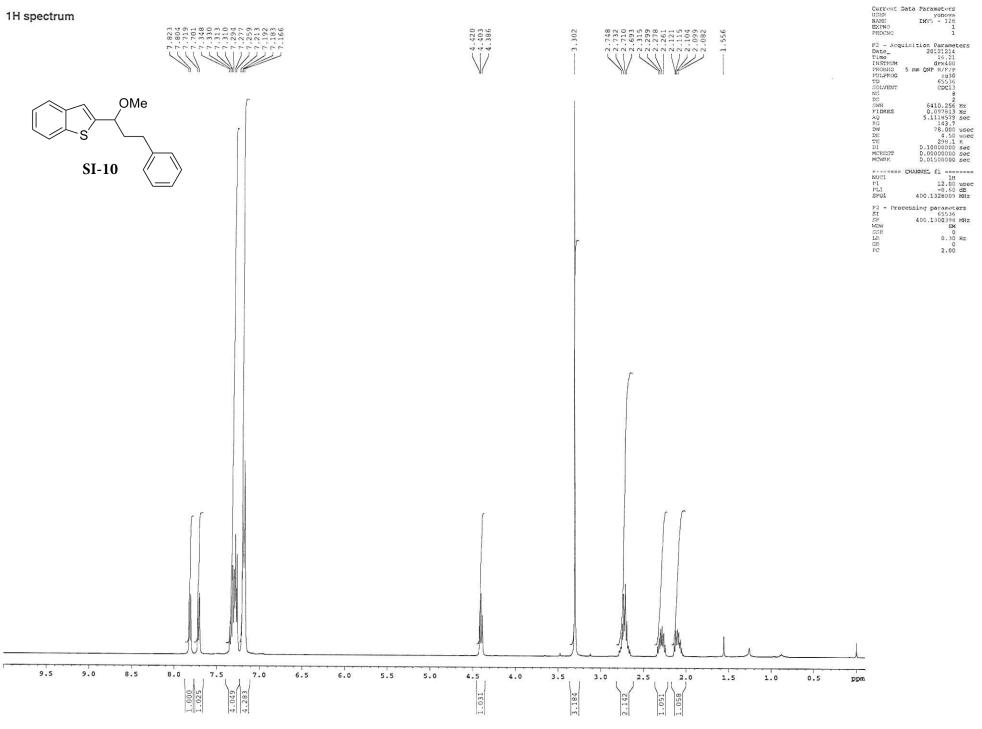



SI-44

13C spectrum with 1H decoupling

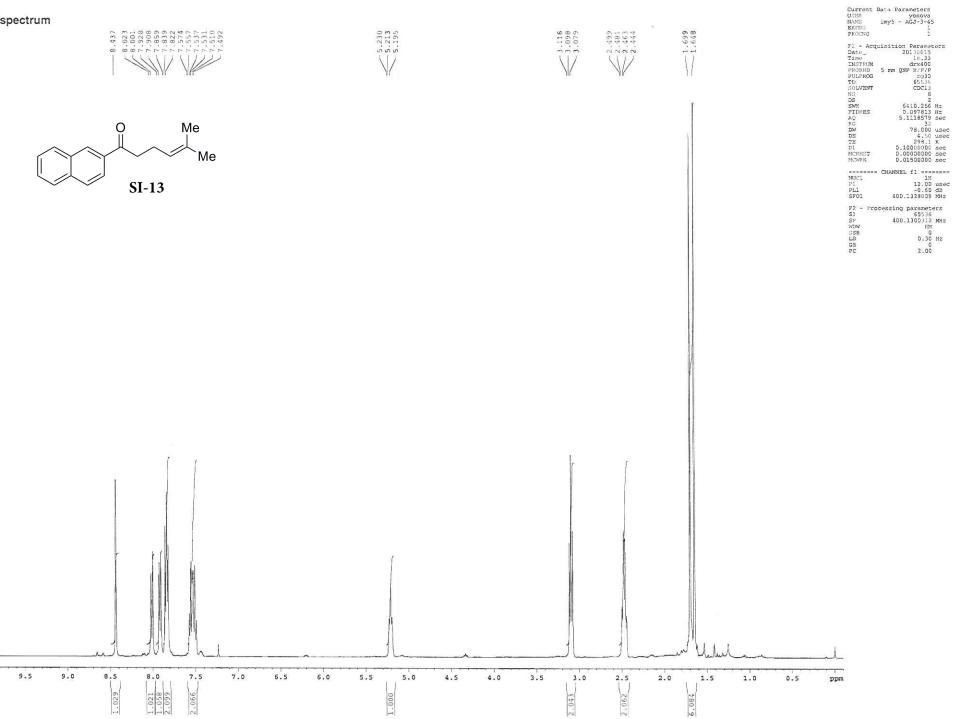


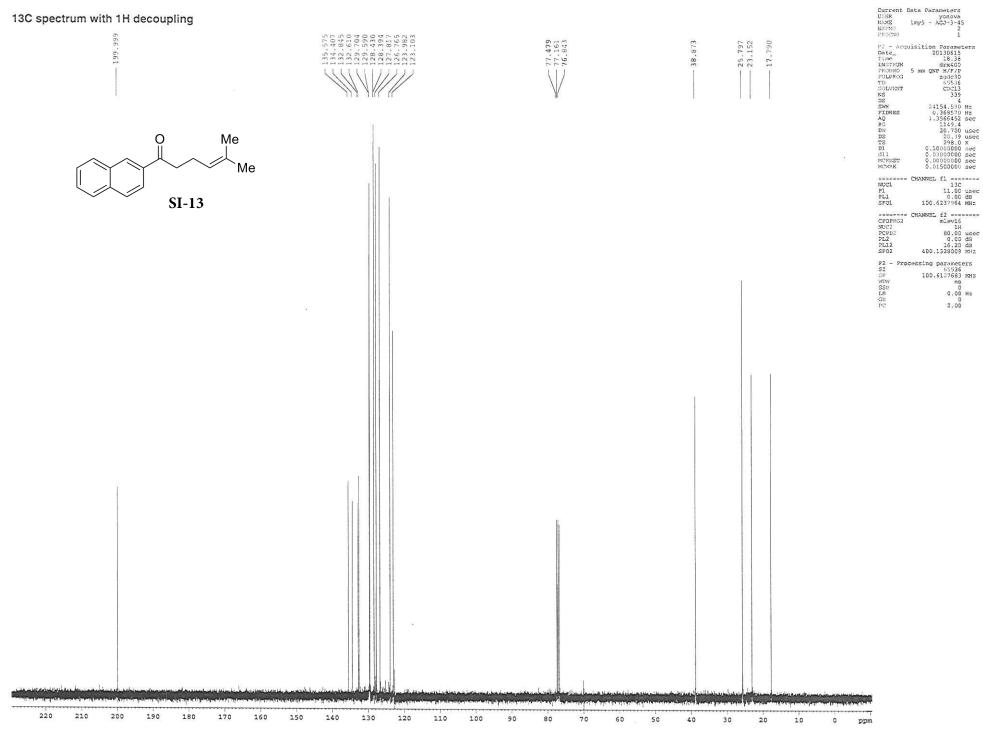

ppm

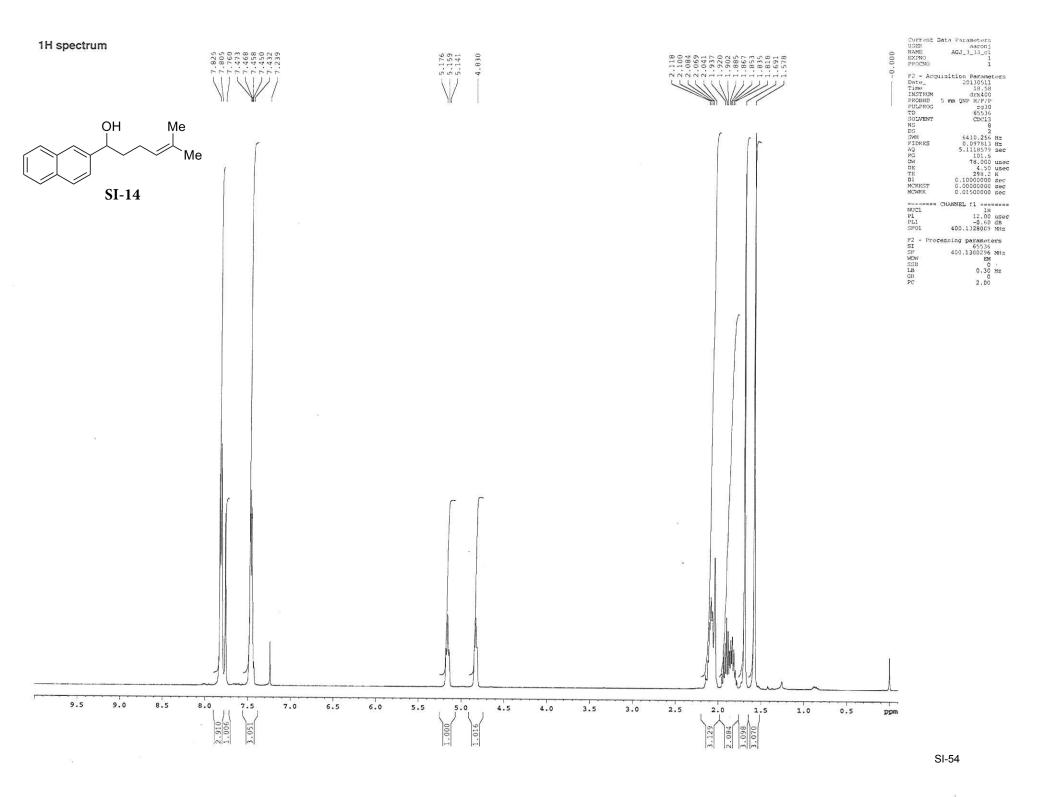


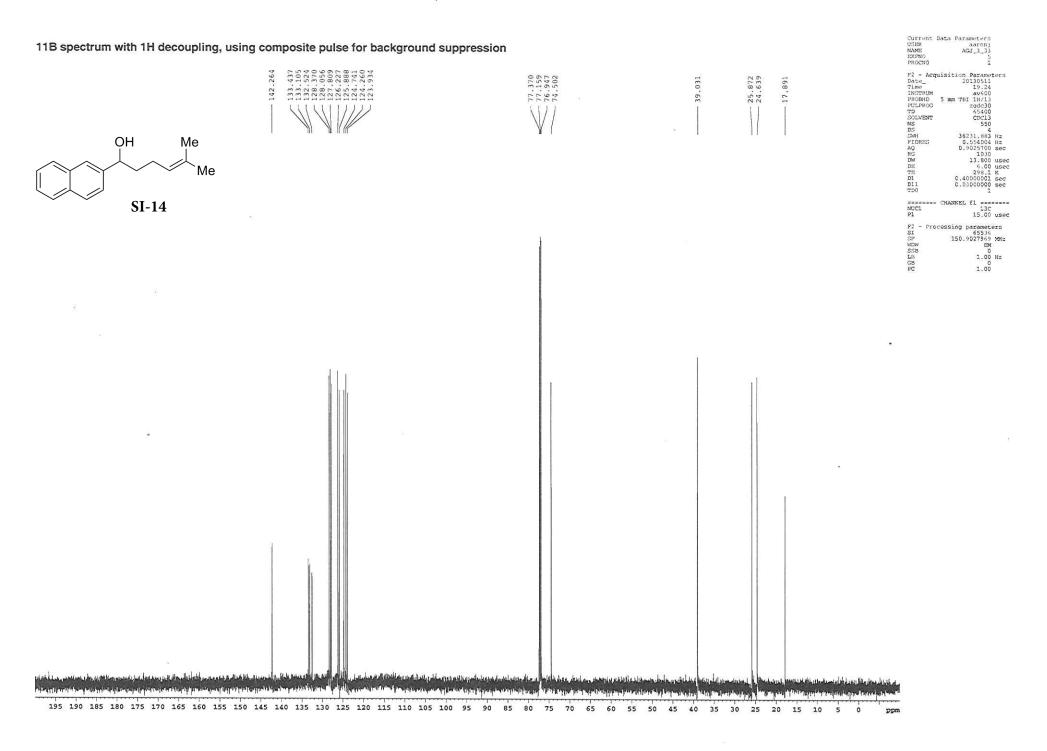
195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

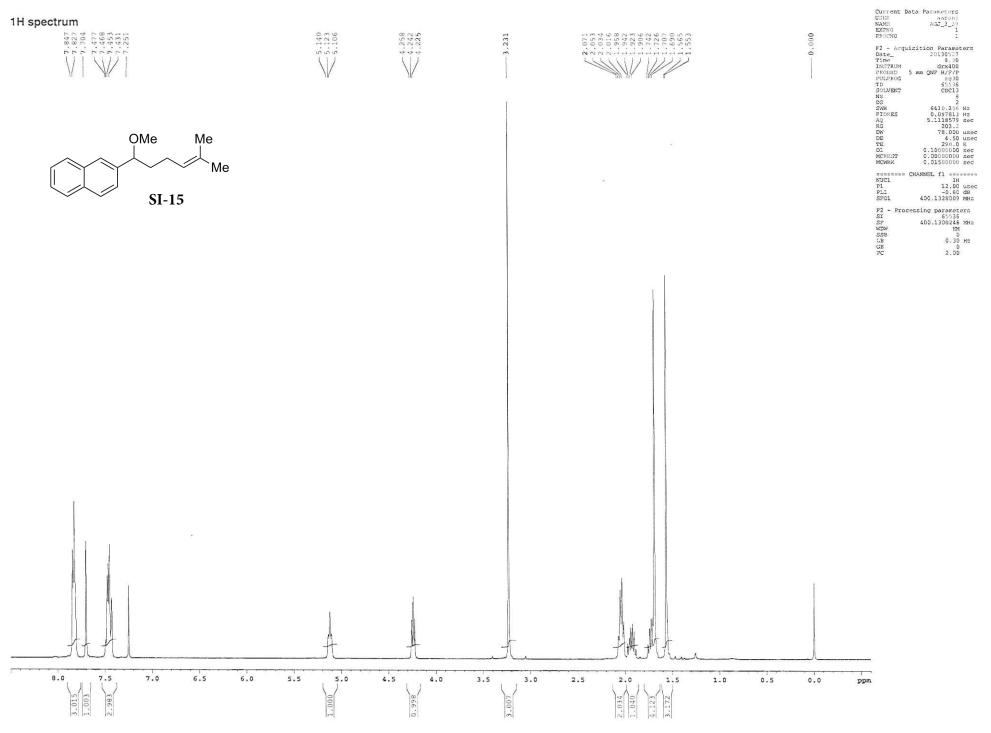
SI-49

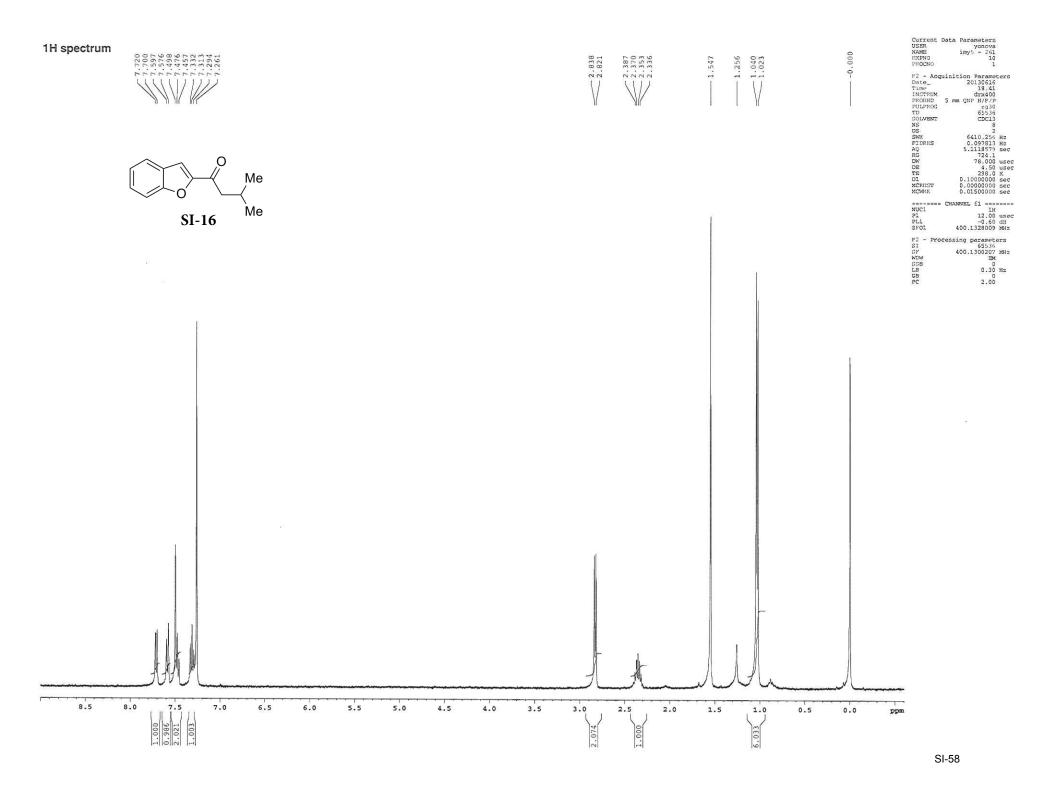

Z-restored spin-echo 13C spectrum w	065 577 823 452 640 535 046	124,229 123,477 122,716 122,257	901.07 010.07 101.01 701.01 702.01	56.800	39,586	 Durrent Dato Parameters USIB yontrow HAX: LVYS - 128 EXPHO: 222 SPYNO: 1 F2 - Acquisition Parameters Date Date 20121214 Time: 1 F2 - Acquisition Parameters Date Date 20121214 HAX: 1000 Date 20121214 HAX: 1000 Date 2012121 H-000 SpinBChopTop.prd DSOLVER COCL3 NS 223 DS 16
OMe S) 31(r	J_₩C			STREE District AU 642388 Hz AU 0.514105 Hz AU 1.0514105 Hz DX 1.05100000 Hz D1 0.25000000 Hz G1 0.0000000 Hz G1.7 0.0000000 Hz MCMENT 0.0000000 Hz MCMENT 0.0100000 Hz
SI-10 < <u> </u>						NUC1 13C PI1 15.50 usec PI1 550.00 usec PI1 2000.00 usec PL0 120.00 dB PL1 25.7542548 MHz SP01 25.7542548 MHz SP11 3.20 dB SP14 3.20 dB SNNAM1 Crp60ccmp.4 SNOPF2 0.00 Hz
						Reserves CHANNEL 72 Farmers CTOPMED waltzl6 NUC2 1M PCPD2 100.00 uncc PL1 2.4.60 dS PD12 500.2225012 MHz FERE GPNAM1 SINE.100 GINAM2 GINAM4 SINE.100 GINA SINE SINE SINE SINE SINE SINE SINE SINE SINE
		T IT				bit 500.00 back p15 1000.00 usec p2 Processing parameters SI 65536 SF 125.7664154 MMz WDW EX SSE 0 LB 1.00 X3 SE 0 CB 0 22 2.00 2.00
×						

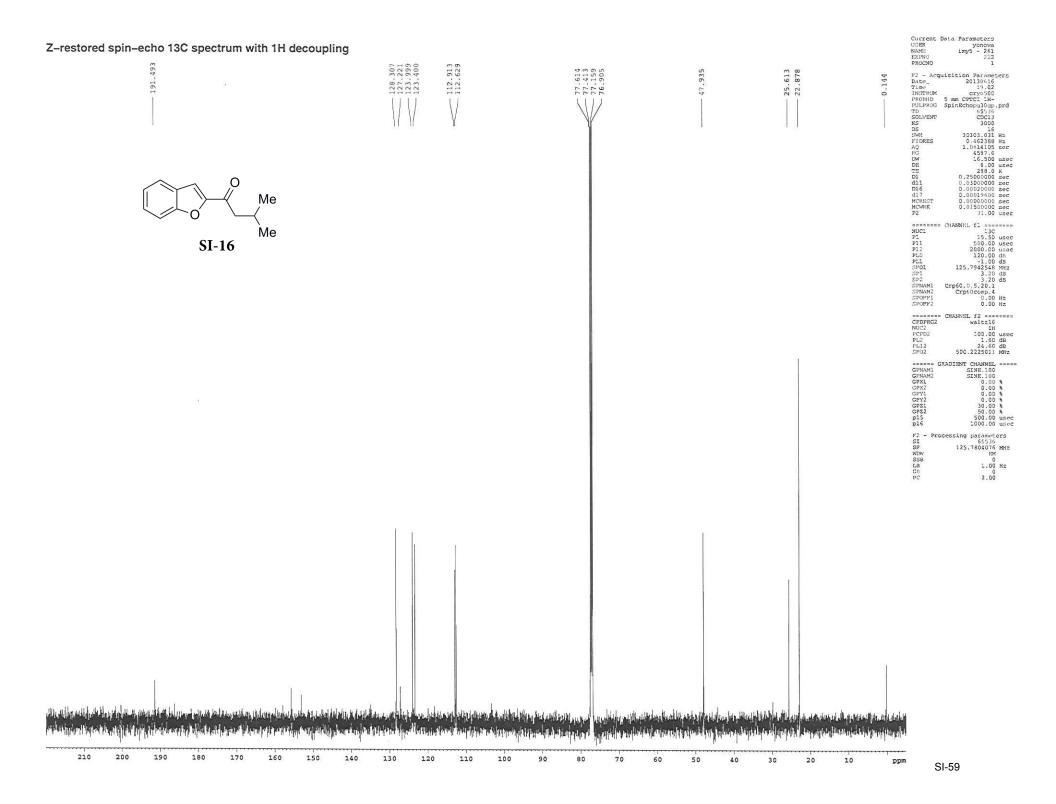

.....

