

WT V γ 1.1⁺V δ 6.3⁺ T cells

В

Figure S6 Alonzo et al

А

С

Supplementary material.

Figure S1. PLZF expression in $\gamma\delta$ **T cells subsets.** Intracellular staining for PLZF in subpopulations of $\gamma\delta$ T cells in (A) liver lymphocytes (liver), (B) intraepithelial lymphocytes (iIELs), (C) Lymph nodes from wild-type (WT) and PLZF-deficient (PLZF KO) mice. (D) Absolute numbers of total $\gamma\delta$ T cells, and $\gamma\delta$ T cell subsets from the lymph nodes of wild-type and PLZF-deficient mice. $\gamma\delta$ T cells from PLZF-deficient mice were used as a negative control for PLZF staining. Numbers adjacent to outlined areas indicate percent of $\gamma\delta$ T cell subsets (A-C) or bracketed lines in histograms specify percent total PLZF positive cells (A-C). Data are representative of more than four independent experiments. All flow cytometry plots are quantified in log10 fluorescence.

Figure S2. Analysis of CD24 expression on developing V γ 1.1⁺V δ 6.3⁺ T cells. $\gamma\delta$ T cells enriched from the thymuses of 10-day-old wild-type were stained with anti- $\gamma\delta$ TCR, anti-V γ 1.1, anti-V δ 6.3 TCR, anti-CD24 and anti-PLZF antibodies. Numbers above each bracket in the histogram indicate percent PLZF-positive V γ 1.1⁺V δ 6.3⁺ T cells. V γ 1.1⁺V δ 6.3⁺ T cells from PLZF-deficient mice served as a negative control for PLZF staining. Data are representative of three independent experiments. All flow cytometry plots are quantified in log10 fluorescence.

Figure S3. PLZF expression in Vγ**1.1⁺Vδ6.3⁺ T cells from TCRβ and CD1d-deficient mice**. (A) PLZF expression analysis in Vγ1.1⁺Vδ6.3⁺ T cells from wild-type (blue), TCRβdeficient (red) and (B) CD1d-deficient (red) thymocytes and lymphocytes. Vγ1.1⁺Vδ6.3⁺ T cells from PLZF-deficient mice served as a negative control for PLZF staining. Data are

1

representative of three independent experiments. All flow cytometry plots are quantified in log10 fluorescence.

Figure S4. Ectopic expression of PLZF has no effect on $\gamma\delta$ T cell effector functions.

(A) Intracelluar staining for PLZF in $\gamma\delta$ T cells as described, or (B) V γ 1.1⁺V δ 6.3⁺ T cells in WT, PLZF-deficient and Lck-PLZF transgenic thymocytes. (C) Intracellular staining for IFN- γ and IL-4 from pooled splenocytes and lymphocytes in WT (top) and Lck-PLZF transgenic (bottom). Data are representative of at least three independent experiments. All flow cytometry plots are quantified in log10 fluorescence.

Figure S5. ThPOK expression in γδ T cells. (A) GFP expression analysis in total γδ T cells from the thymus and spleen from ThPOK^{GFP/+} and ThPOK^{GFP/-} mice. ThPOK expression in CD4 T cells from ThPOK^{GFP/+} mice is shown as a control. Numbers above bracketed lines in histograms specify the percent of γδ T cells from the ThPOK^{GFP/+} in each population as defined by GFP expression levels (negative, intermediate, or high). (B) ThPOK^{GFP/+} reporter expression in subpopulations of γδ T cells in splenocytes that are Vγ1.1⁺ Vδ6.3⁻, Vγ1.1⁺Vδ6.3⁺, Vγ1.1⁻Vδ6.3⁺, or Vγ1.1⁻Vδ6.3⁻. Numbers in quadrants indicate the percent of Vγ1.1⁺Vδ6.3⁻ (top left), Vγ1.1⁺Vδ6.3⁺ (top right), Vγ1.1⁻Vδ6.3⁺ (bottom right), and Vγ1.1⁻Vδ6.3⁻ (bottom left) or above bracketed lines in histograms specify the percent total ThPOK^{GFP/+} positive cells. Wild-type γδ T cells were used as a negative control for GFP expression (A and B). All flow cytometry plots are quantified in log10 fluorescence.

Figure S6. Phenotypic analysis of non-V γ 1.1⁺V δ 6.3⁺ T cells in SLP76 mutant mice.

(A) Absolute numbers of total $\gamma\delta$ T cells and V γ 1.1⁺ V δ 6.3⁻, V γ 1.1⁻V δ 6.3⁻ and V γ 1.1⁻V δ 6.3⁺ T

Alonzo et al..... "PLZF regulates function of 'NKT-like' $\gamma \delta$ T cells"

2

cells subsets in the thymus (top), spleen (middle) and lymph nodes (bottom) in wild-type (WT), Y112:128F and Y145F mutant mice. (B) Intracellular staining for PLZF in V_Y1.1⁺ V δ 6.3⁻ (left), V_Y1.1⁻V δ 6.3⁻ (middle) and V_Y1.1⁻V δ 6.3⁺ (right) T cells in thymocytes (top) and splenocytes (bottom) in wild-type (WT; black), Y112:128F (blue) and Y145F (red) mutant mice. (**C**) Expression of CD44, NK1.1 and CD62L by PLZF-positive (blue) and PLZF-negative (black) wild-type (WT), Y112:128F (green), and Y145F (orange) V_Y1.1⁺V δ 6.3⁺ thymocytes. (**D**) CD4 and CD8 expression on V_Y1.1⁺V δ 6.3⁺ thymocytes in wild-type (WT; top), Y112:128F (middle) and Y145F (bottom) as compared to intracellular staining for PLZF. PLZF-deficient _Y δ T cells (gray) served as a negative control for PLZF staining in histograms (B). Each symbol represents an individual mouse (* *P* = 0.05). Error bars represent the SD. Data are representative of at least six experiments. All flow cytometry plots are quantified in log10 fluorescence.

Figure S7. Phenotypic analysis of non-Vγ1.1⁺Vδ6.3⁺ T cells in Id3-deficient mice. (A) (A) Intracellular staining for PLZF in Vγ1.1⁺ Vδ6.3⁻ (left), Vγ1.1⁻Vδ6.3⁻ (middle) and Vγ1.1⁻ Vδ6.3⁺ (right) T cells in thymocytes (top) and splenocytes (bottom) in wild-type (WT; black), Id3-deficient (Id3 KO) mice. (B) Expression of CD44, NK1.1 and CD62L by PLZF-positive (blue) and PLZF-negative (black) wild-type (WT) and Id3-deficient (Id3 KO; red) Vγ1.1⁺Vδ6.3⁺ thymocytes. (D) CD4 and CD8 expression on Vγ1.1⁺Vδ6.3⁺ thymocytes in wild-type (WT; top) and Id3-deficient (Id3 KO; red) as compared to intracellular staining for PLZF. PLZF-deficient γδ T cells (gray) served as a negative control for PLZF staining in histograms (B). Data are representative of at least four experiments. All flow cytometry plots are quantified in log10 fluorescence.