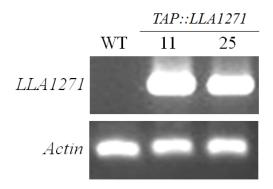
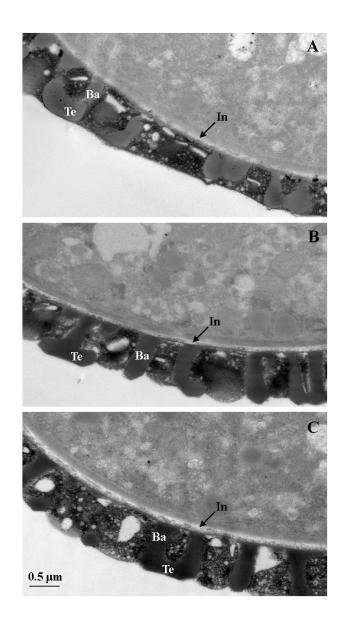

A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development. Ming-Che Liu, Cheng-Shou Yang, Fang-Ling Yeh, Chi-Hsuan Wei, Wann-Neng Jane, Mei-Chu Chung and Co-Shine Wang


## SUPPLEMENTARY DATA

| 1271a<br>1271b                                                       | ACGCGGGGATCTGCGTCGTGAGGAATCAGCATCTACAAAAGATCATCTGAG                                                                                                                                                                | 51<br>51                                             |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1271a<br>1271b<br>1271a<br>1271b                                     | ATGCCGAAACTCAGCTTCTGCGCTATCTTTTTGGCTCTCGCCGTAACTGCGGCAGCATTG  M A K L S F C A I F L A L A V T A A A L                                                                                                              | 111<br>111<br>20<br>20                               |
| <i>1271a</i><br><i>1271b</i><br>1271a<br>1271b                       | CTTTCGGGCCACCATGCACAGCCGATAACAGAATGCCACCCCAAGTTGATGGGCCATTGC L S G H H A $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                    | 171<br>171<br>40<br>40                               |
| 1271a<br>1271b<br>1271a<br>1271b                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                               | 228<br>231<br>59<br>60                               |
| 1271a<br>1271b<br>1271a<br>1271b                                     | AAGTCCTATATGTCTGCACCAACCCAGTTACATGCTGTTTCTGAACCTGTGAAGCCATCT  K S Y M S A P T Q L H A V S E P V K P S                                                                                                              | 288<br>291<br>79<br>80                               |
| 1271a<br>1271b<br>1271a<br>1271b                                     | GCTAAGTCCTATATGTCTGCAAAATTACATGCTGTCTCTGAATCAGTAAAGCCATCTGCT                                                                                                                                                       | 348<br>351<br>99<br>100                              |
| 1271a<br>1271b<br>1271a<br>1271b                                     | AAGTCTTATATGTCTGCACCGCCTGAATTGCATCTTGCCTCTGAACCGATGAAGCCGTCT                                                                                                                                                       | 408<br>411<br>119<br>120                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | GCTAAGTCTTATATGTATGCACCACCCAAATTACATGCTGCCTCTGAAGCGGTGAAACCG                                                                                                                                                       | 468<br>471<br>139<br>140                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | TCTGCTAAATCCTATATGTTTGTATCACCCCAATTACATGCTGCCTCTGAACCAGTGAAG                                                                                                                                                       | 528<br>531<br>159<br>160                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | CCGTCTGCTAAGTCCTATATGTCCGCACAATTACATGTTGCCGCTGAACCAATAAAGCCG PSAKSYMSAQLHVAAEPIKP                                                                                                                                  | 588<br>591<br>179<br>180                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | TCTACTAAATCCTATATGTTGTCTGTTGAGTCCTATATGTCTGGAGTGCCCCAATTACAT                                                                                                                                                       | 648<br>651<br>199<br>200                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | GAGGCCTCTGAACCAGTGAATTCTGCTAAACCCTATATATCTGCACCACACTCCGAGACT E A S E P V N S A K P Y I S A P H S E T                                                                                                               | 708<br>711<br>219<br>220                             |
| 1271a<br>1271b<br>1271a<br>1271b                                     | CCCTTAAAAGTTGGAGTT <b>TGA</b> CAAGGTAAACCTACAAAAAGAATCGTGCCAATGTTATGT P L K V G V *                                                                                                                                | 768<br>737<br>225<br>226                             |
| 1271a<br>1271b<br>1271a<br>1271b<br>1271a<br>1271b<br>1271a<br>1271b | TTTTGCCGTGGTTACTGTTTTTCTATCTTCTGTGTTTCCAGGCTATATAGAATTTGGTCC  AGTAGCTTGGGGTGGAATAATGGCTGCTATGGAATATCTATATTAATGGAAAAAATAATGC  ATTATCGGATGTTAAGGAATGCTAATGTTATCATATACTATGGTGTAATAAACAATTATG  GAATCAAAAAAAGTTTGTTGTAT | 828<br>755<br>888<br>815<br>948<br>875<br>970<br>897 |


Supplementary Fig. S1. Nucleotide and predicted amino acid sequences of *LLA1271* cDNA clones. Bold letters in the nucleotide sequence indicate the start and stop codons and the polyadenylation signal. A vertical arrow indicates the cut site of a signal peptide of LLA1271 proteins in the N-terminus. The underlined sequence indicates the synthetic peptide used for the production of antiserum. The box indicates the putative N-glycosylation (N-X-S/T) and phosphorylation (S/T-X-K/R) sites. 3′-primer A and B used for 5′-RACE are also indicated. A dash in the sequence indicates a gap introduced in order to maintain good alignment. Identities are represented by dots.



**Supplementary Fig. S2.** Identification of two forms of *LLA1271*. 5'-RACE PCR was performed with primers A and B, respectively. The PCR products were fractioned by 1.5% agarose gel and stained with EtBr. The 1 kb ladder markers (M) are indicated at the left.



**Supplementary Fig. S3.** RT-PCR analysis of *TAP::LLA1271* transgenic lines. RT-PCR was performed on total RNA (1 μg/line) isolated from five week-old inflorescence of wild-type and the two *TAP::LLA1271* transgenic lines 11 and 25. The fragment of *LLA1271* was amplified using a pair of specific primers to *LLA1271*. The *actin* gene was used as a quantitative control.



**Supplementary Fig. S4.** Transmission electron micrographs of *TAP::LLA1271* pollen grains. Micrographs of the pollen wall regions of the two *TAP::LLA1271* transgenic lines 11 (B) and 25 (C) were compared with that of wild-type pollen wall (A). Ba, Bacula; In, intine; Te, tectum.