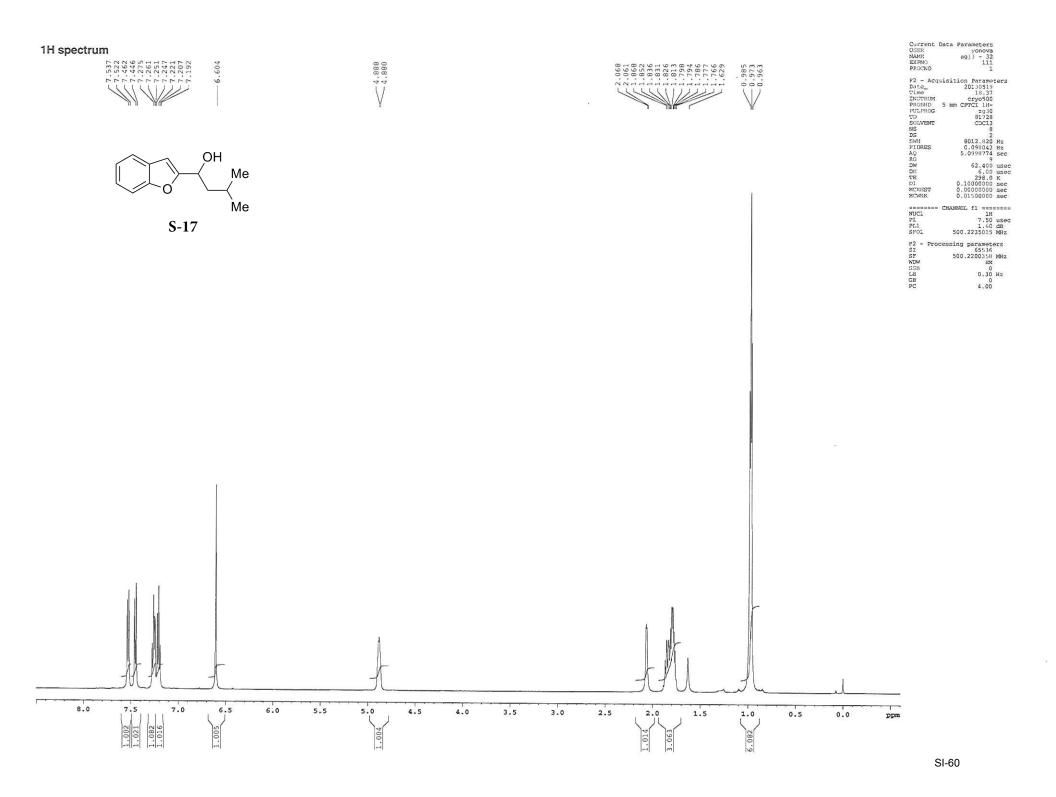

SI-51


a:

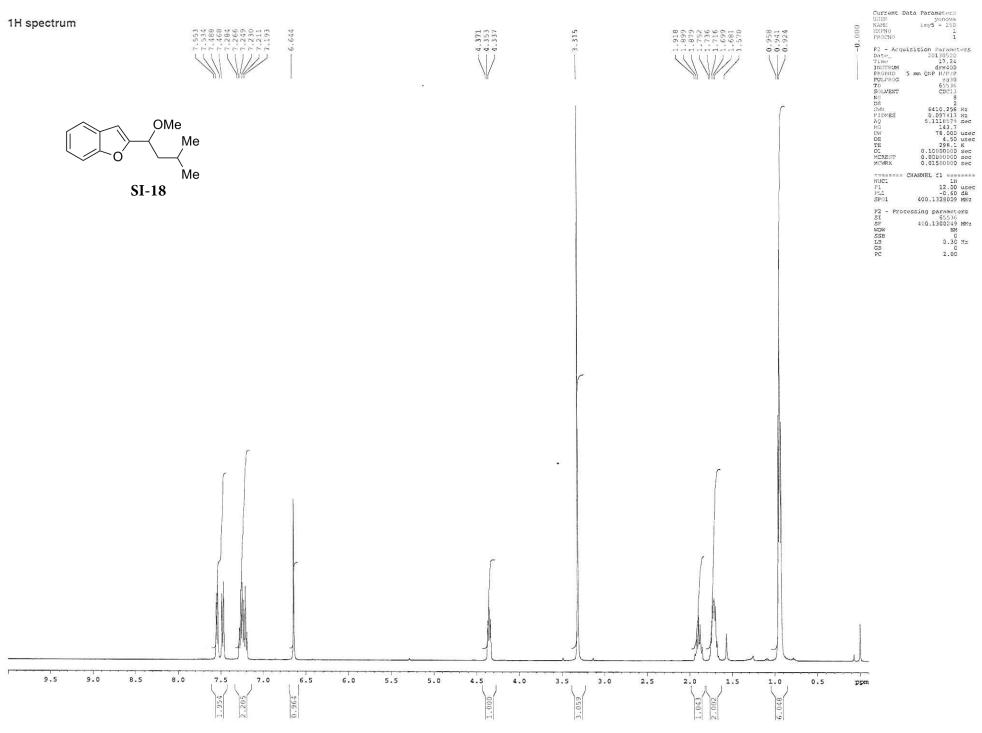


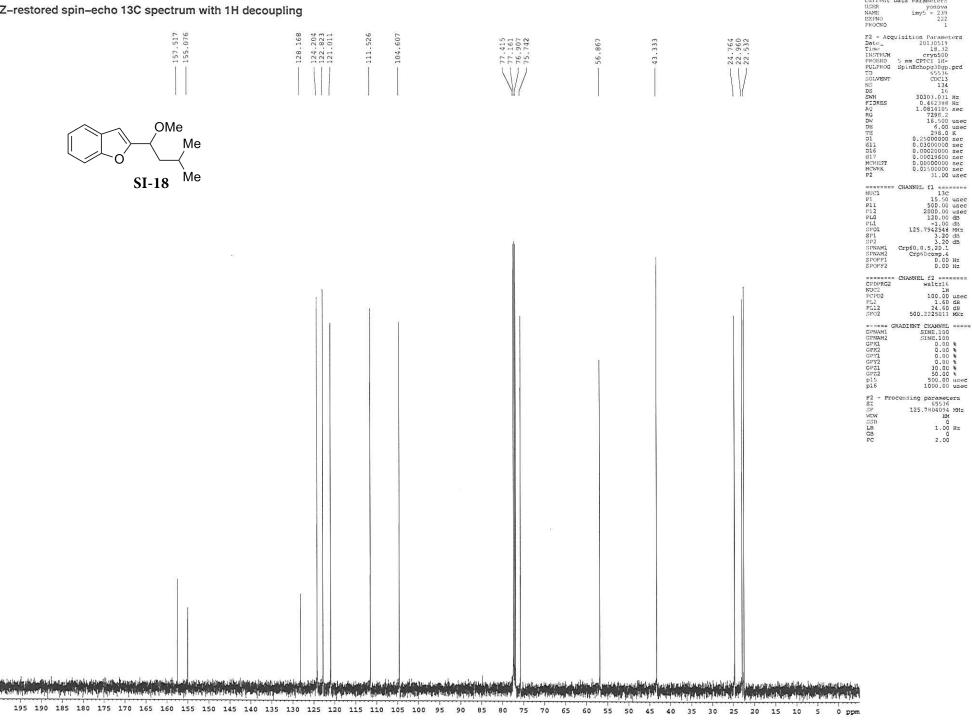


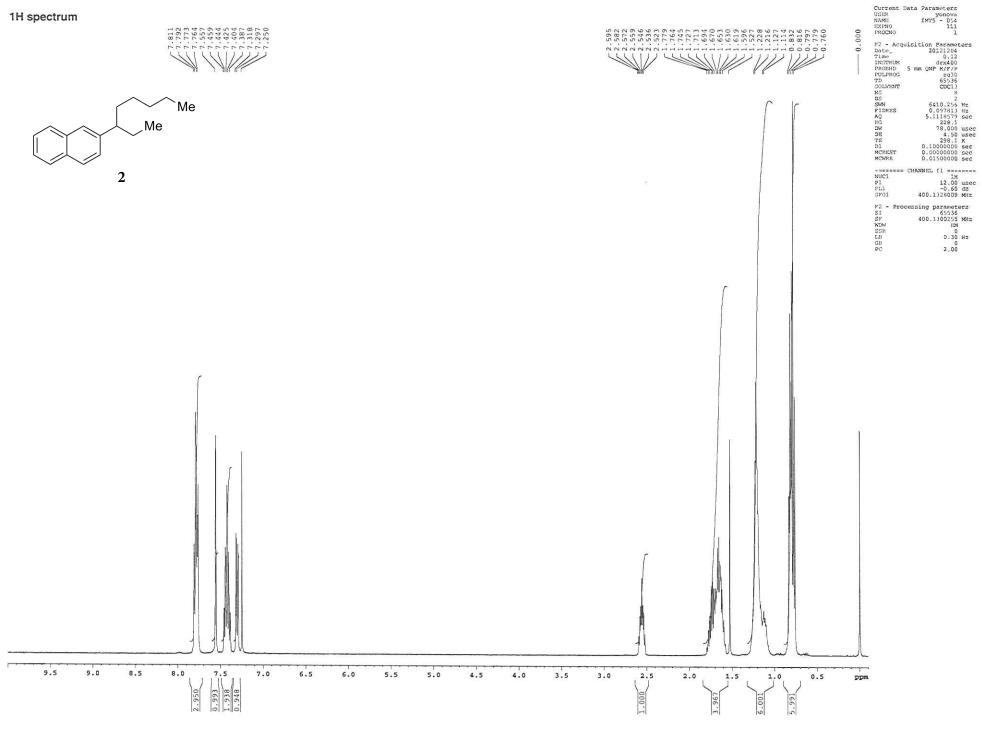




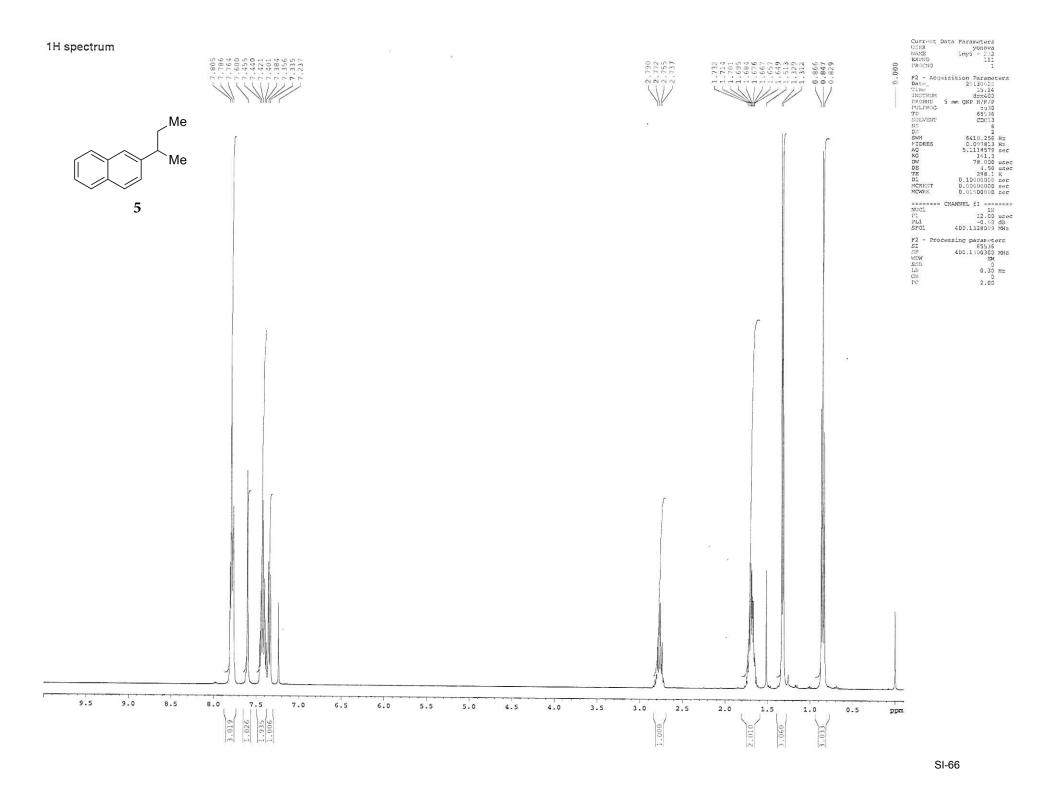
SI-56


Z-restored spin-echo 13C spectrum with 1H decoupling 360		77.415	56.844		25,897	17.858	Current Data Parameters UDUR aaron; NAC_3_3 aaron; NAC_3_3 2 PROCNO 2 PROCNO 1 F2 Acquisition Parameters Date20130527 7 Time 3.48 INNTFUM cryo500 PROLEMOG 5 Date201000 5 PULFMOG 5 Date0 0.516 Somer CD516 Dot 1.6 Somer 0.462388 Hz AQ 1.0814105 sec PG 6.510 Date 6.500 Date 6.00000 Date 6.000000 Date 6.0000000 Date 1.0.010000000 Date 1.0.00000000 Date 1.0.00000000 Date 1.0.000000000 Date 0.00000000000000000000000000000000000
SI-15							MCREST 0.0000000 mec MCREST 0.01550000 sec P2 31.00 usec P2 1.0550000 sec P1 1.5550 usec P1 1.5550 usec P1 2.200.00 usec P12 200.00 usec P12 200.00 ds PL1 -1.00 dB PL1 -1.00 dB SF01 125.7942548 MH SF01 125.7942548 MH SF02 1.00 dB SF0FF1 0.00 HZ SF0FF1 0.00 HZ SF0FF2 0.00 HZ SF0FF2 0.00 HZ SF0FF2 1.00 HZ SF0F72 1.00 HZ SF
							Image: GRADIENT CHANNEL GRNAM1 SINE.200 GRYAM2 SINE.200 GRYA 0.60% GRY1 0.60% GRY2 0.00% GRY2 0.00% </td
			composed in the state of the state of the				
145 140 135 130 125 120 115 110 105 100 95 90	0 85	80 75 70	65 60 55 50	45 40 35	30 25	20 15 10	5 ⁰ SI-57





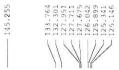
Current Data Parametern

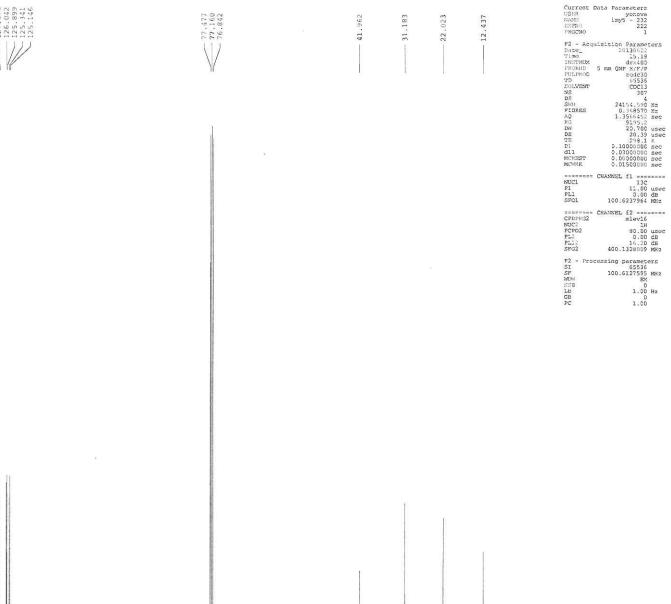


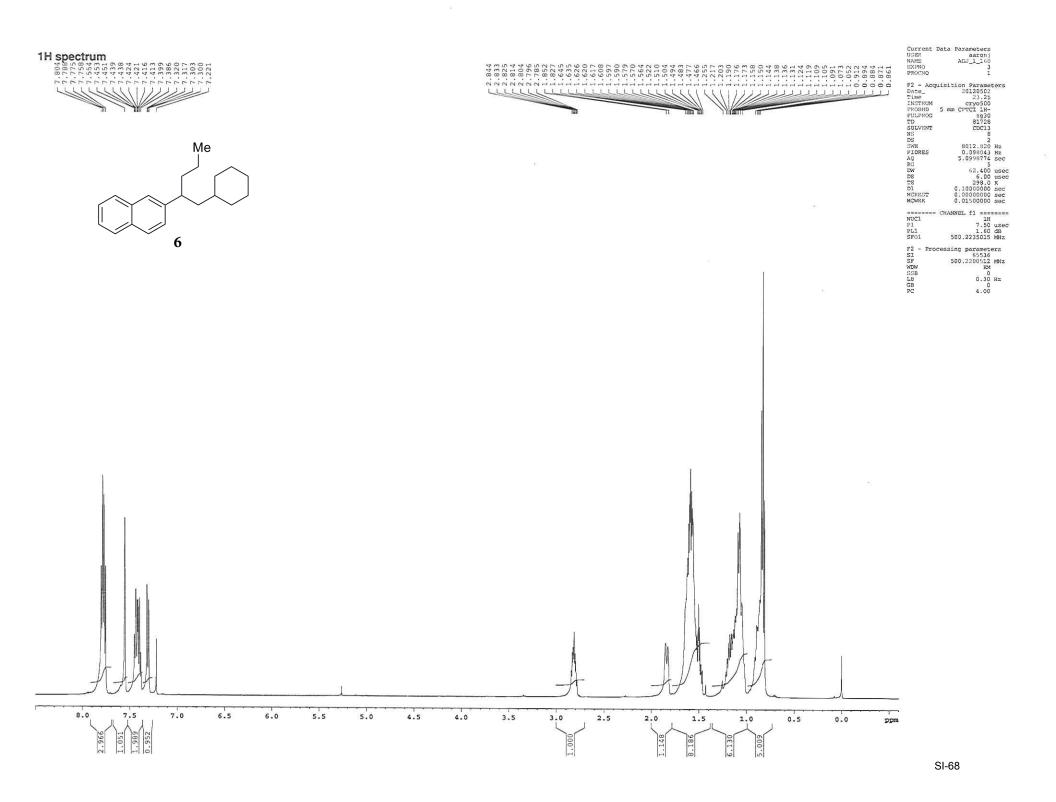
Z-restored spin-echo 13C spectrum with 1H decoupling

2 restored spin-eend 130 spectrum with TH d	decoupling	5				NAME INYS - DSS EXTNO 222 PPOCNO :
Me 2	133.680 127.92 127.62 127.65 126.534 126.134 126.139 125.090	77.414	961.85	30.630 92.157 29.817 27.518 22.713	12.237 12.422	P2 - λοσμίσισι Parameters Date 5.35 Time 5.35 Time 5.35 Time 5.35 Three 5.35 Three 5.35 Three 6.53.36 Total 6.55.36 Solution 201 NG 191 NG 191 NG 10.462.36 NG 10.462.36 NG 10.01 H 3000.01 NG 7296.2 DW 16.500 DE 6.00 DE 0.000000 DE 2.94.0 K D1 0.1000000 D2 2.94.0 K D1 0.000000 D1 0.000000 D1 0.000000 D1 0.000000 D1 0.000000 D1 0.0000000 D1 0.00000000000000000000000000000000000
						CHANNEL f1 NUC1 13C P1 15.50 uscc P12 500.00 uscc P13 2000.00 uscc P14 125.7042548 HMz P15 120.00 dB P11 125.7042548 HMz SP11 125.7042548 HMz SP11 120 dB SP12 120 dB SP14 120 dB SP14 120 dB SP17 0.00 Hz SP07F1 0.00 Hz SP07F2 0.00 Hz SP07F2 0.00 Hz SP07F2 0.01 Hz SP07F2 12 ====== CPDPF02 walz16
						PCPD2 100.00 usec PL2 1.60 dH PL12 22.60 dH ST02 500.222.60 dH ====== GRADESHT CHANNEL ===== GRADESHT CHANNEL GRAAM SINE.100 GRAAM SINE
						P2 - Processing parameters ST 05%6 WDW 125.7804090 Wate WDW 558 0 SS8 0 GB 0 PC 2.00
and a second state of the		ji New merida the second				ı

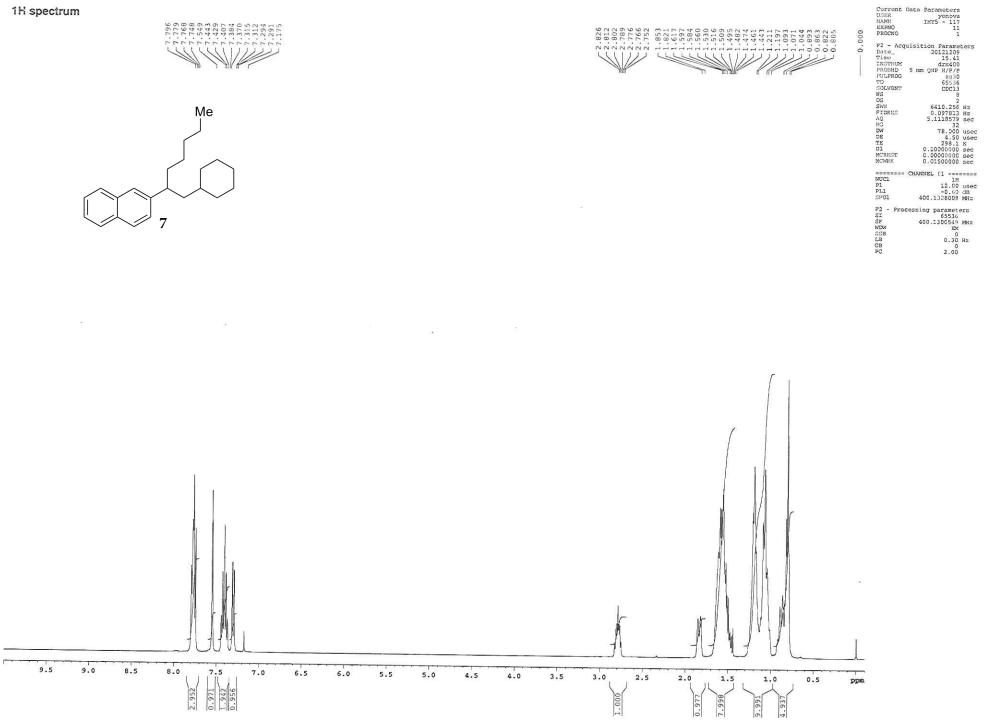
Current Data Parameters

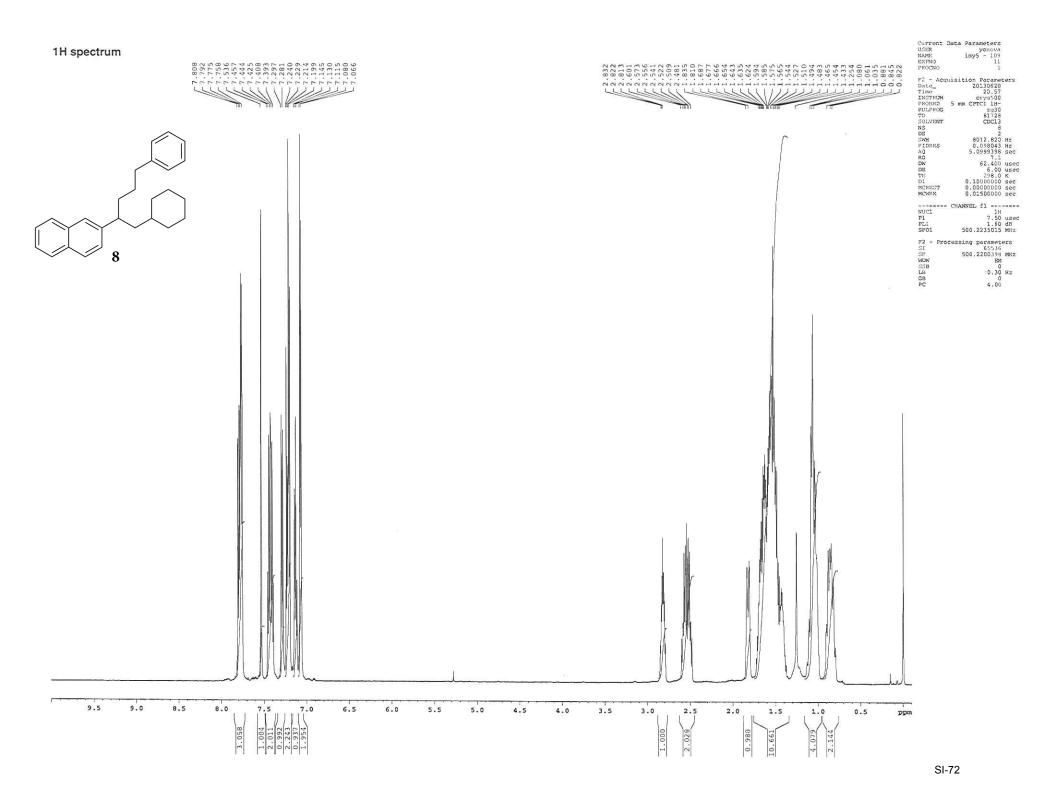

.

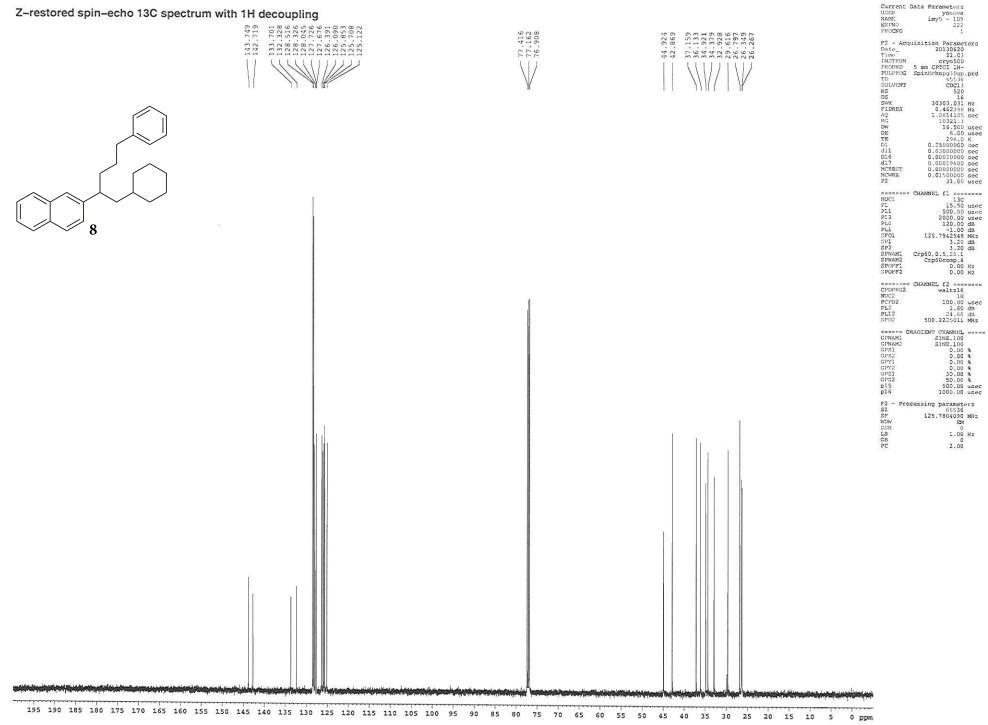


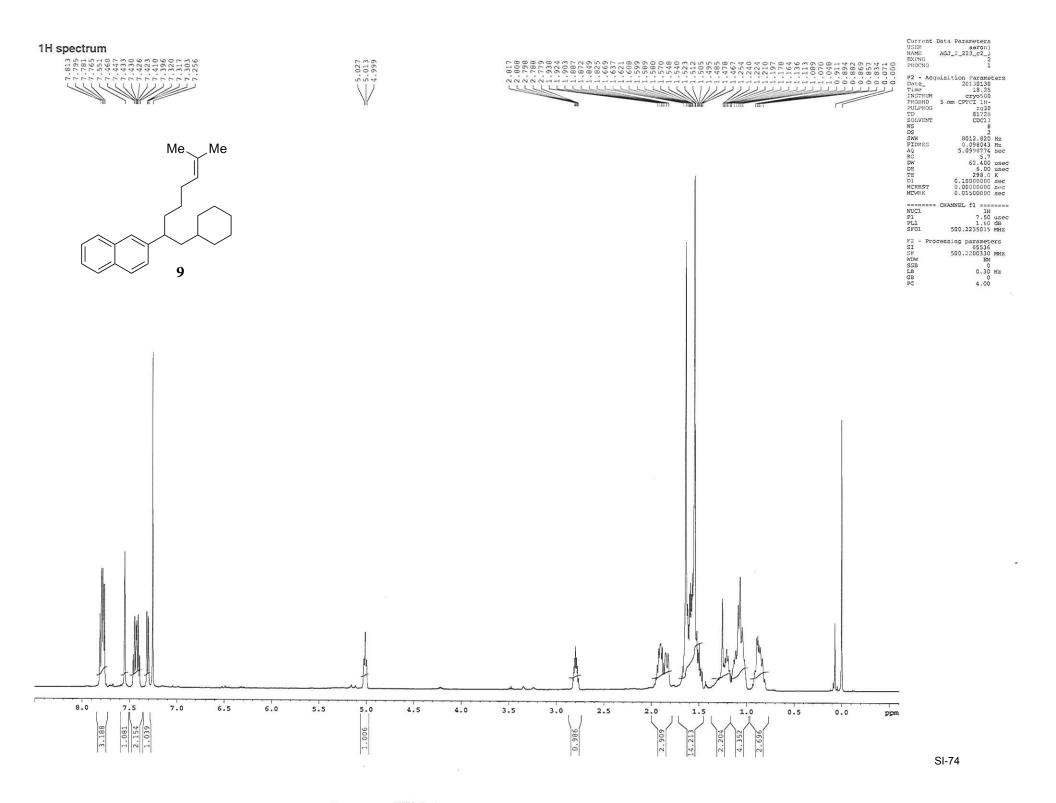

5

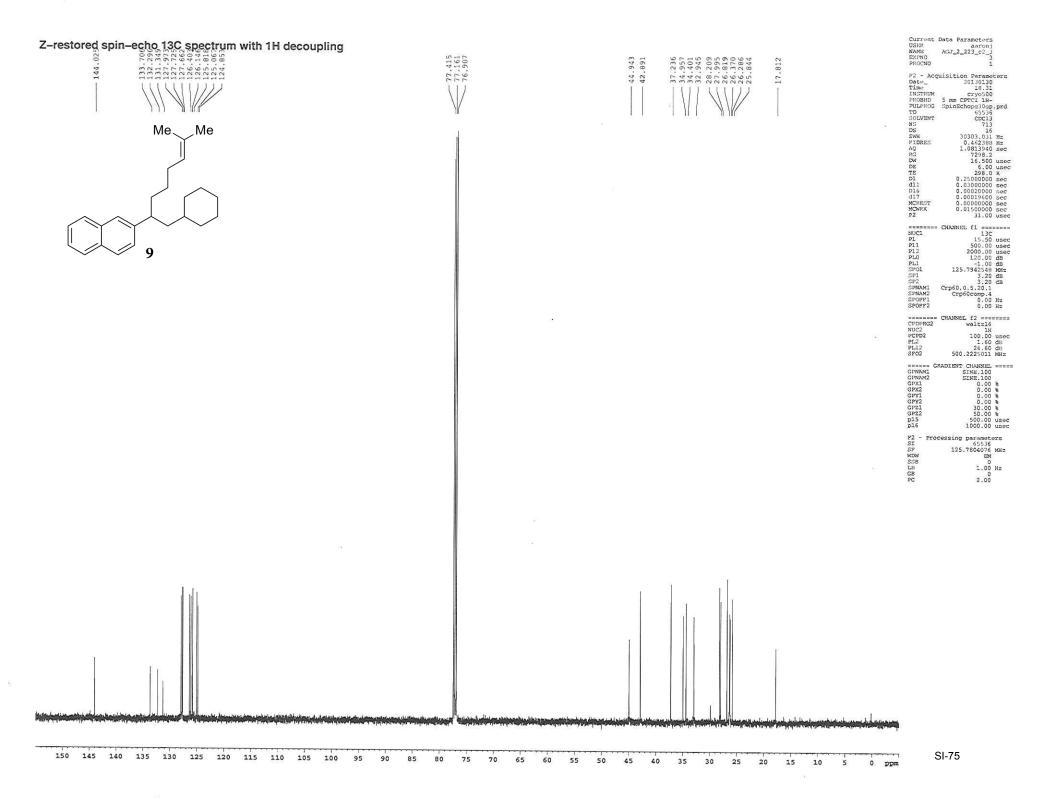
Me

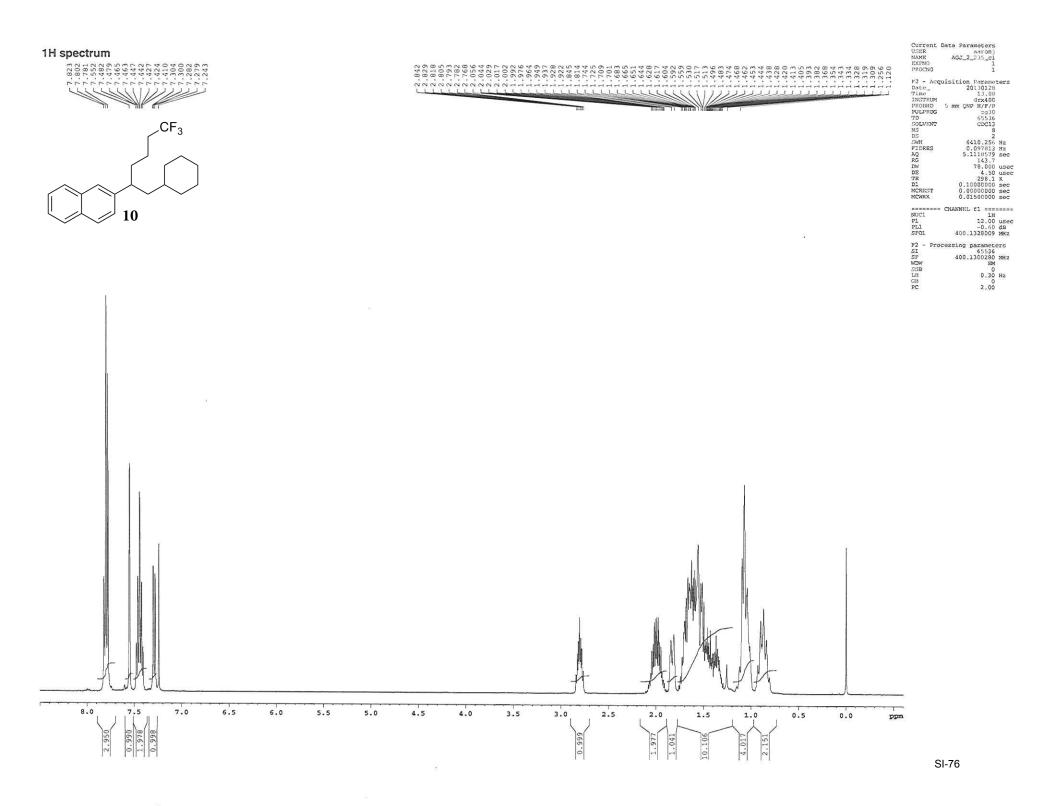

Me

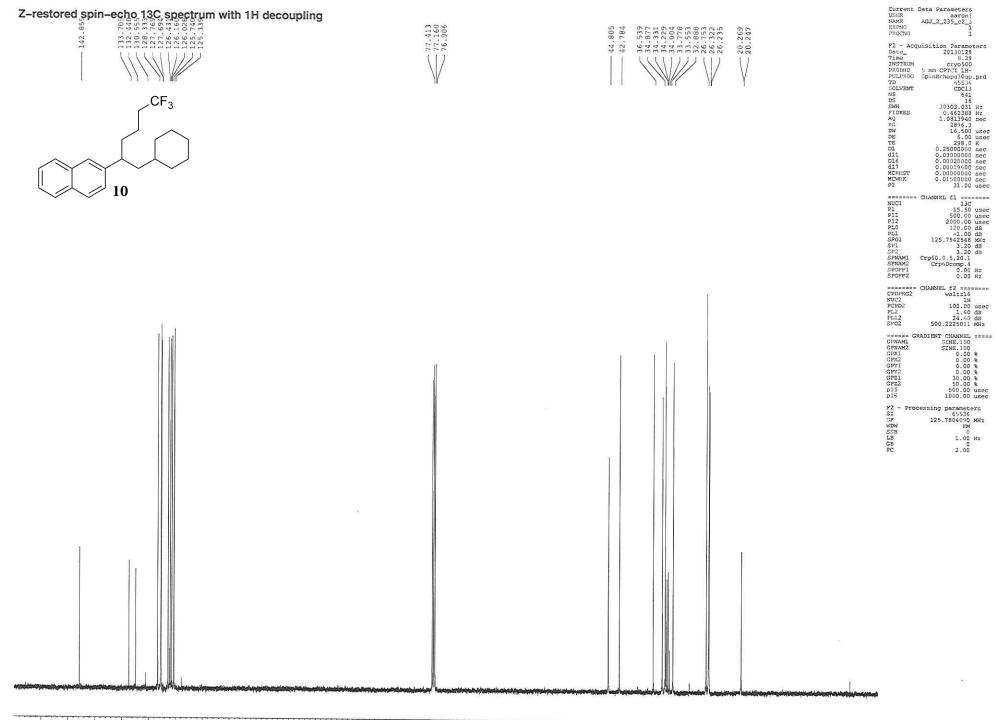


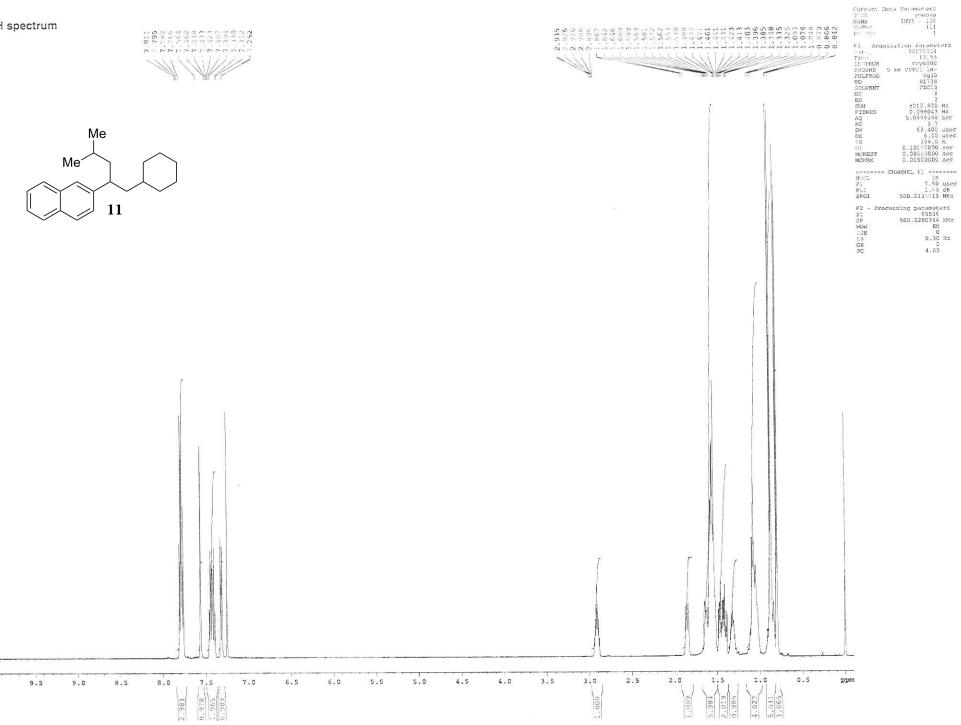

Z-restored spin-echo 13C spectrum with 1H decoupling	77.414	44.934 42.710 39.847 34.970 34.970 34.970 26.878 26.328 26.298 20.896	Current Data Parameters UCRR aaronj NAME ACJ_160 EXPNO 4 PROCNO 1 F2 - Acquisition Parameters Date_ 20120502 Time 23.12 INCFRUM cryo500 PROHND 5 nm CPTC1 NH- PROM SpinEchop3050.prd TOUVER COS13 NS 412 DS 16 SNMI 30303.031 Hz FIDERS 0.462388 Hz
Me 6			TD 65536 SOLUMER CDCL1 NS 412 DMI 0103.01 FIDRES 0.462388 AQ 1.0613940 SWI 50103.01 FIDRES 0.462388 AQ 1.0613940 SWI 26.500 DE 6.00 DE 6.00 DE 6.00 DI1 0.2500000 SWC 0.019600 D11 0.0000000 D11 0.0019600 D14 0.0000000 MCREET 0.0000000 MCREET 0.0000000 P2 31.00 MCCL 1.32C P12 2000.00 P12 2000.00 P12 2000.00 P12 120.00 P11 500.00 P12 120.00 P11 125.7924248 P11 125.7924248
			SP1 3.20 dB SP2 3.20 dB SP0 Crp60.0.5.20.1 Grp60.0.5.20.1 SP0FF1 0.00 Hz SP0FF2 0.00 Hz Crp60.0.5.20.1 Grp60.0.5.20.1 Grp60.0.60 SP0FF1 0.00 Hz Crp60.0.5.20.1 Grp60.0.00 Hz Crp60.0.00 Hz Grp60.0.00 Crp0FC2 0.00 Hz Crp0F02 100.00 usec FL12 1.60 dB FV12 1.60 dB SF02 500.225501 Mdz SF02 SADIBTC CHANNEL SF02
	1		GPNAM1 SINK.100 GPNAM2 SINK.100 GPX1 0.00 % GPX1 0.00 % GPX2 0.00 % GPX2 0.00 % GPX2 50.00 % GPX2 50.00 % GPX2 50.00 usec F16 Processing parameters SIP 125.7004.523 MHz MWW EX SIS 0 LB 1.00 Hz GH 2.00 Hz
·			
	VO 85 80 75 70 65 6	0 55 50 45 40 35 30 25 20 15 1	олиминициницини 1



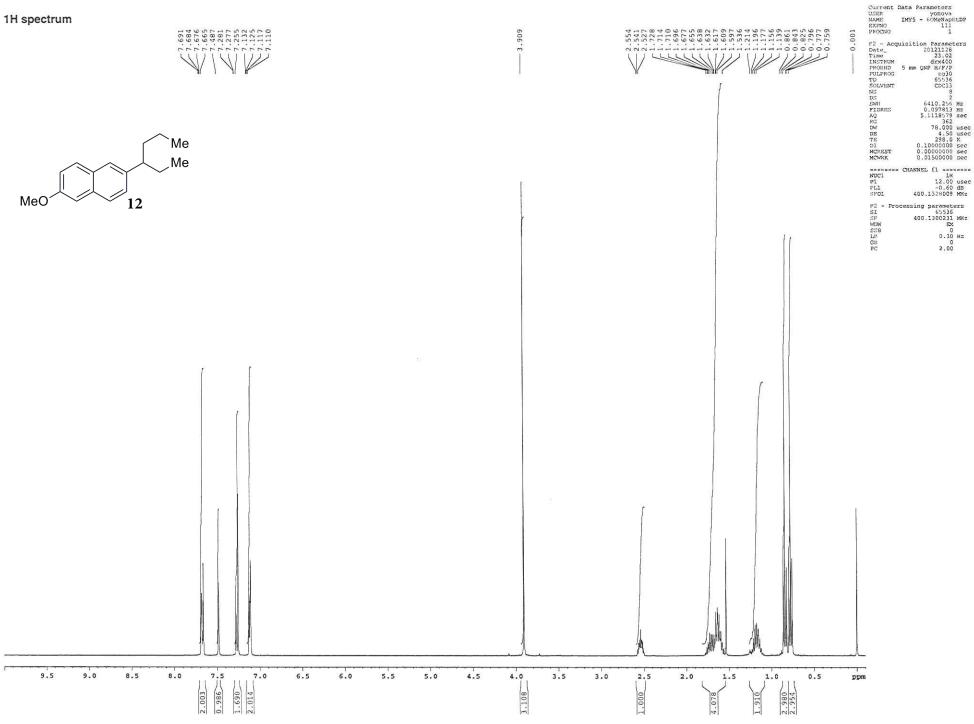

Z-restored spin-echo 13C spectrum with 1H decoupling	76,905	45.002 43.009 17.610 17.610 14.400 12.162 12.162 12.162 14.255 14.255	Current Deta Parameters JJMR. yonura XAME INTS SKRMO 222 PROTOD 221 PROTOD 222 PROTOD 221 PROTOD 2012120 Time 15/53 INSTRIM cryo600 PRORND 5 mm CPTC1 1H- PULINOG SplutChopPodap.prd TO 555/3 SOVENT COC13 SOM 3030.31 Hr PIDRES 0.462386 Hr AQ 1.031165 spec DE 6.50 usec DE 6.50 usec DE 0.62500000 sec G10 0.201000 sec G2 0.6001000 sec G17 0.6000000 sec G17 0.6000000 sec G17 0.6000000 sec MCRFK 0.6100000 sec
			P2 31.00 uncc NUCL 130 P.1 13.00 uncc P.1 13.00 uncc P.1 13.00 uncc P.1 13.00 uncc P.1 120.00 uncc P.1 120.00 uncc P.1 120.00 uncc P.1 1.00 dB SP01 125.7942548 MH SP1 3.20 dB SP0FP1 0.20 HE SP0FP1 0.20 HE SP0FP2 0.30 HE SP0FP1 0.20 HE SP0FP2 0.30 HE SP0FP1 0.20 HE SP0FP2 0.30 HE SP0FP2 0.00 HE SP0FP2 0.00 HE SP0FP2 0.00 HE SP0F2 1.00 Luccc F12 2.00 HE SP0F2 0.00 HE SP12 0.00 HE

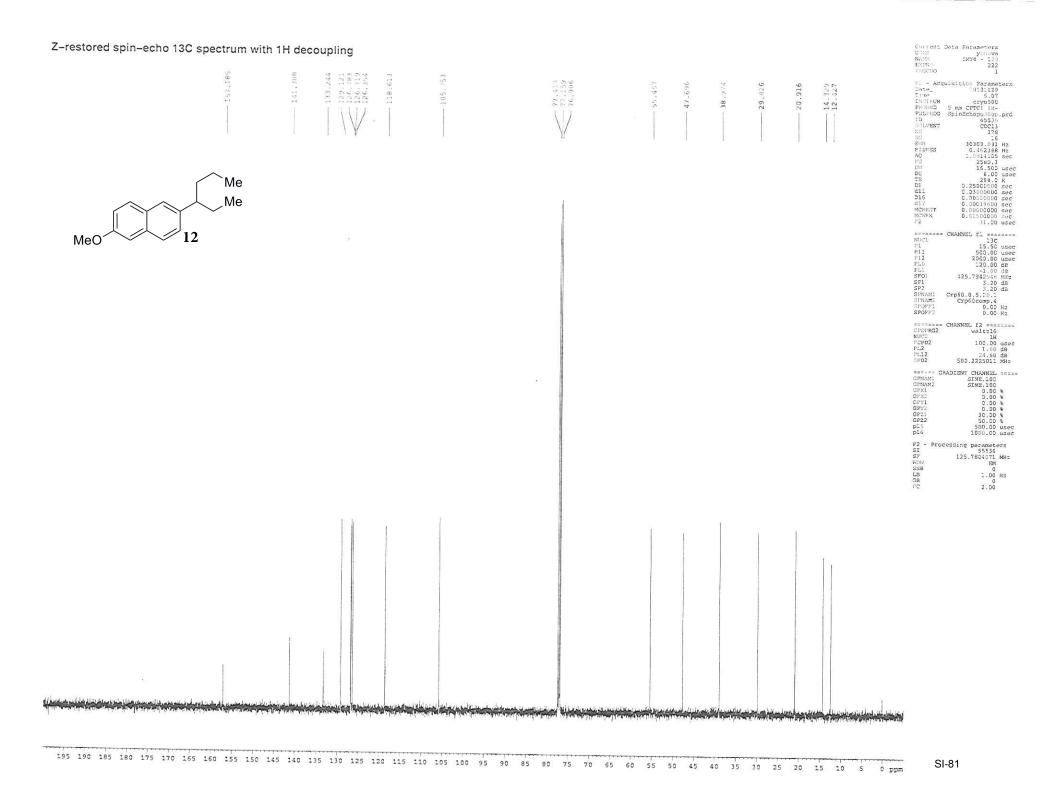

.....

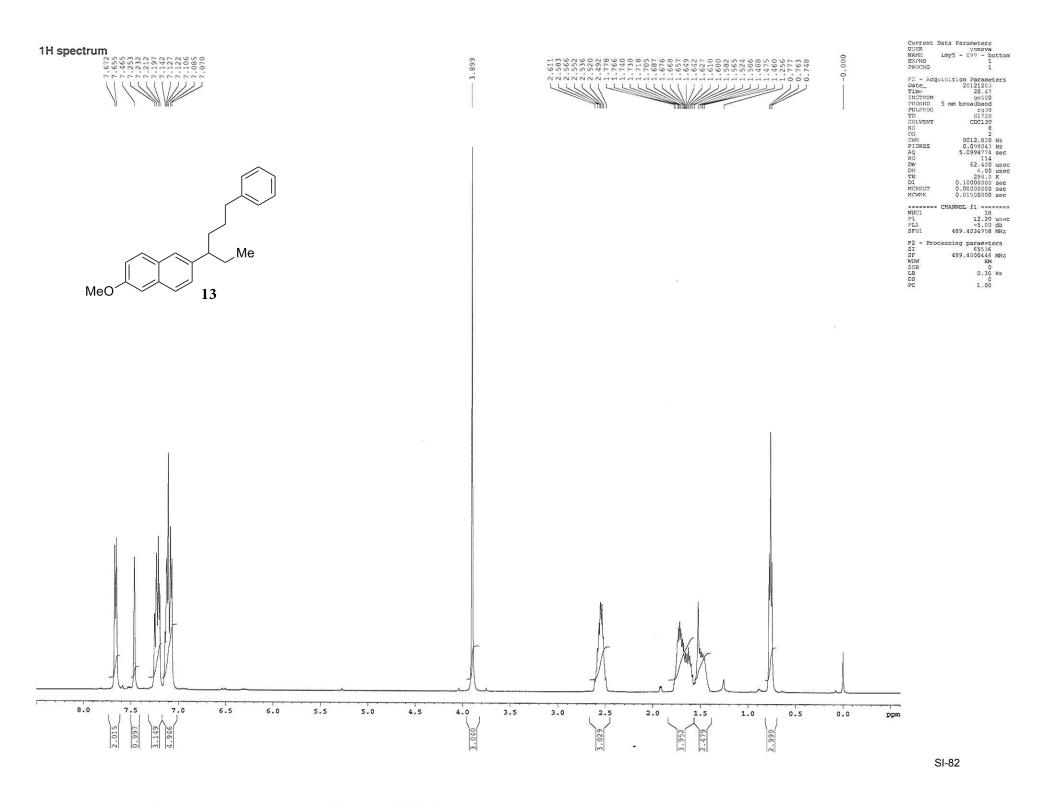


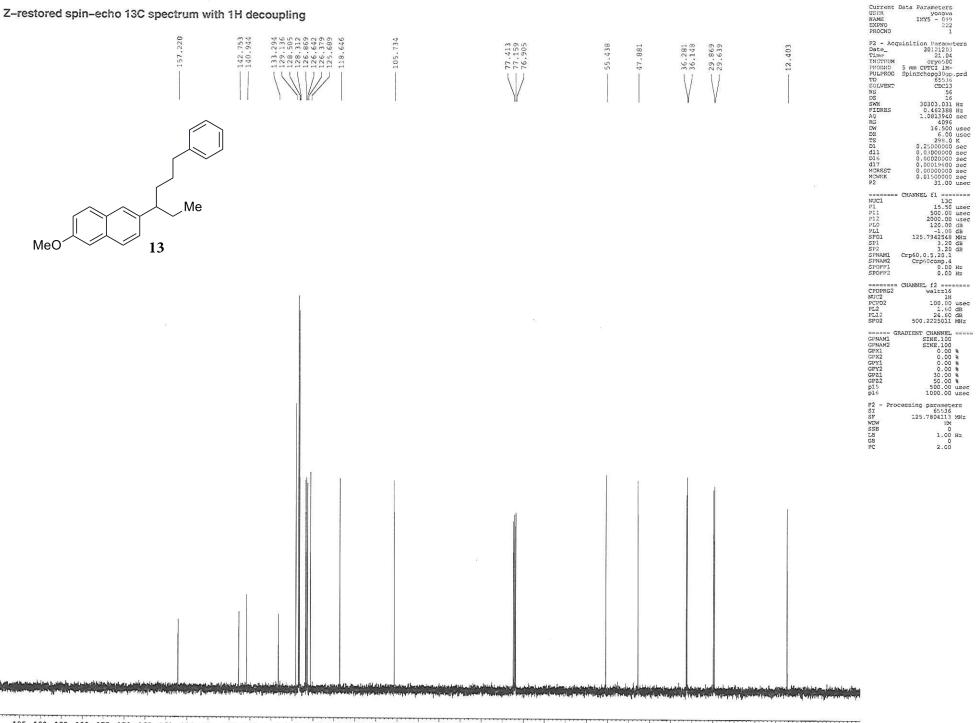


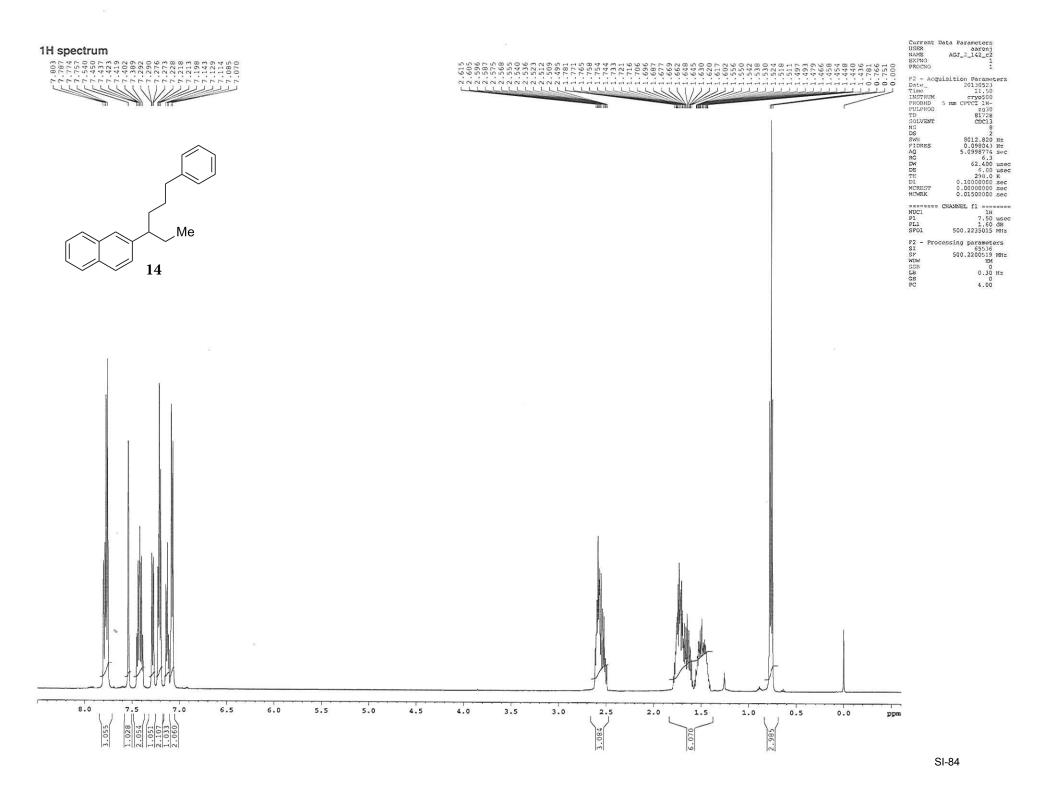


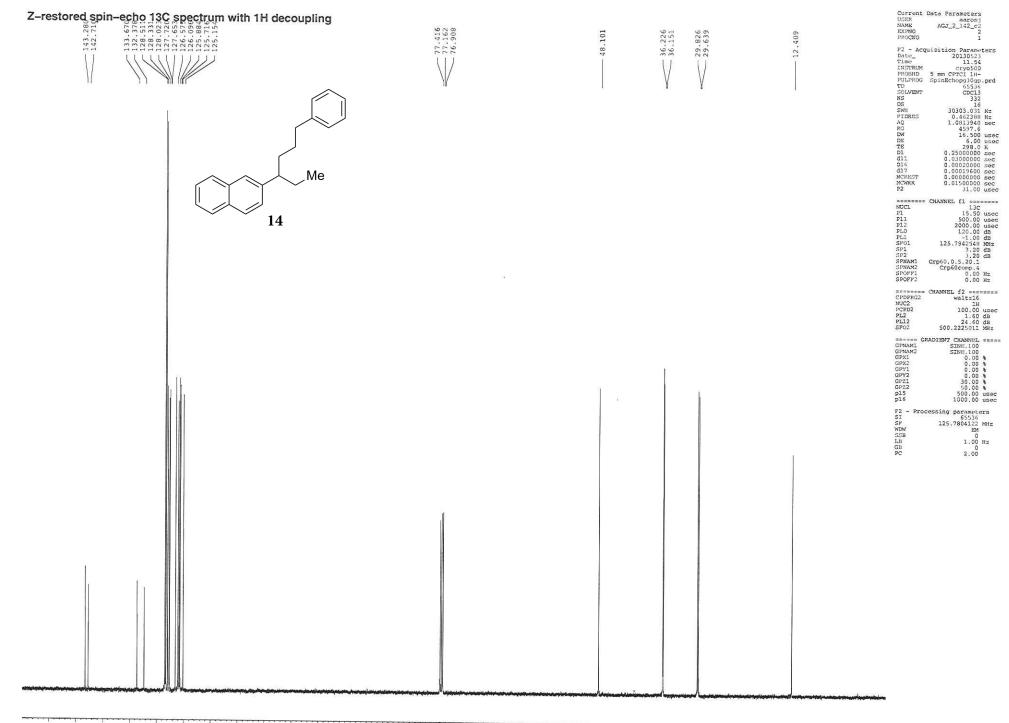


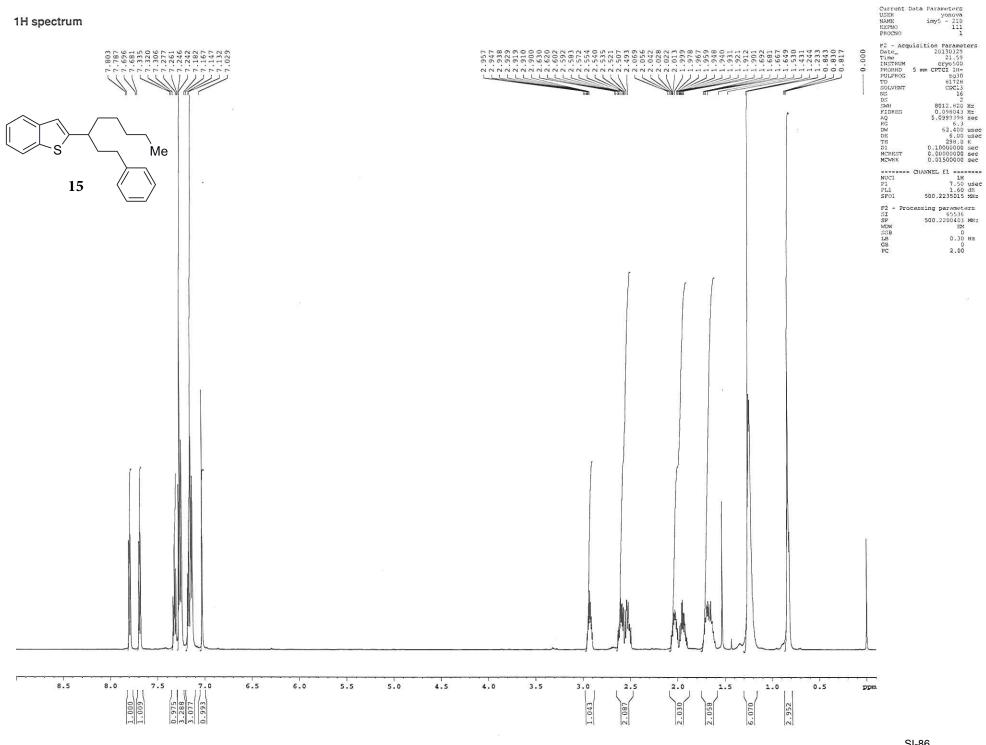


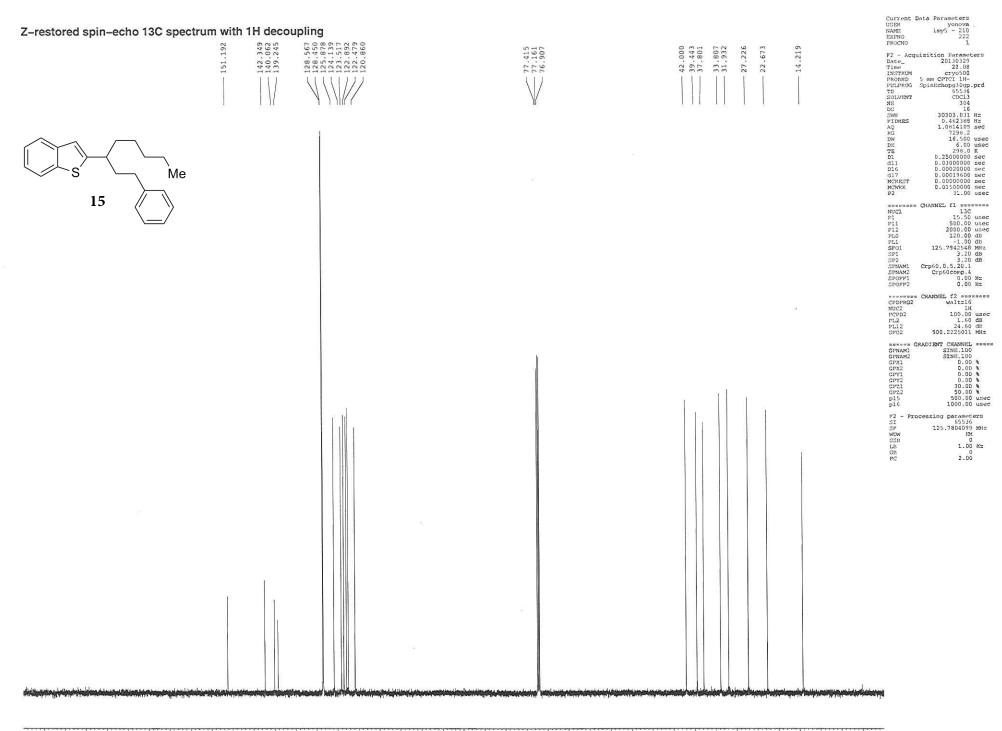


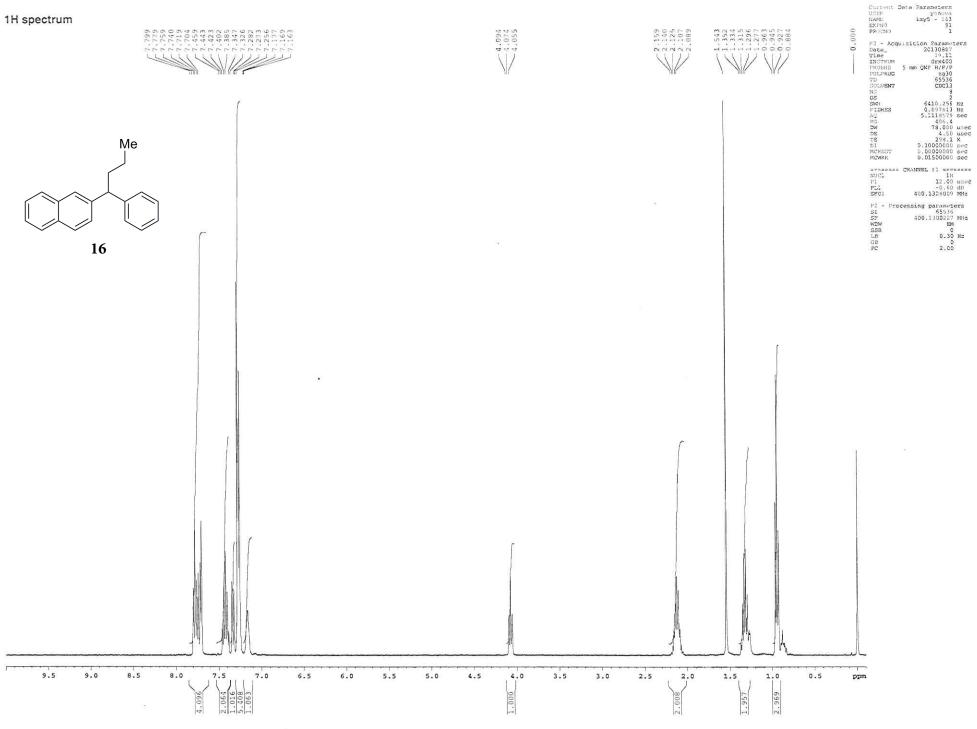


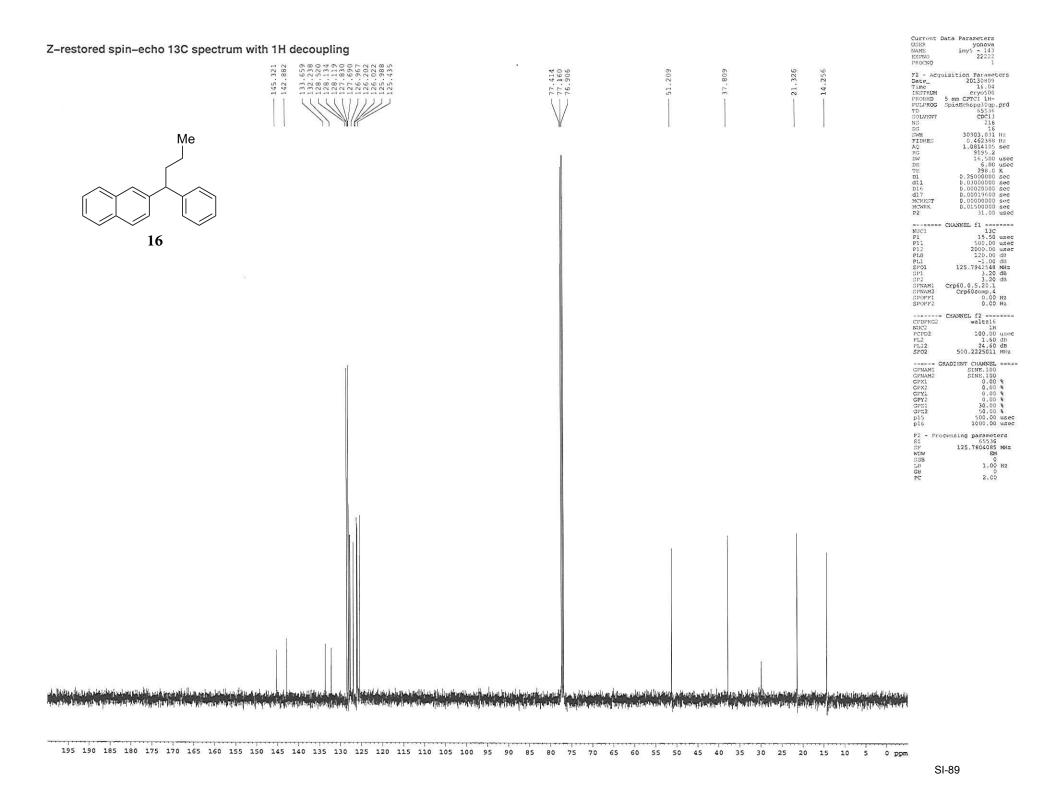

SI-79

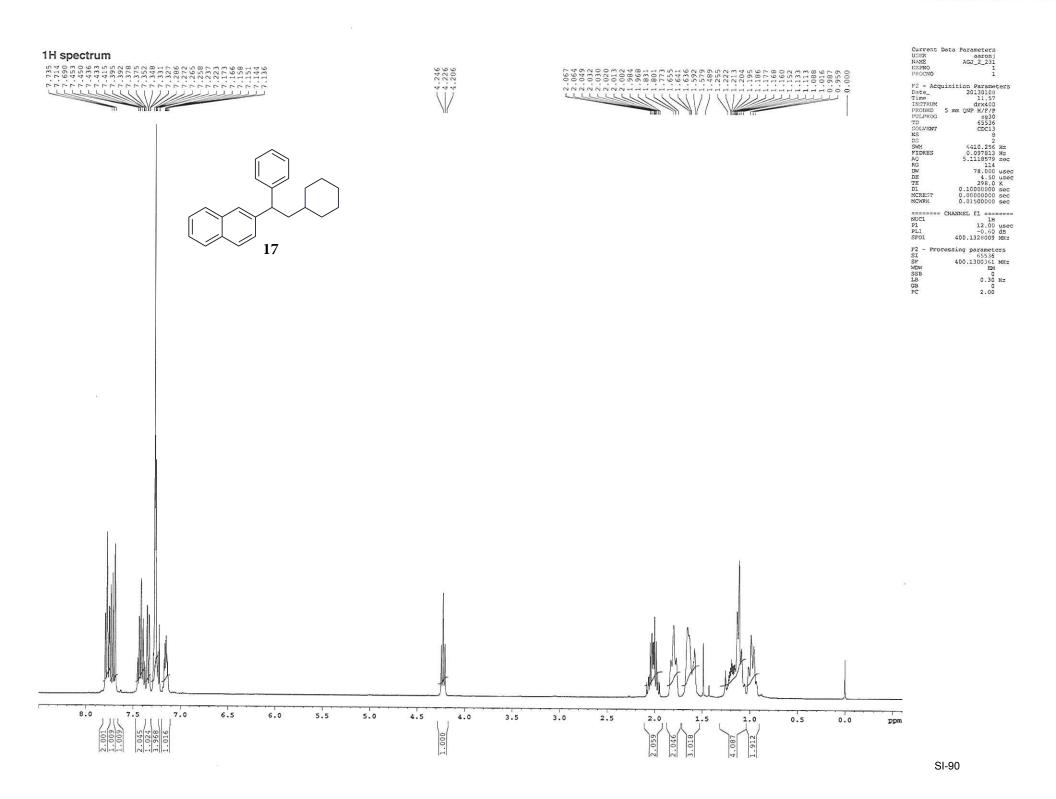


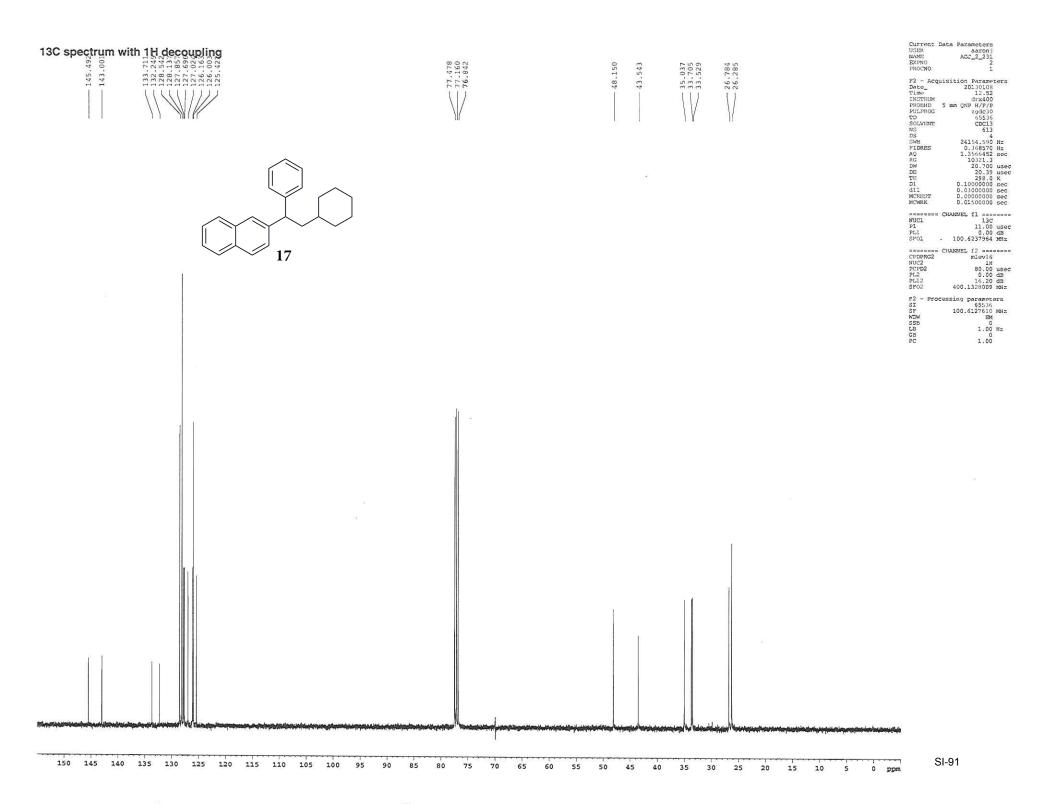


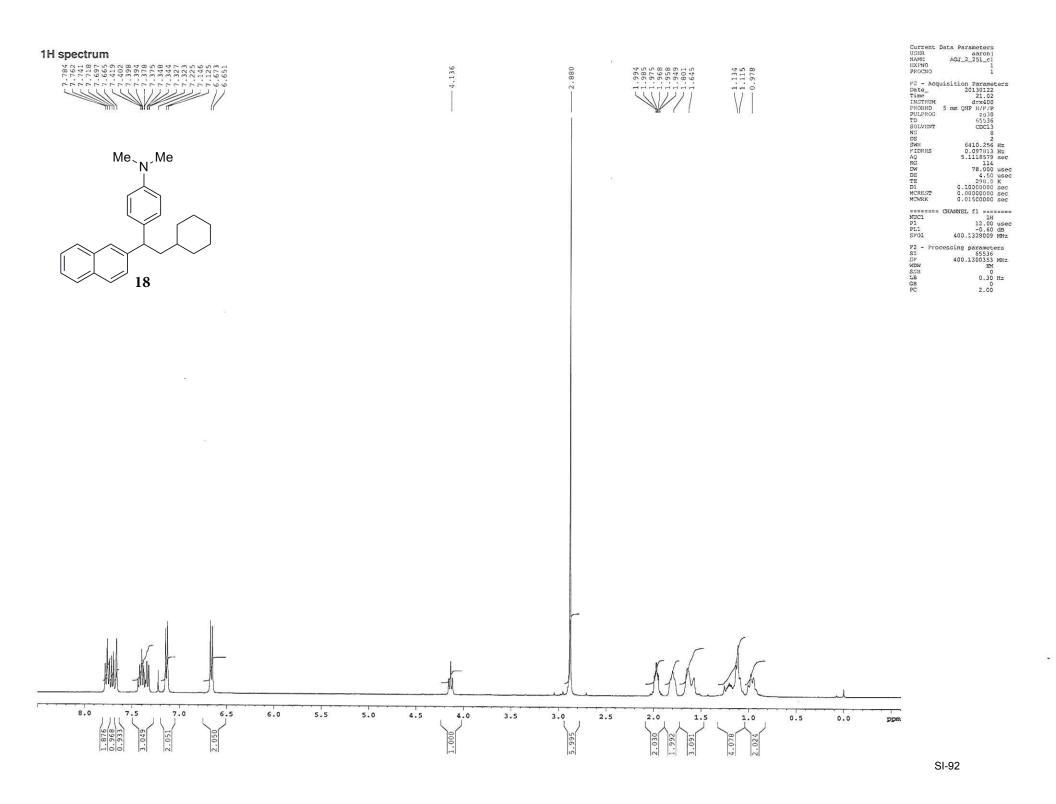


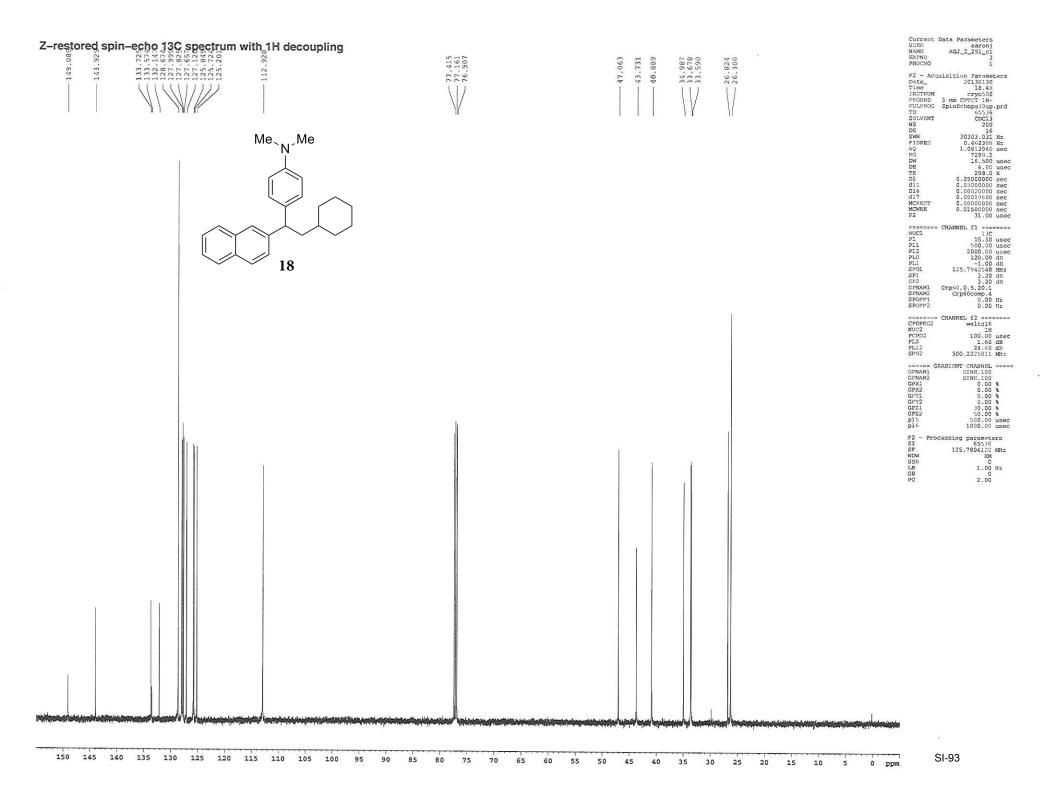


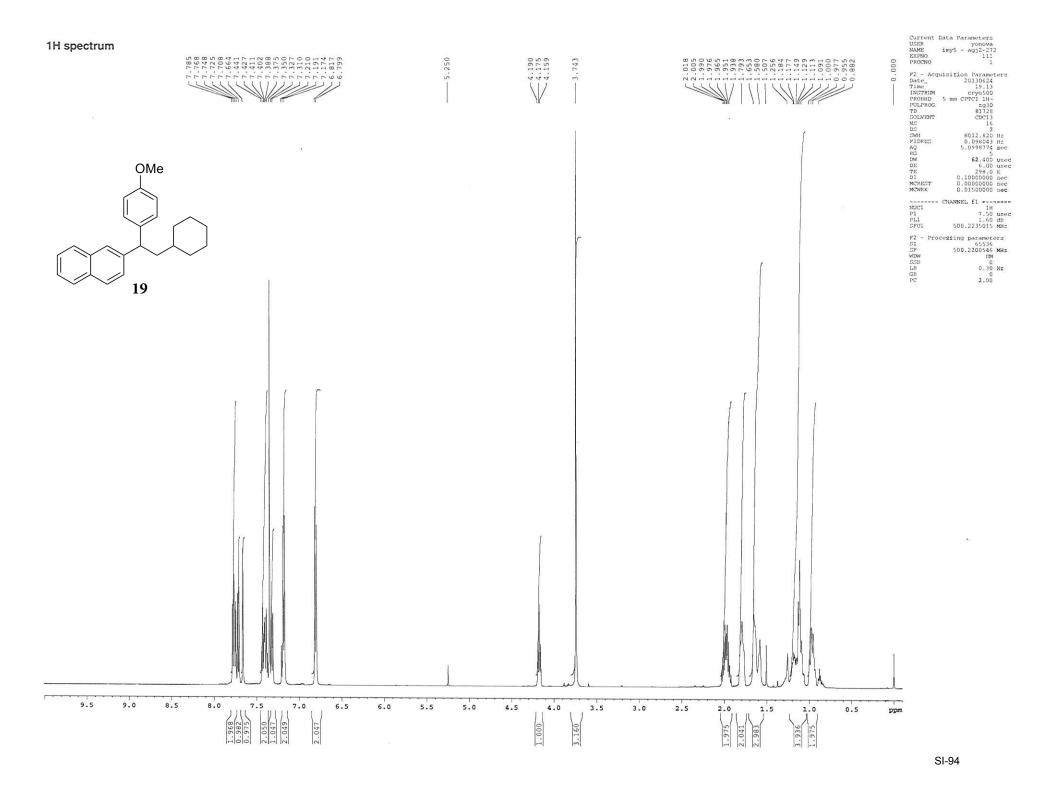


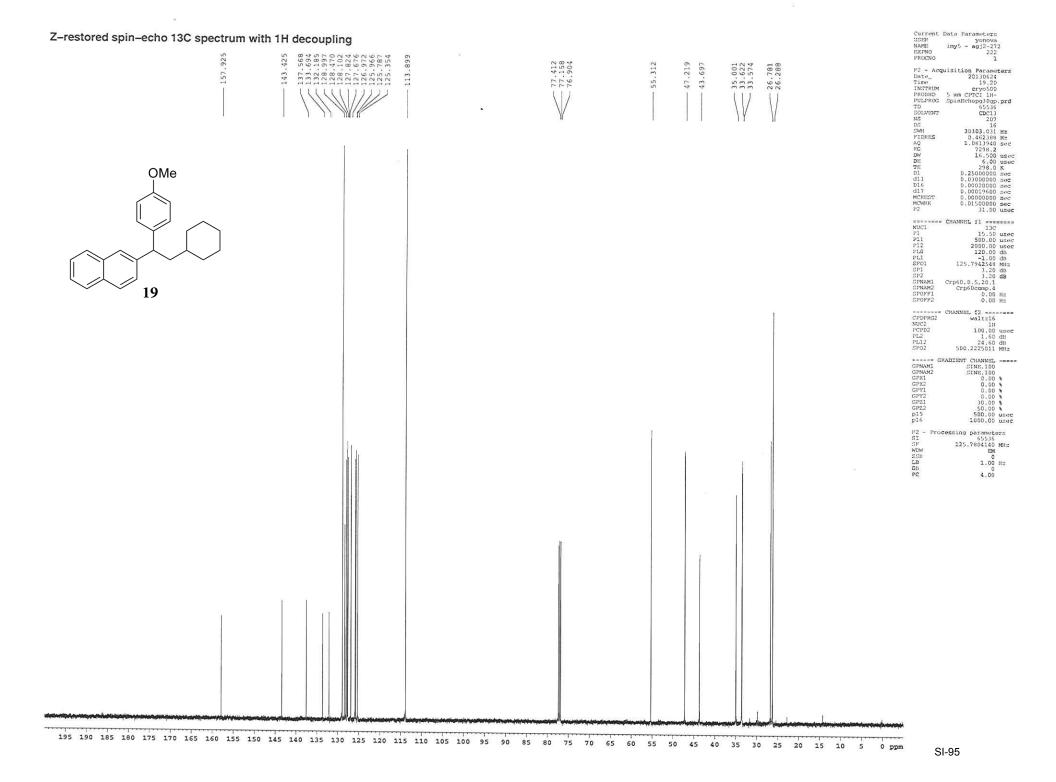


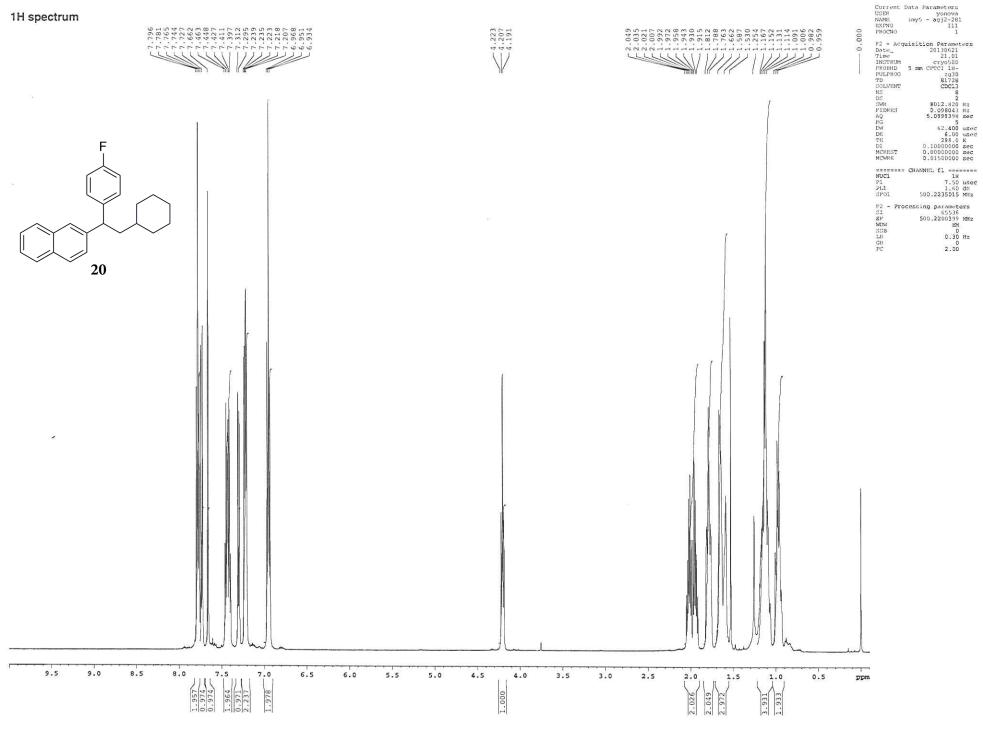


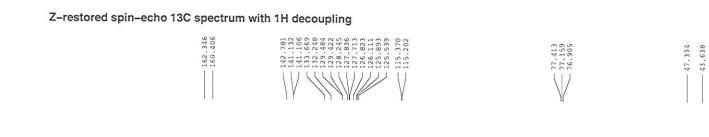




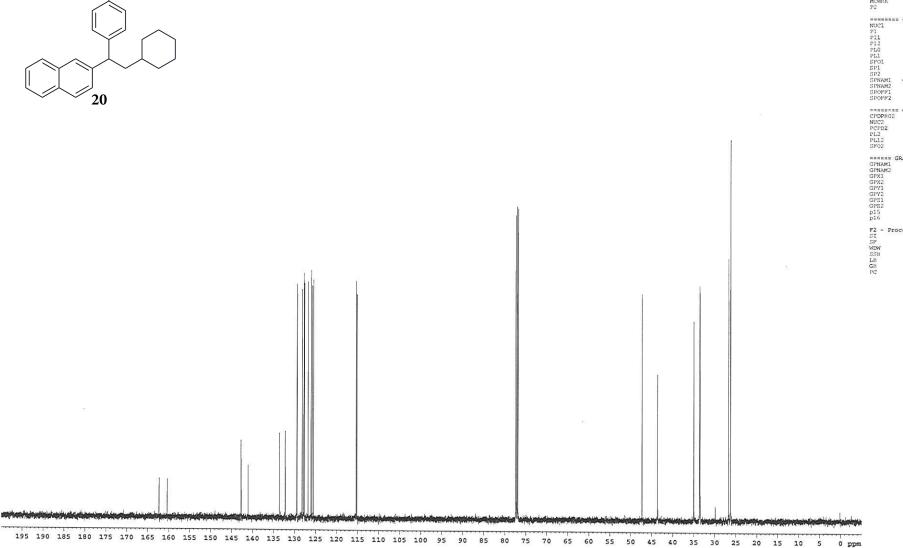


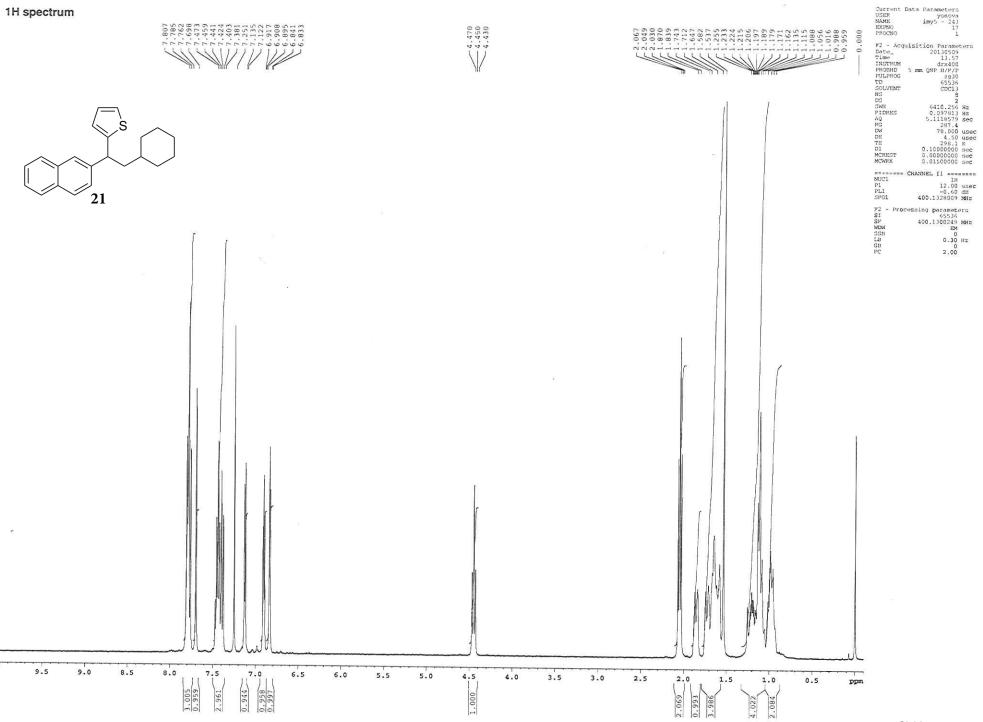




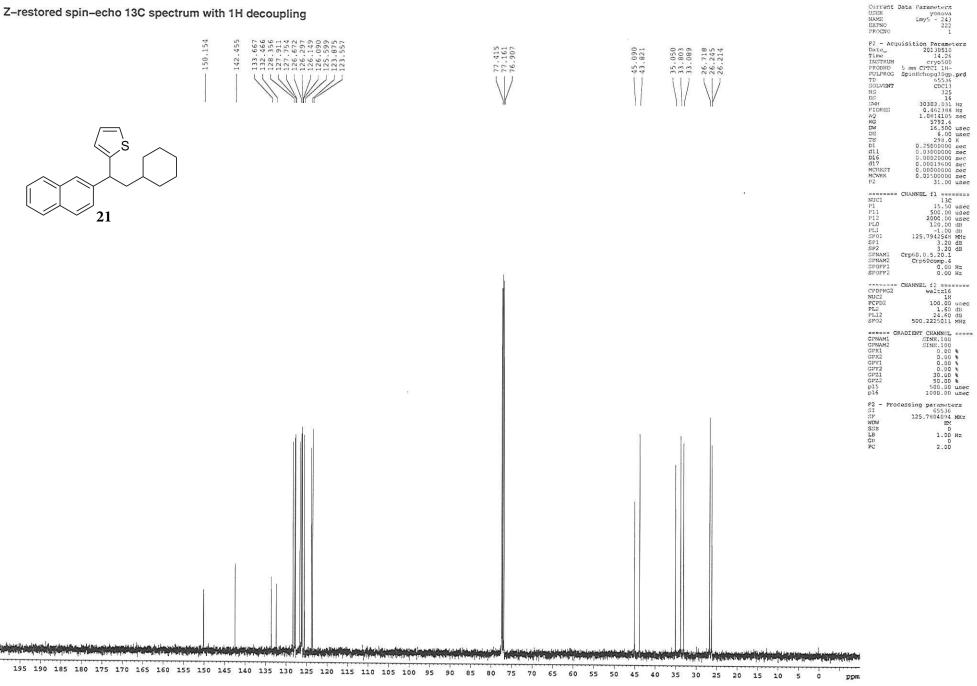


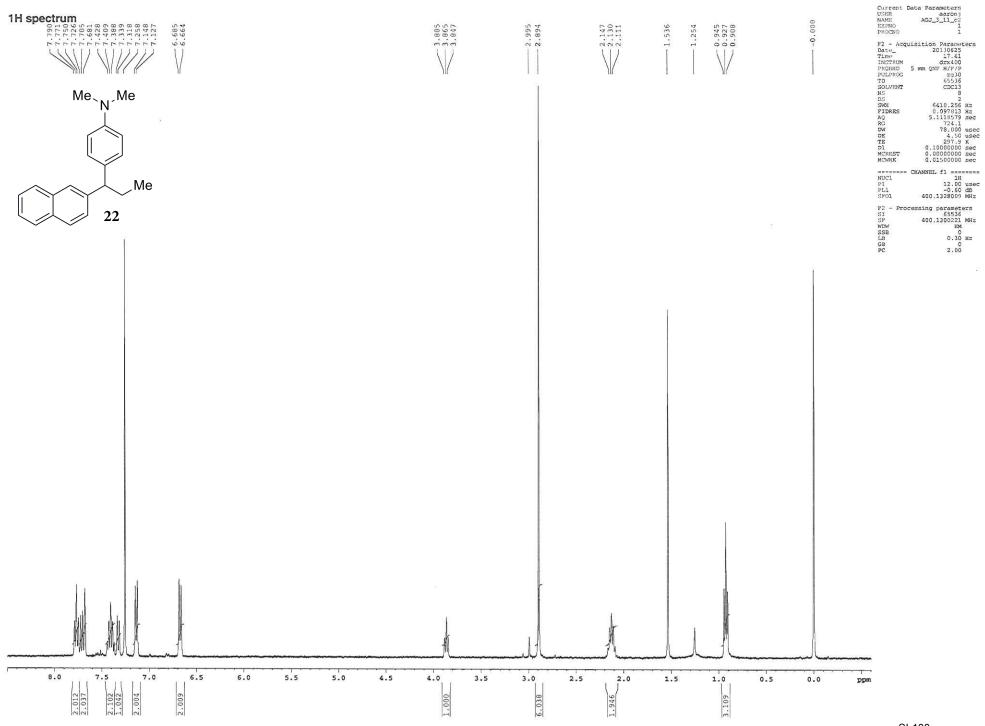
F

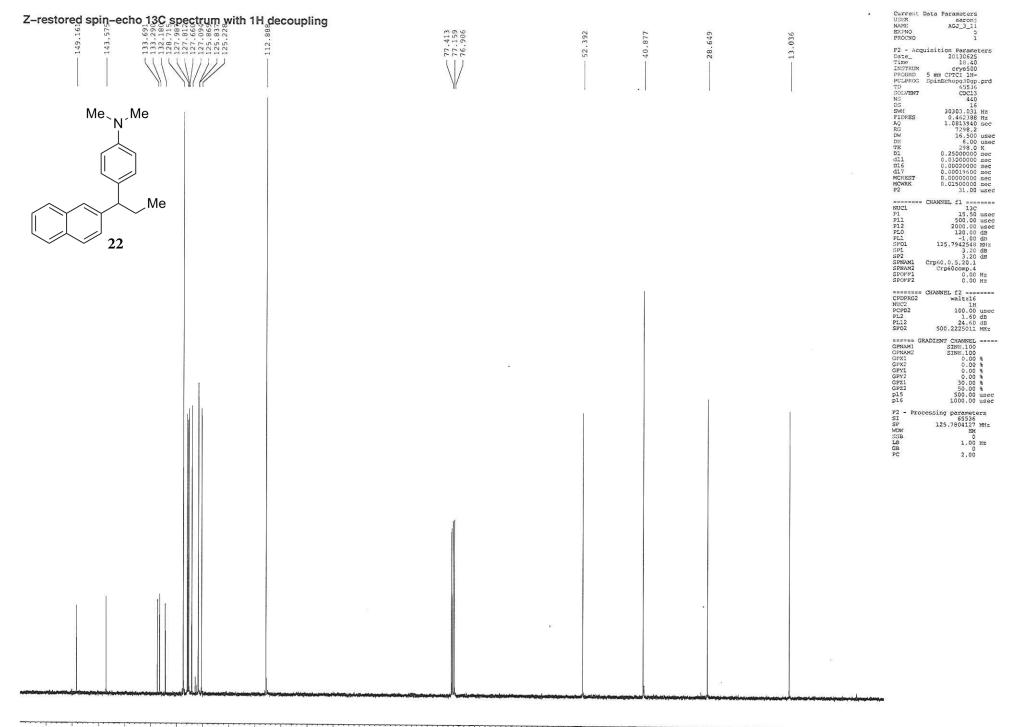


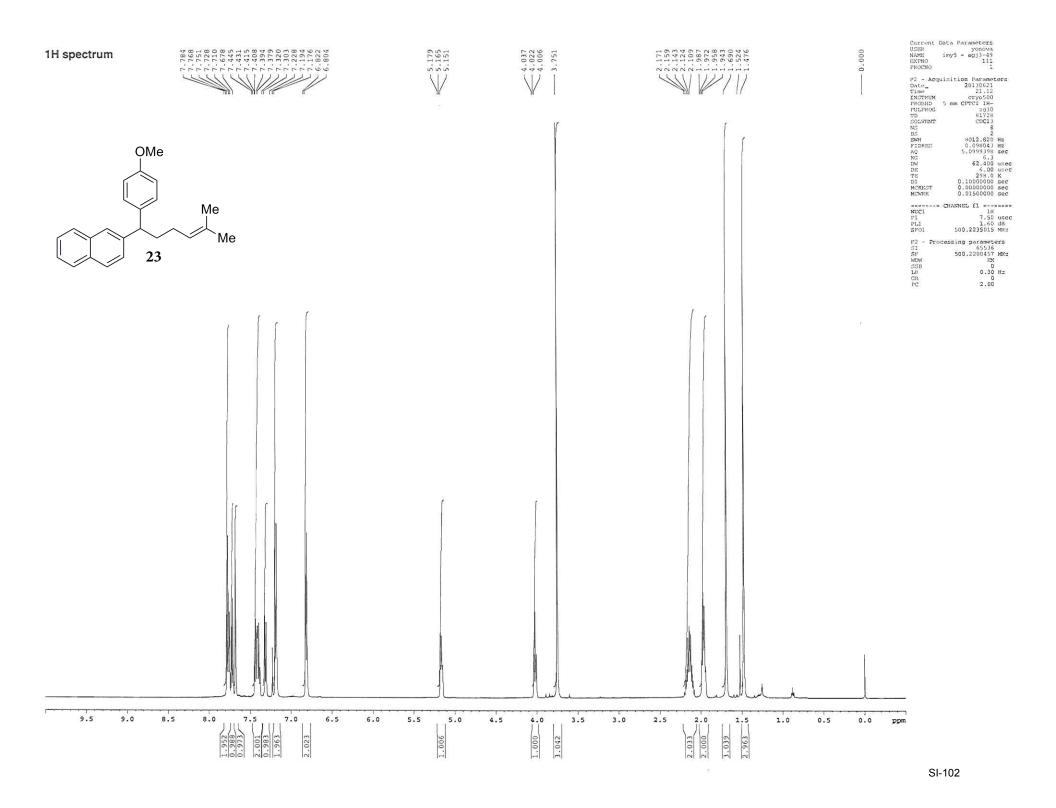

34.998 33.612 33.530

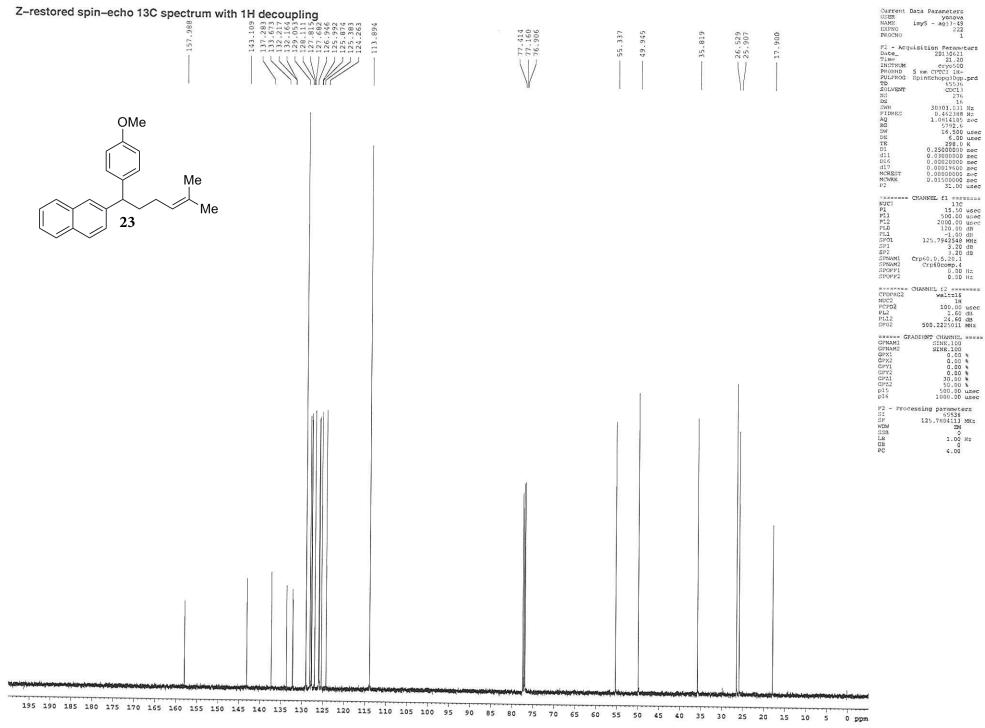
V

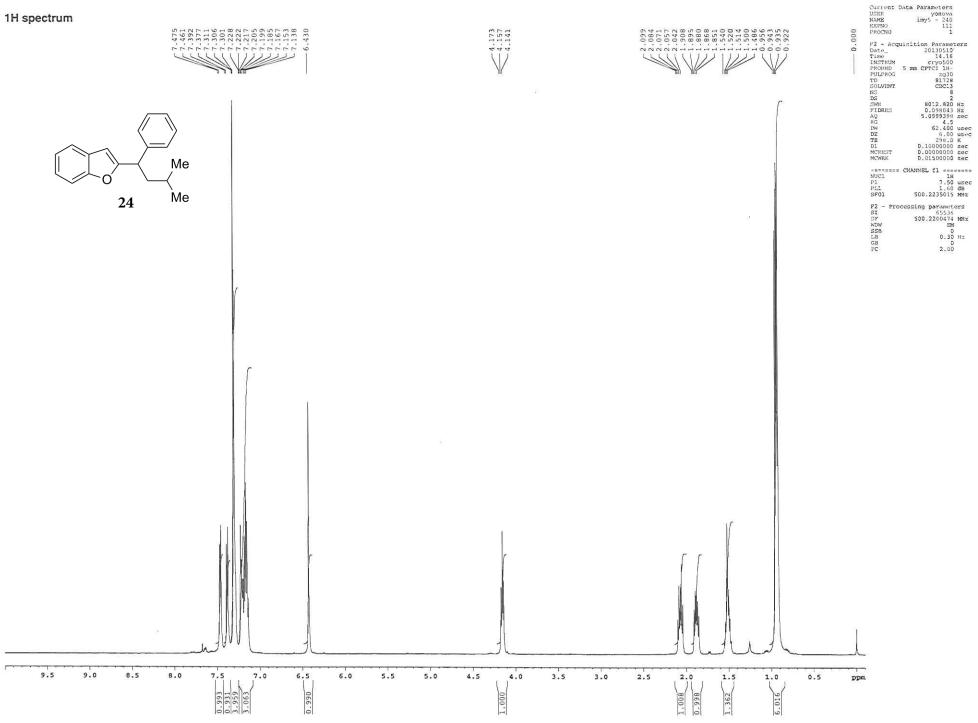

26.741 26.272

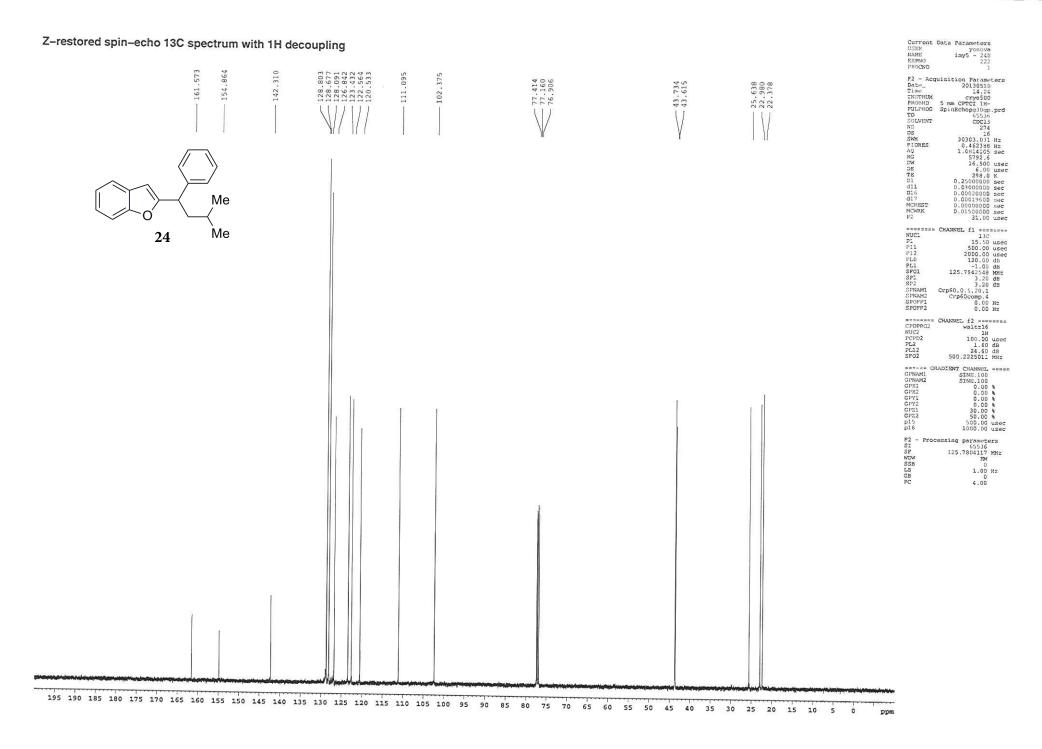

11

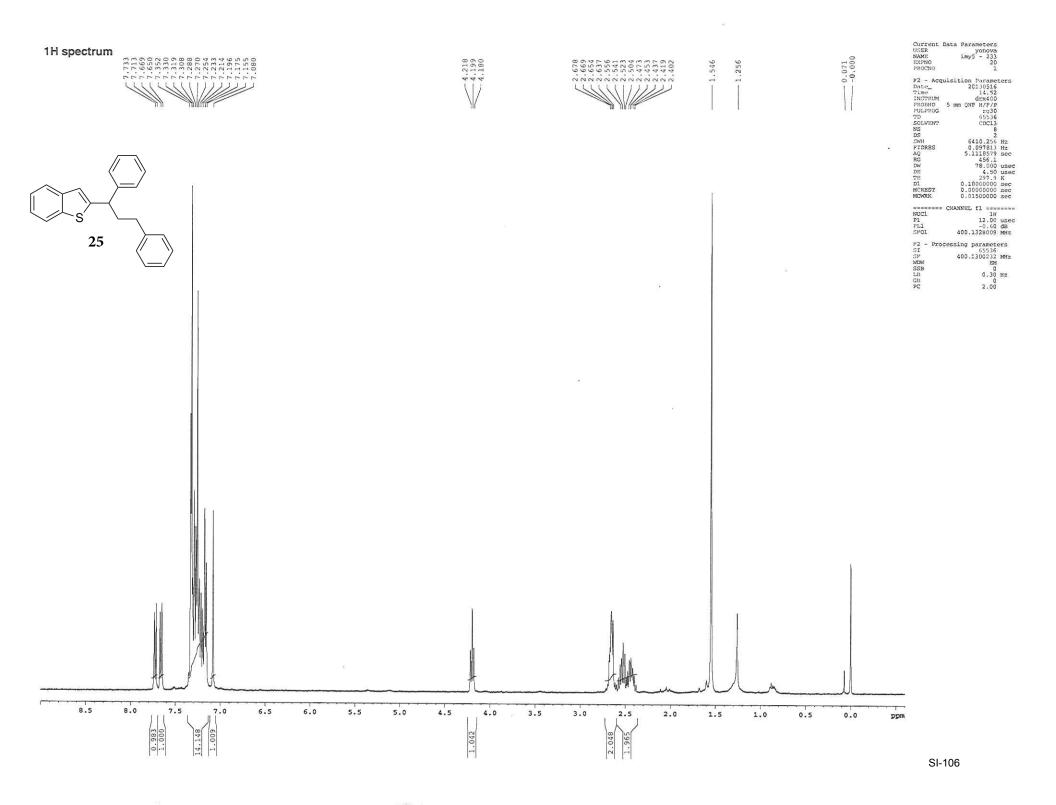




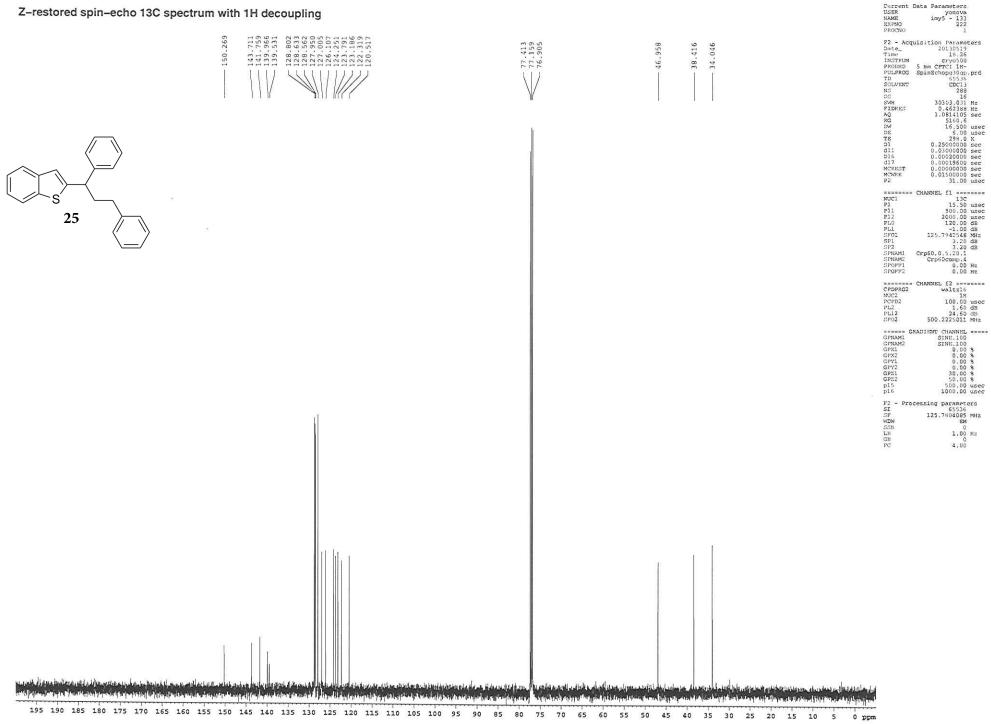

Z-restored spin-echo 13C spectrum with 1H decoupling

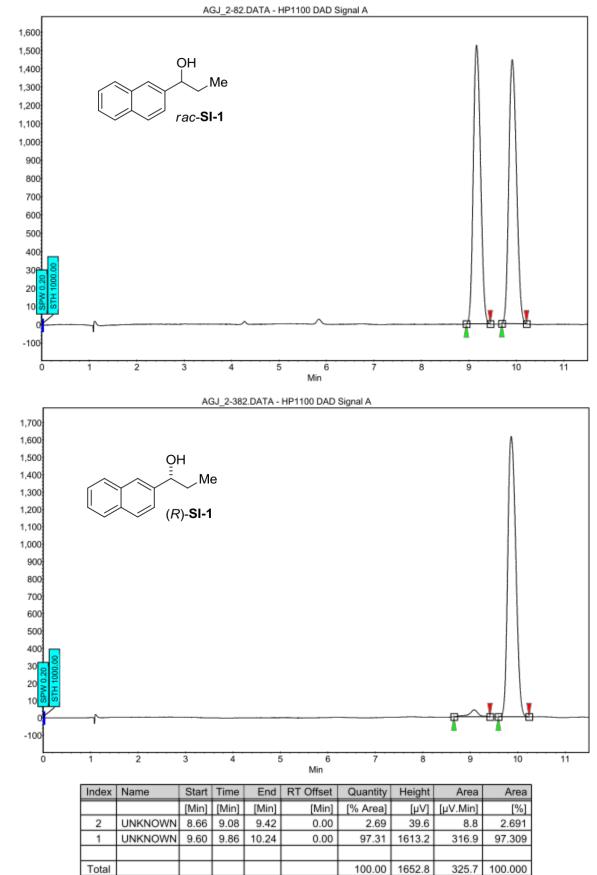




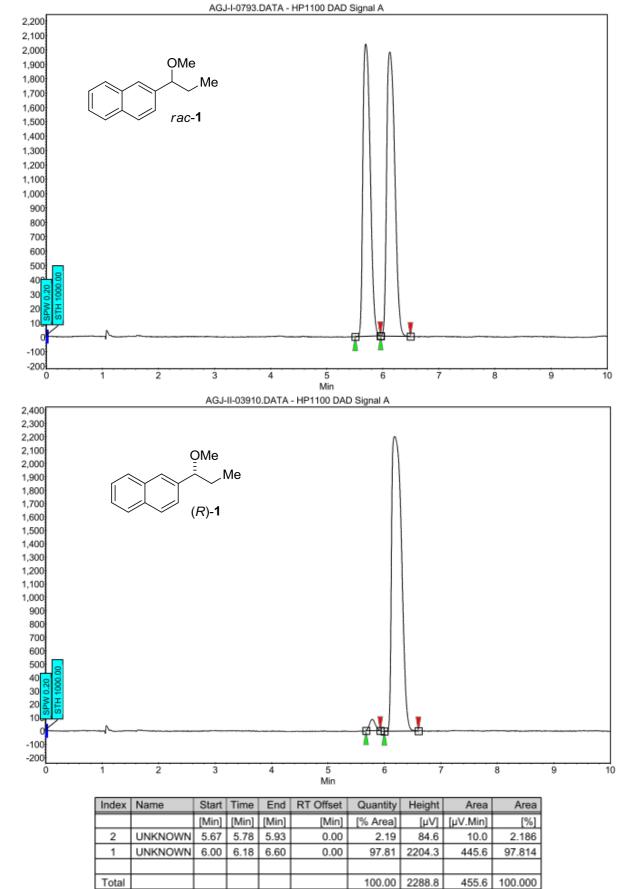


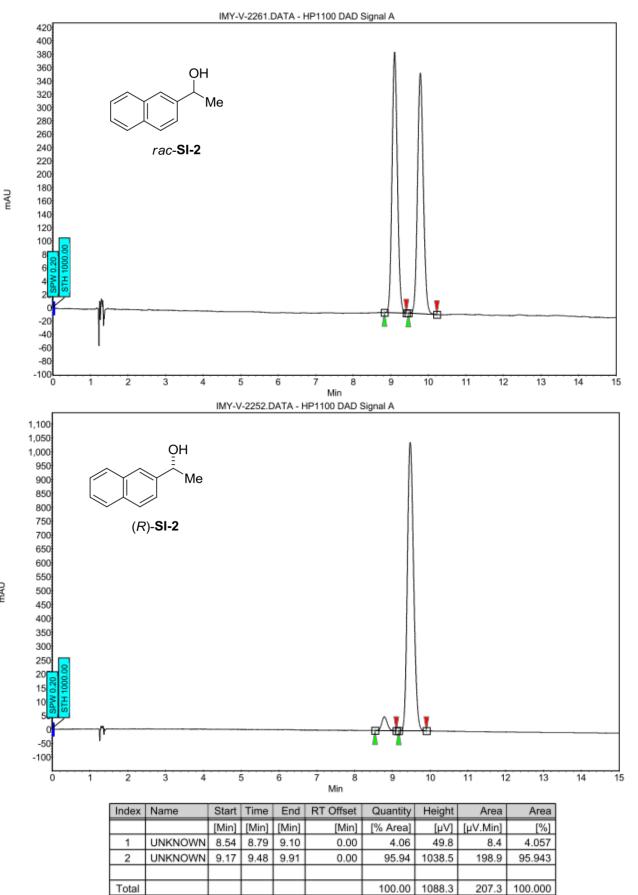
SI-103

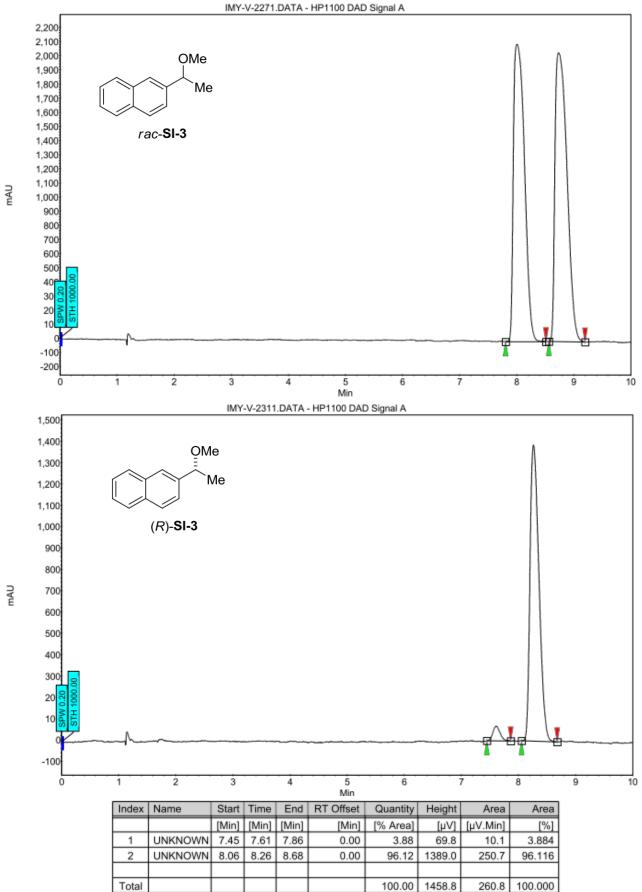


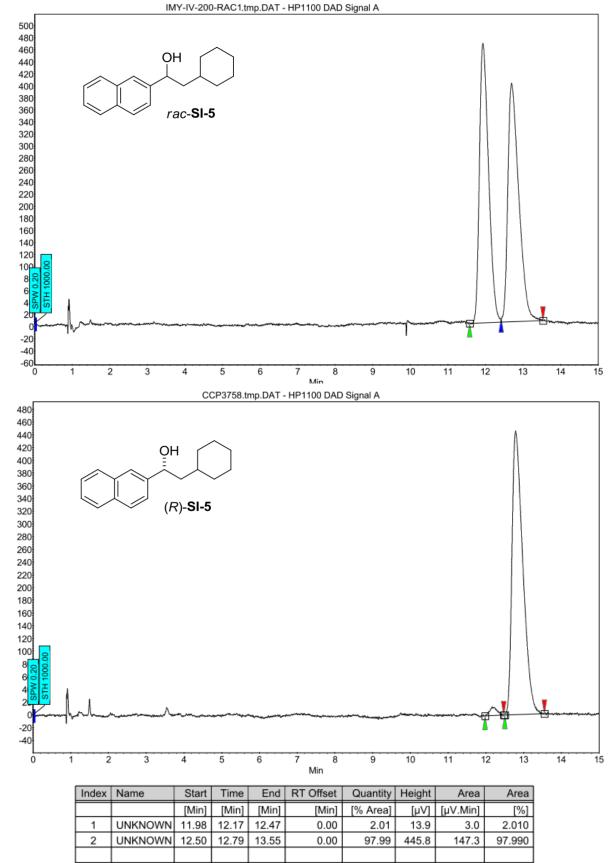


Z-restored spin-echo 13C spectrum with 1H decoupling



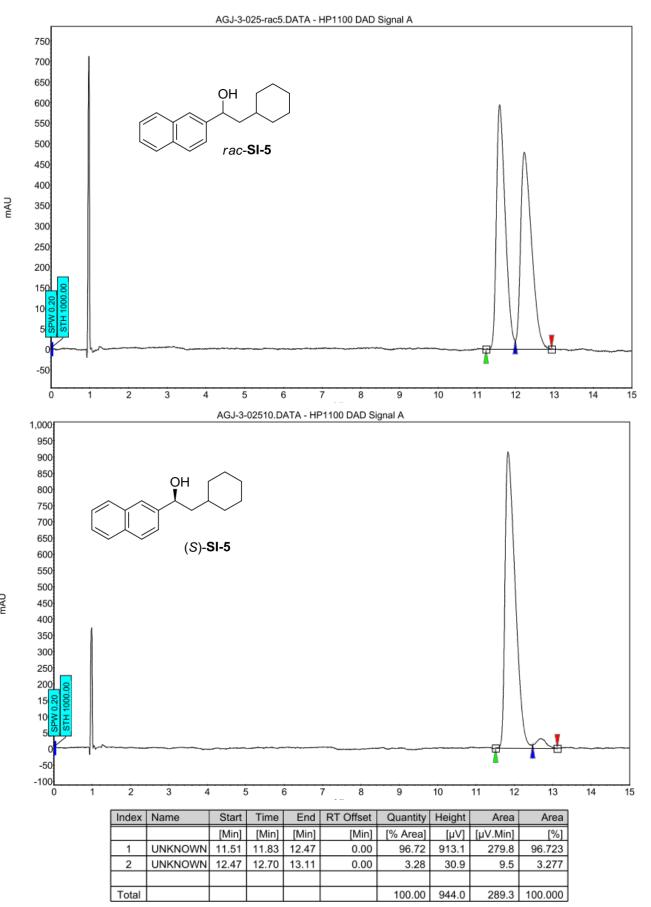

SI-107



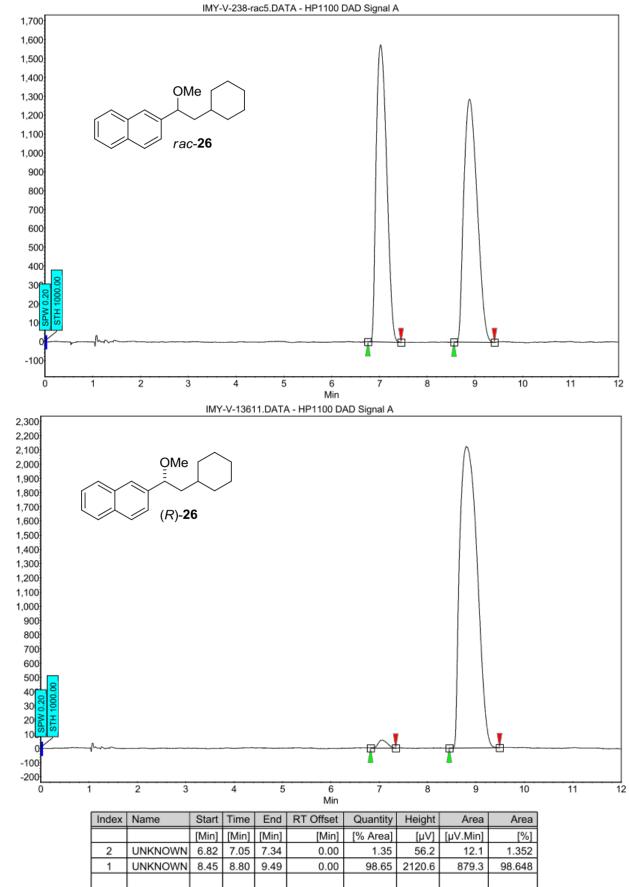

mAU

mAU

100.00


459.7

150.3

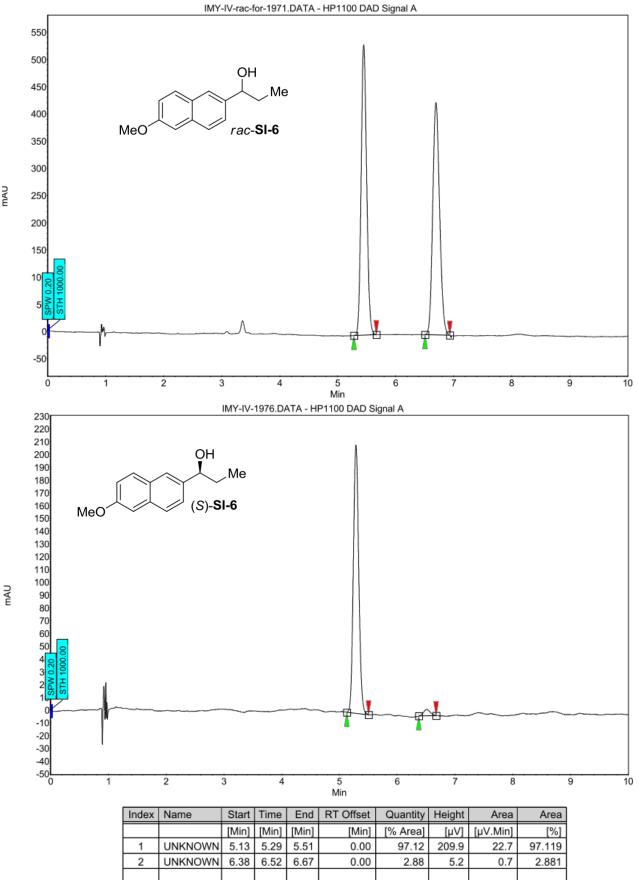

100.000

mAU

mAU

100.00

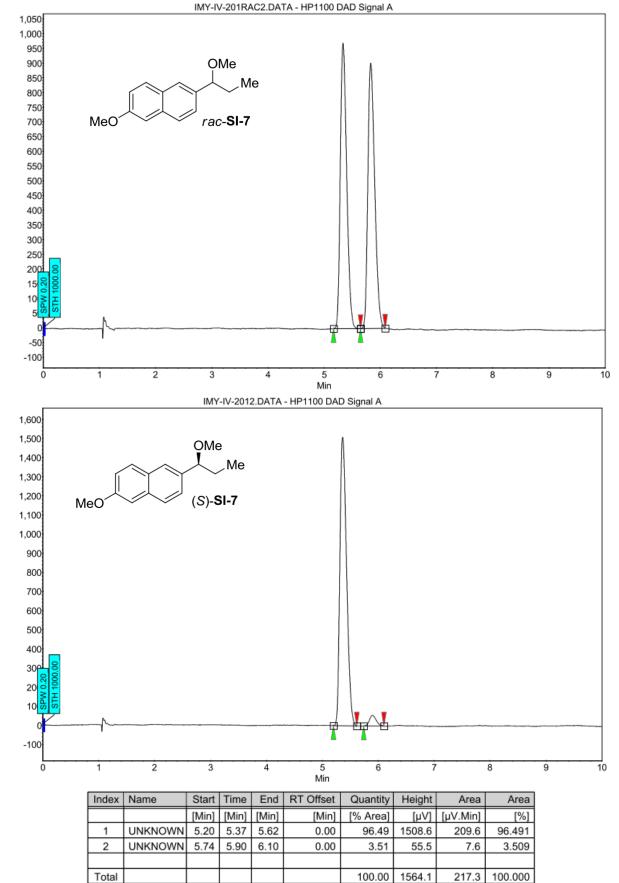
2176.8

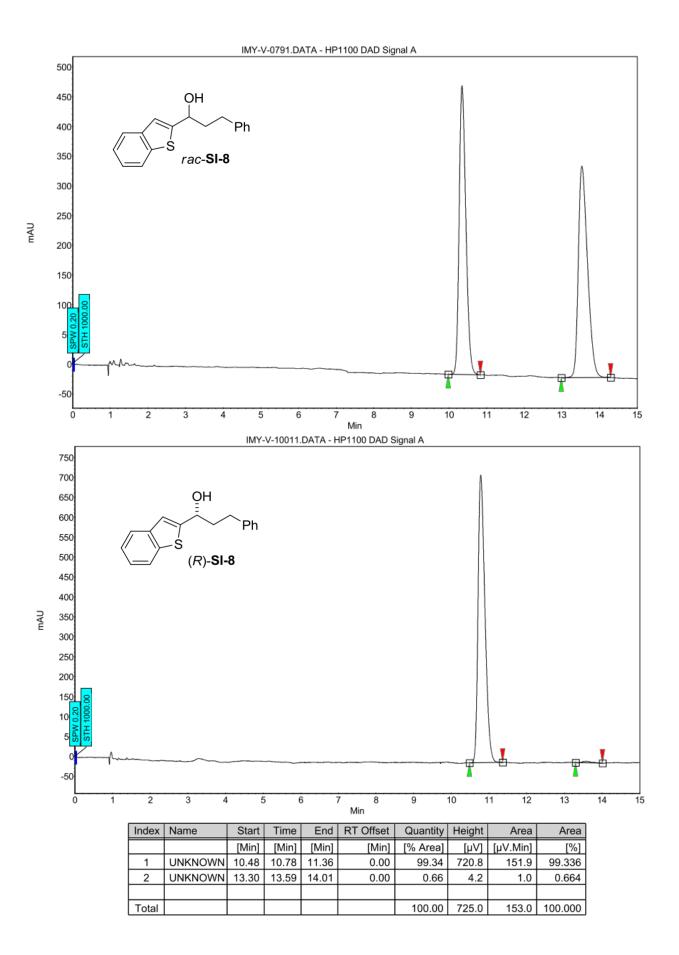

891.4

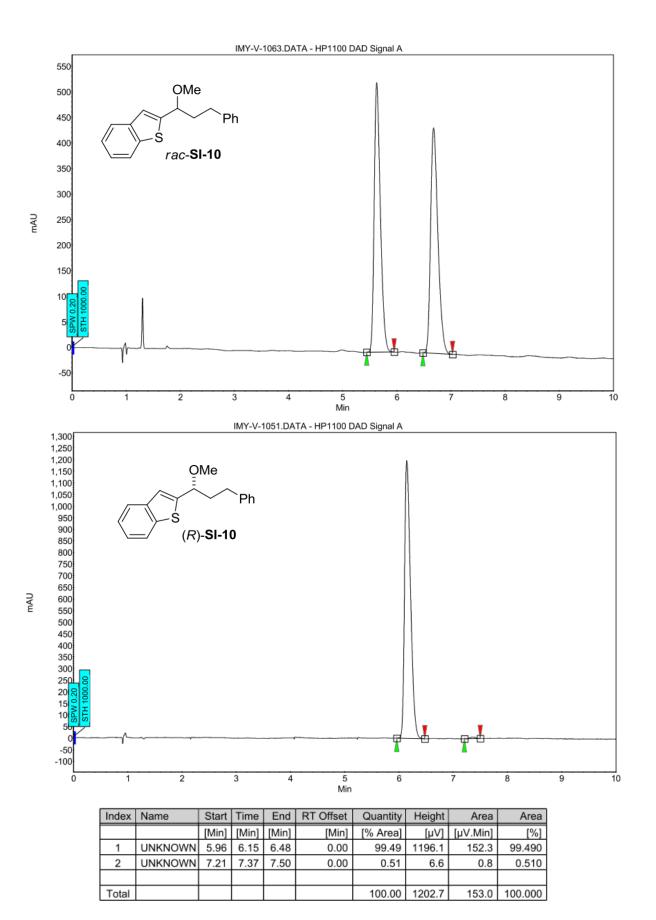
100.000

mAU

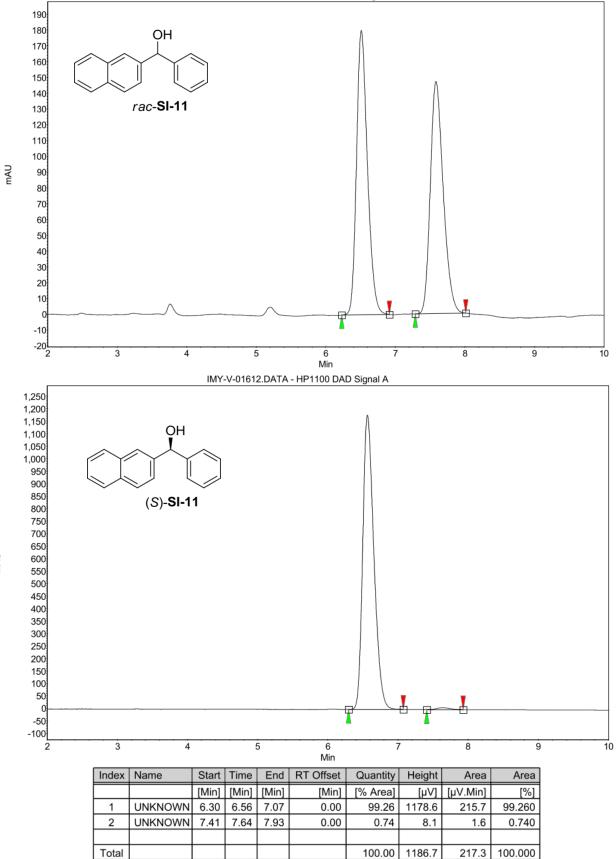
mAU

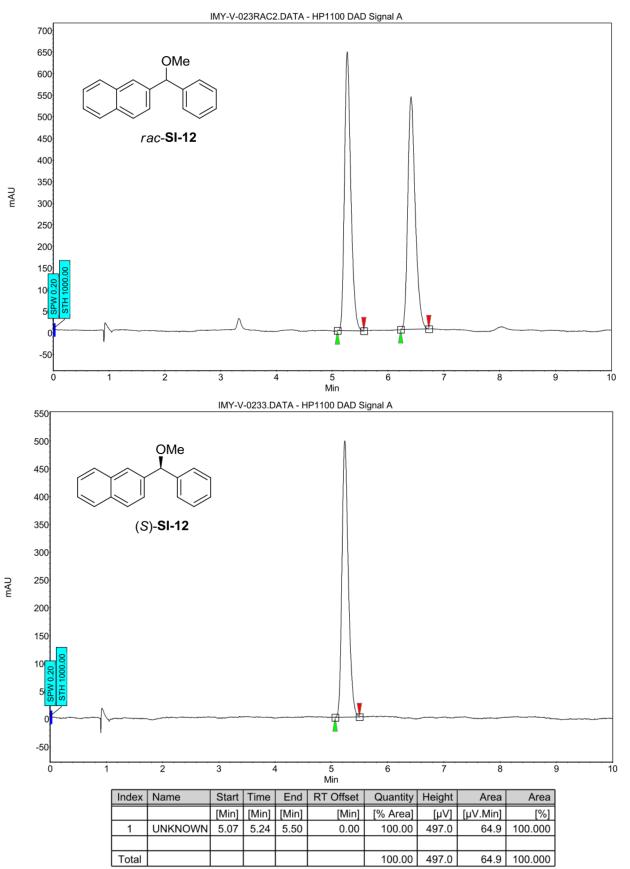


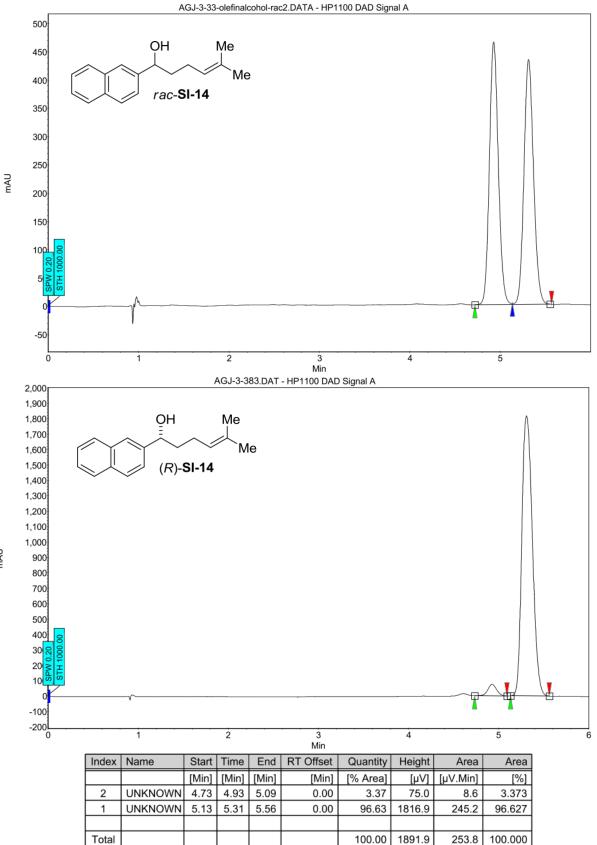

100.00

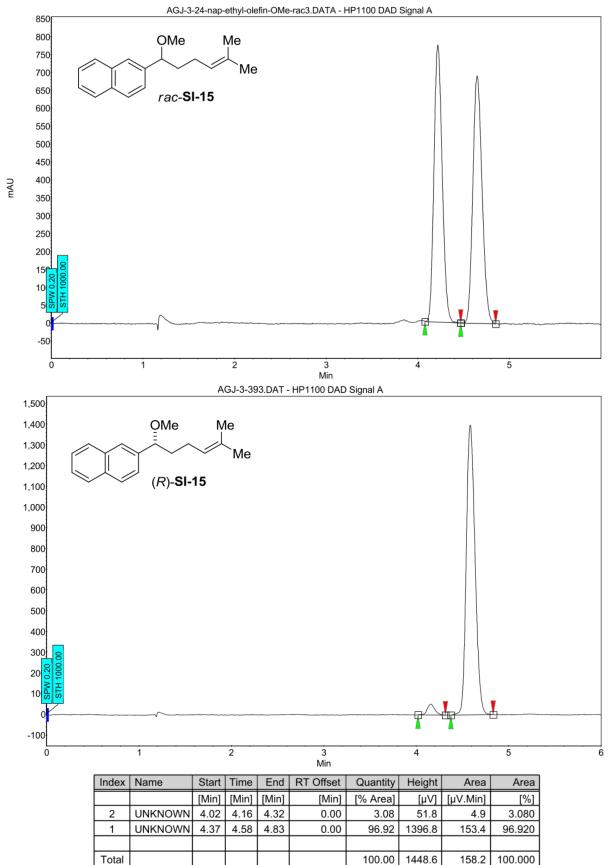

215.0

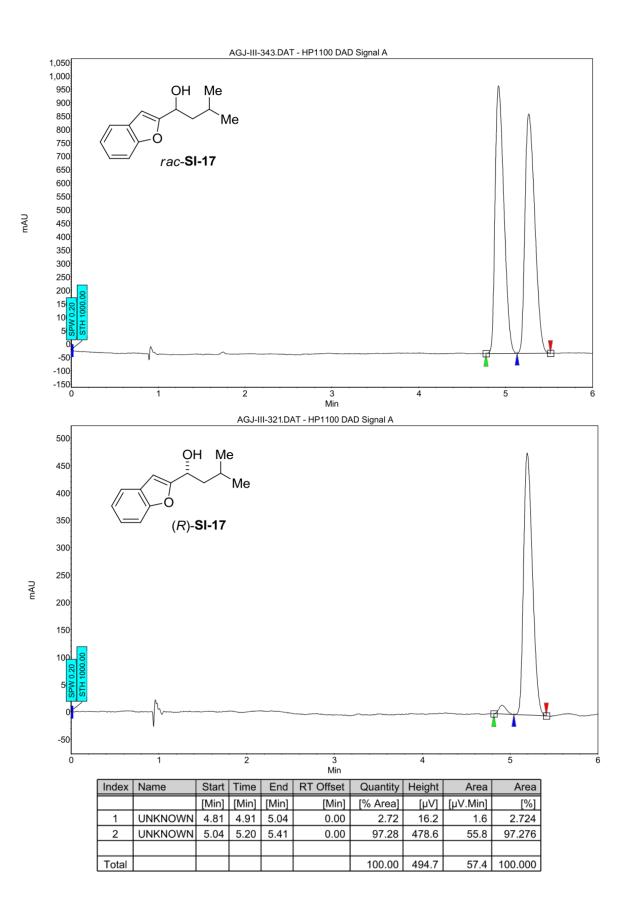
23.4

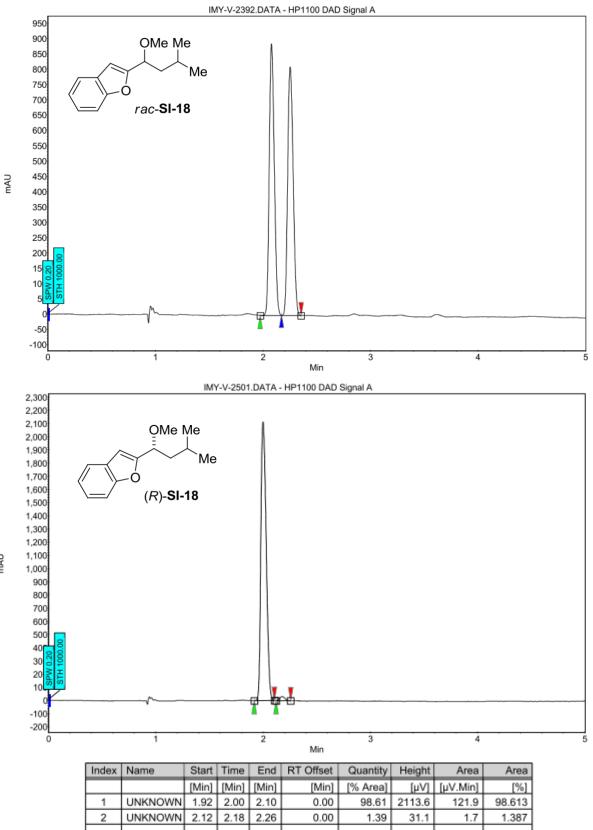

100.000

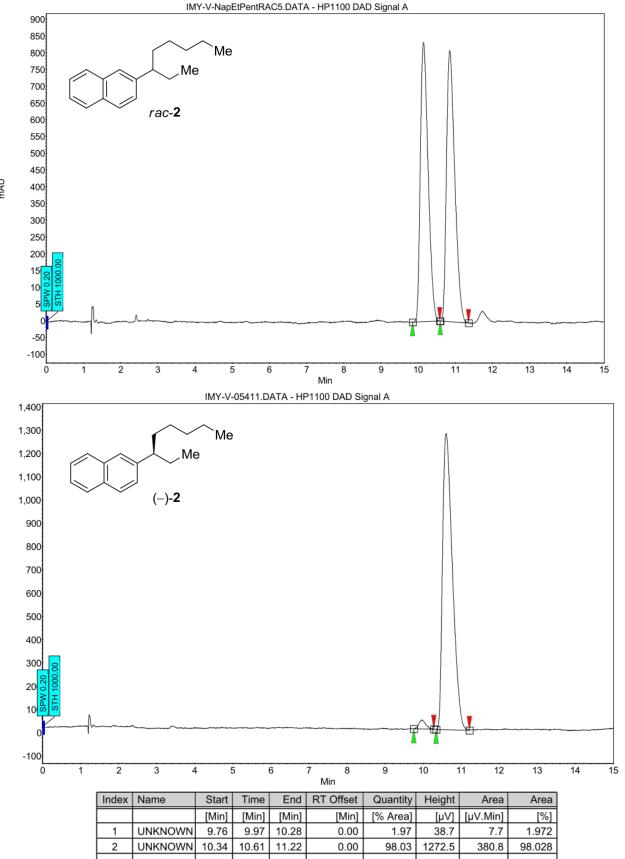






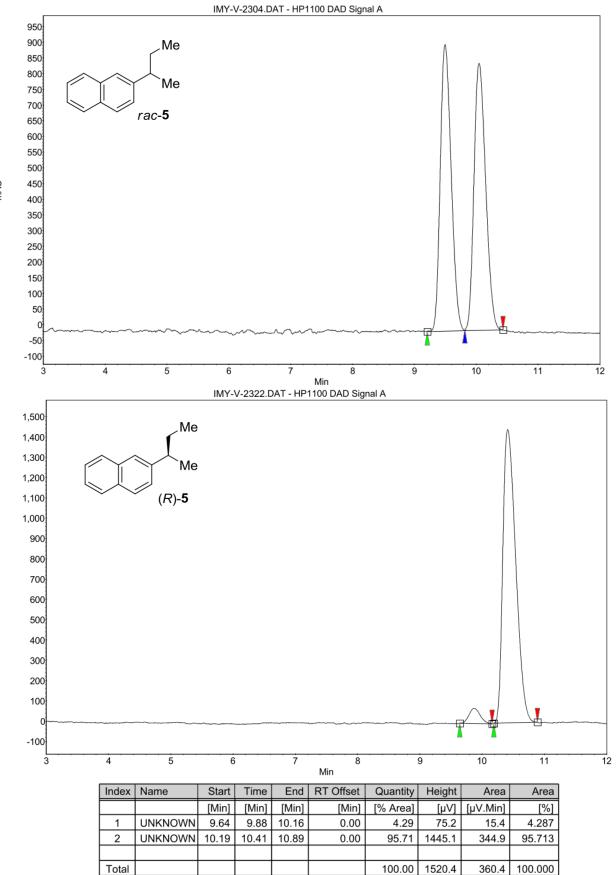




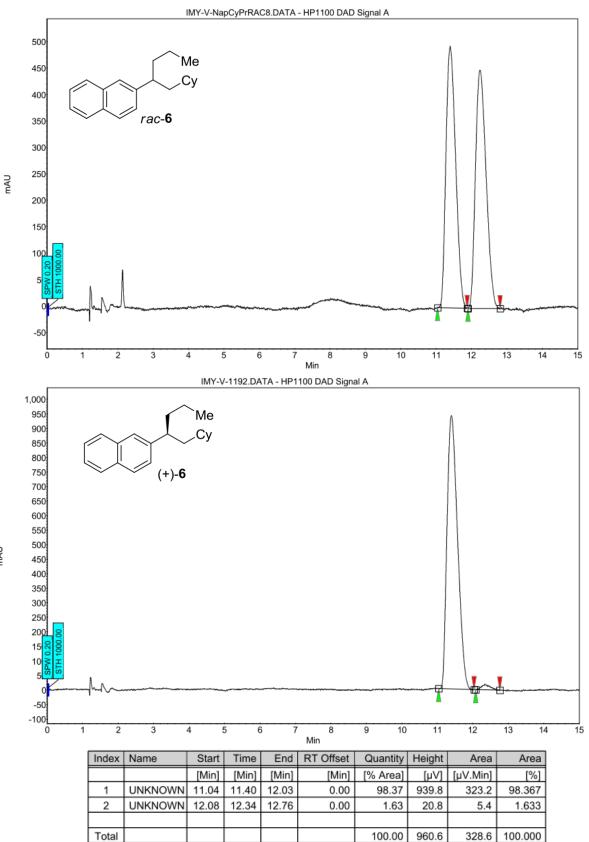


100.00 2144.6

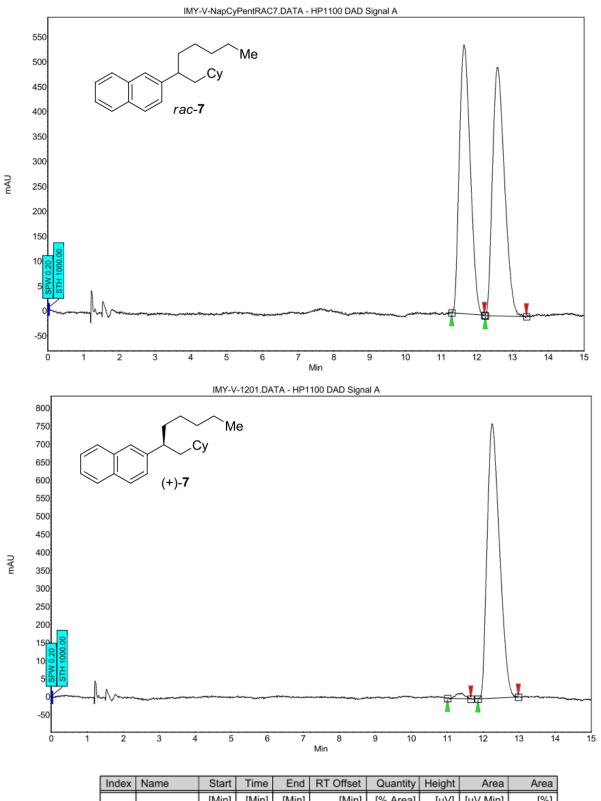
123.6 100.000

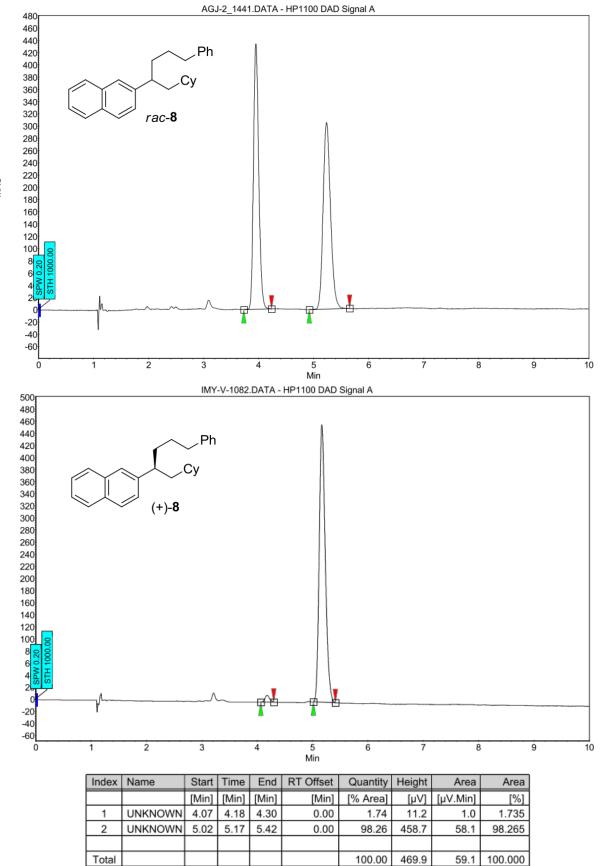


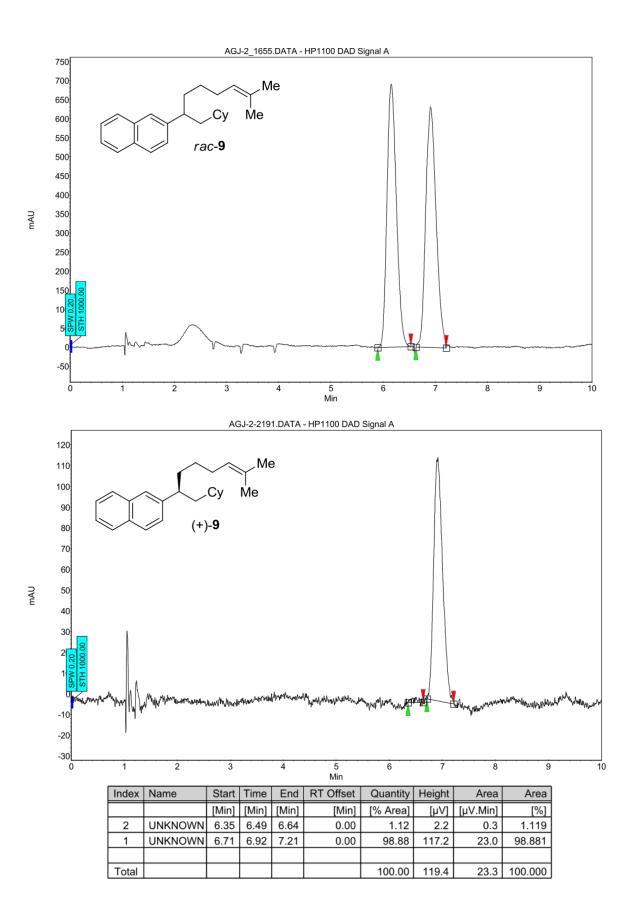
100.00

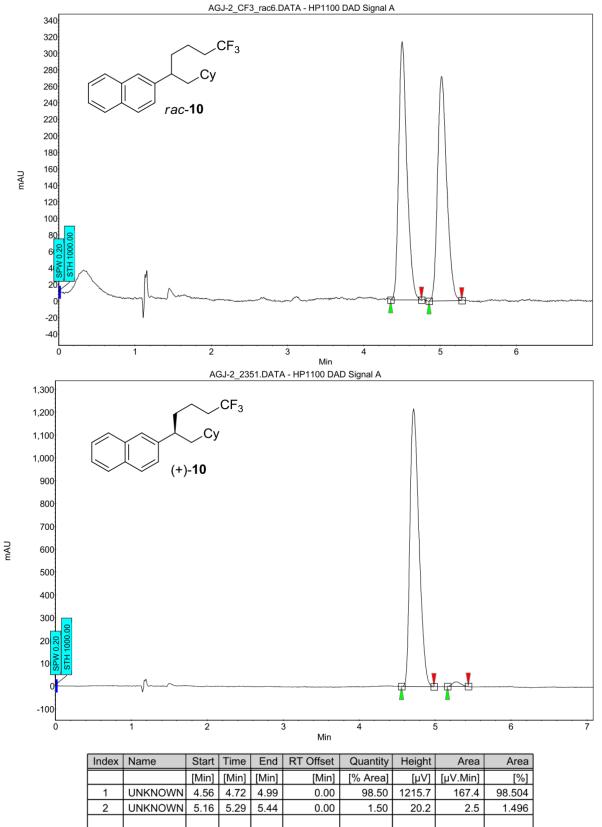

1311.2

388.5 100.000

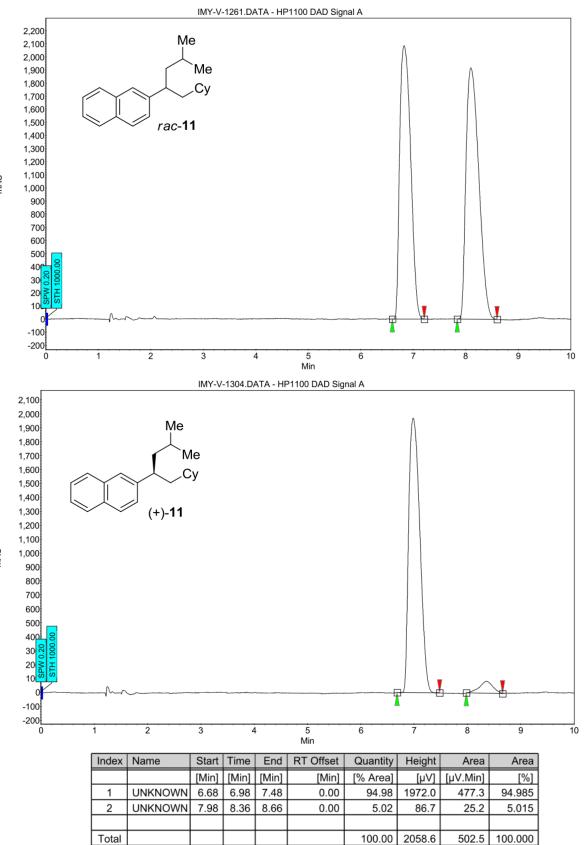

mAU

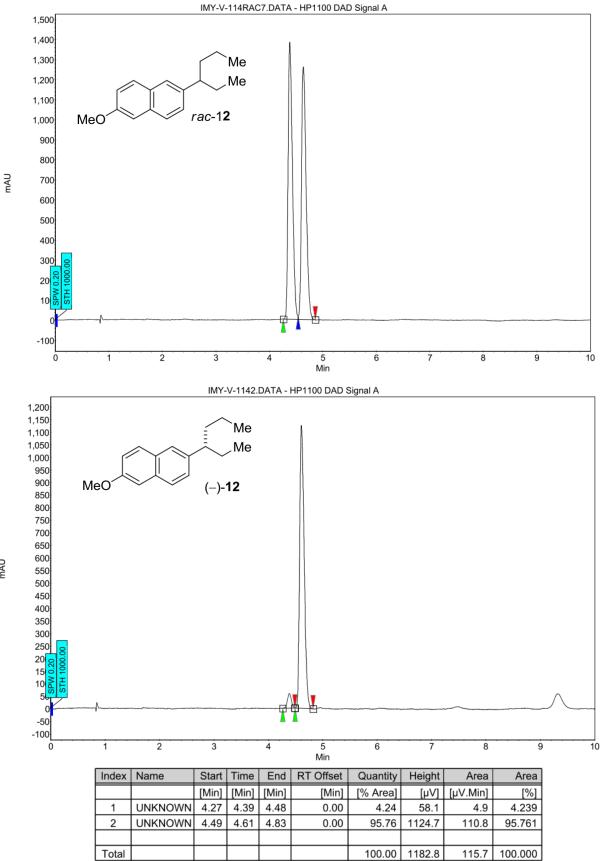


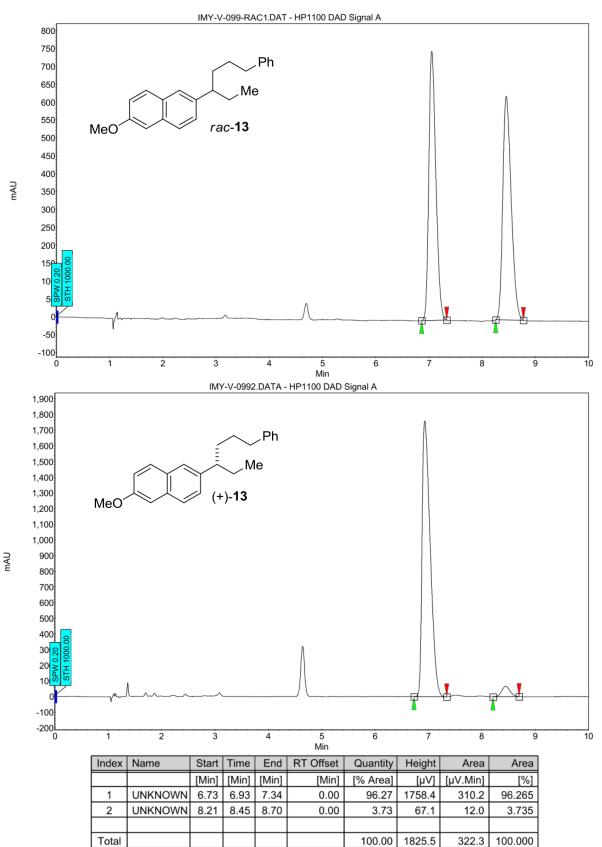


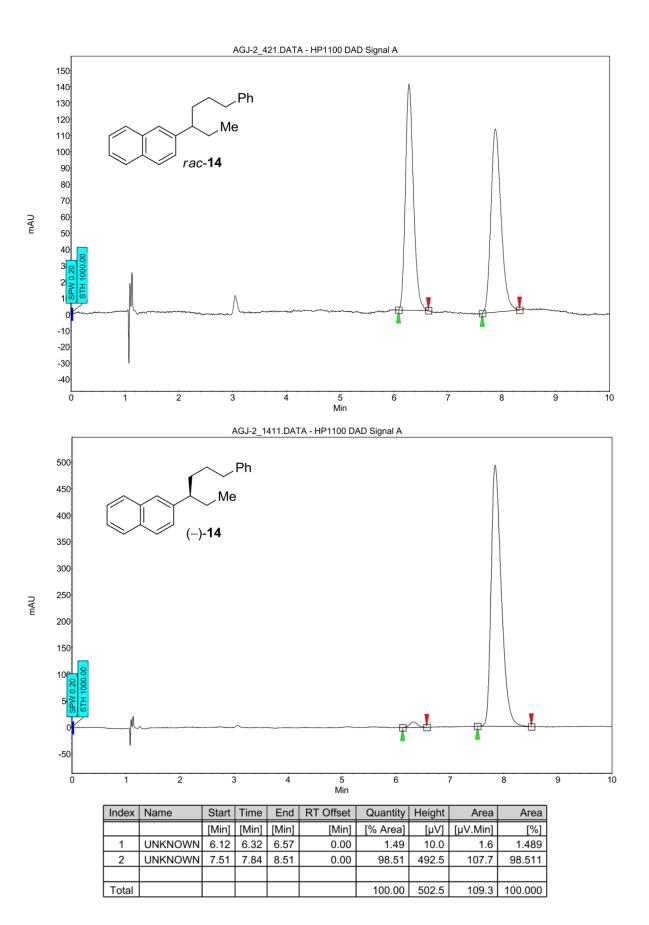


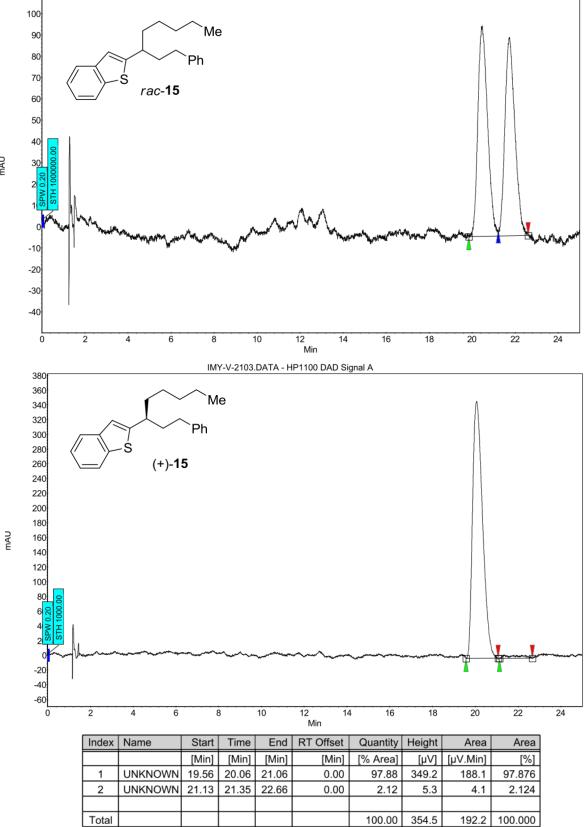
macx	Hame	otart	TIMO	End	TTT Officer	Guanary	Thoight	7100	Alou
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
2	UNKNOWN	11.01	11.41	11.66	0.00	1.44	16.2	4.4	1.435
1	UNKNOWN	11.85	12.25	12.98	0.00	98.56	759.8	301.9	98.565
Total						100.00	776.0	306.3	100.000

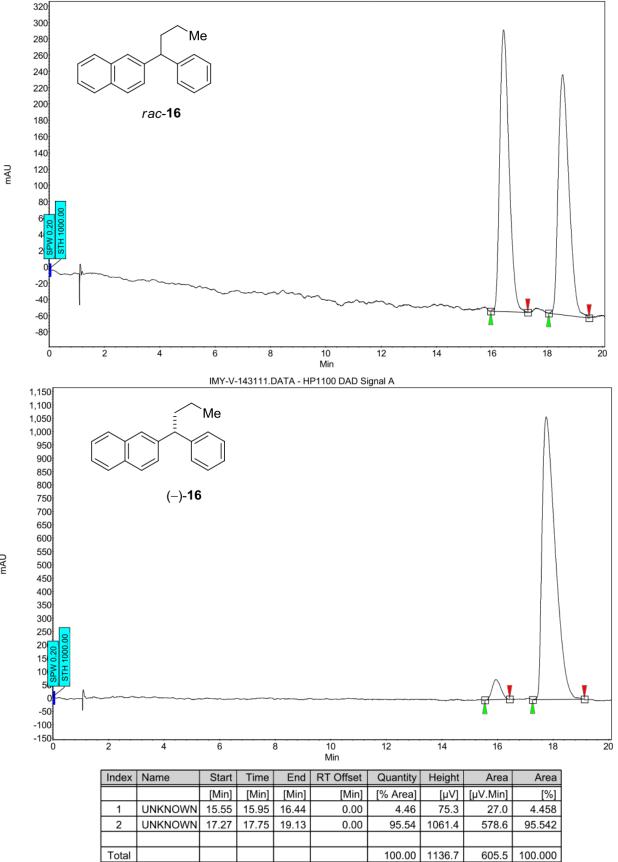


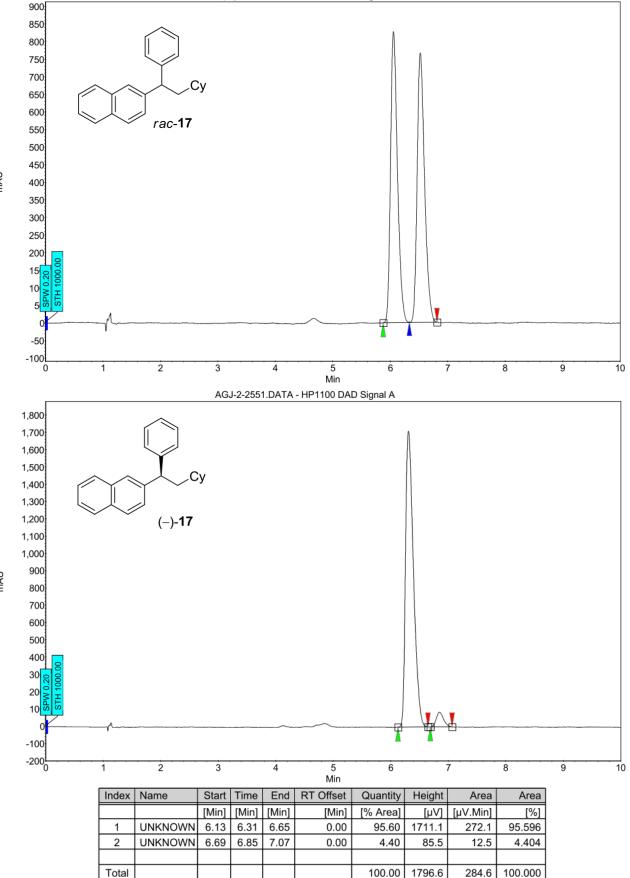


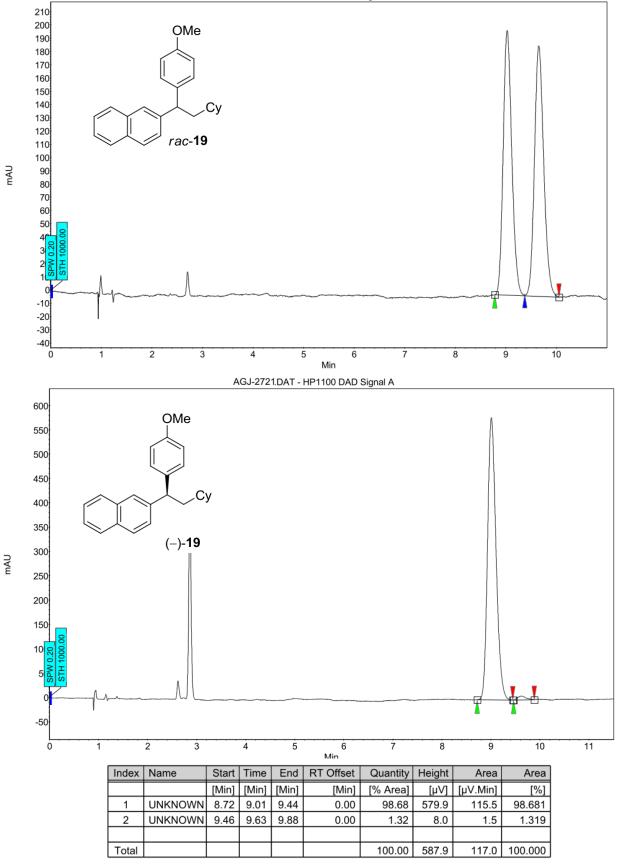


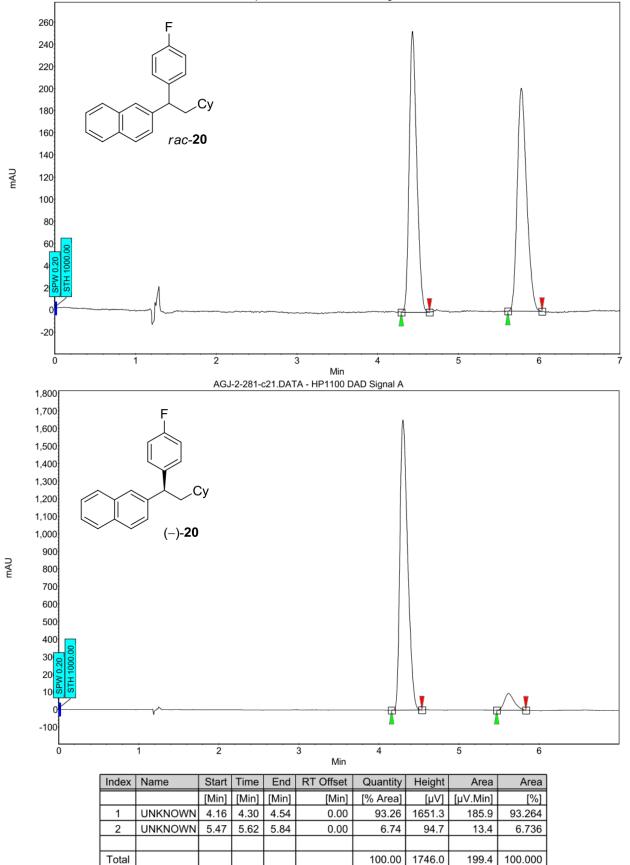

		[Min]	[Min]	[Min]	[Min]	[% Area]	[μv]	[µV.Min]	[%]
	UNKNOWN	4.56	4.72	4.99	0.00	98.50	1215.7	167.4	98.504
	UNKNOWN	5.16	5.29	5.44	0.00	1.50	20.2	2.5	1.496
I						100.00	1235.9	169.9	100.000

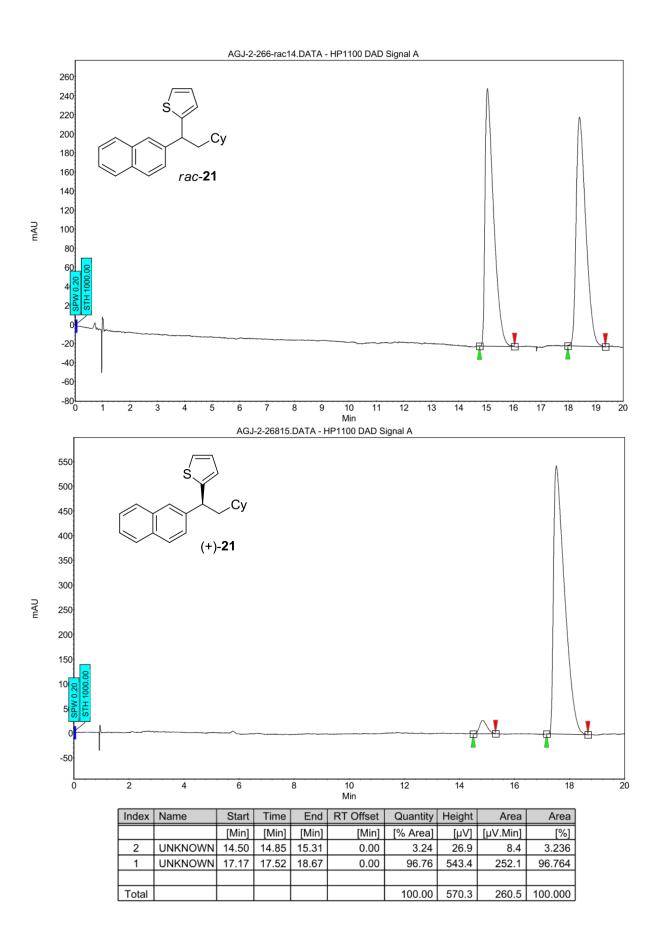

2

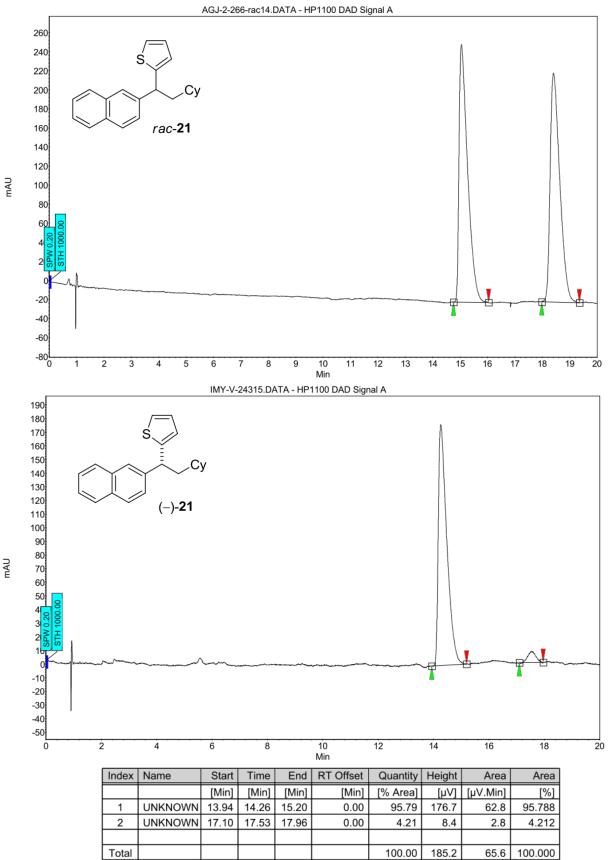


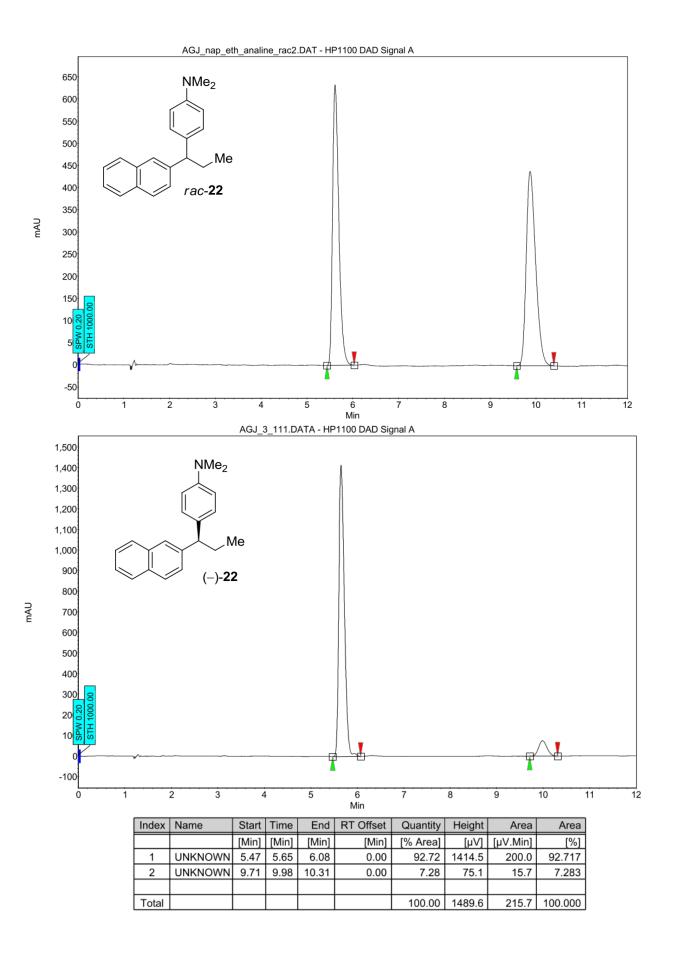







Total


1796.6


284.6

