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Figure S1, related to figure 1. Transcriptomics and metabolomics analysis of cell size in 

vivo. (A) Analysis of metabolite levels by mass spectrometry. A density plot of all metabolite 

level correlations with nuclear radius is shown. Median Pearson correlation (0.066) is 
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indicated with a dotted line. (B) Examples of metabolites displaying cell size, hepatectomy or 

Cdk1 effects. Note that we identified also metabolites such as ergothioneine, trehalose and 

protopine which are not produced by mammalian metabolism, but maybe derived from food 

or microbial metabolism. (C) Scatter plot of gene expression changes in response to 

hepatectomy in Cdk1Flox/Flox (x-axis) and Cdk1Liv-/- livers (y-axis). Mean values of the 

replicate samples were used to calculate fold-changes. As expected, we observed 

upregulation of Scara5, serum amyloid A and metallothionein genes in response to partial 

hepatectomy. (D) Validation of RNAseq data with quantitative RT-PCR analysis of a 

selection of genes. Mean expression levels relative to Cdk1Flox/Flox control animal before 

partial hepatectomy as measured by quantitative PCR (red bars) or RNAseq (blue bars). 

qPCR data shown is mean expression of three technical replicates for each liver sample. 

RNAseq data is calculated from the mean expression of technical replicates and plotted as 

negative values for clarity. The gene names are indicated above the individual histograms. 

Sample identities are shown in the Csnk2b graph only but are the same in all graphs. Note 

that in a few cases, qPCR shows reduced expression compared to RNAseq, e.g., the last bar 

in Sc4mol. (E) Correlation plot for Pearson correlation coefficients with nuclear radius for 

the genes shown in (D), as analyzed by qPCR (x-axis) and RNAseq (y-axis). The correlation 

between the two gene expression methods is shown (R2 = 0.83). (F) Annotation coverage of 

the metabolomics data using 3 mD mass tolerance overlaid on the KEGG human metabolome 

map (hsa01100). The map is colored by pathways. Dot size reflects log10 average intensity 

of metabolite levels over all samples. (G) Scatter plot of metabolite ion correlations with 

nuclear/cell size and log2 fold changes between smallest and largest cells. Data is derived 

from both aqueous and organic extractions of the metabolomics data. (H) Comparison of 

mRNA expression levels (in Cdk1flox/flox livers before hepatectomy) and fold changes 

between smallest and largest cells. Red line indicates median log2 fold change of 100 genes 



sliding window. Our data suggests that genes whose expression is low are most sensitive to 

cell size changes. 

	    



 

 

Figure S2, related to figure 2. Additional analysis of cell size gene	   expression	  

programs. (A) Mouse liver mRNA expression correlations for genes annotated to individual 
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subcellular components were binned to obtain scaling profiles (bars) for each subcellular 

component. For comparison, the whole cell profile (all genes with annotation in any of the 

subcellular component, orange line) is overlaid on the bar chart. The number of genes in the 

whole cell profile was normalized to the number of genes in individual subcellular 

component to simplify comparison. Interestingly, plasma membrane annotated genes are not 

coordinately downregulated. (B) Examples of protein complexes, which gene expression 

positively and negatively correlates with cell size. The CORUM complex database numbers 

for each complex are indicated (mips.helmholtz-muenchen.de/genre/proj/corum ). Note that 

we detect expression of Cdk1 mRNA as the knockout is a result of Cdk1 exon 3 deletion only 

in hepatocytes and the signal may stem from other cell types in the liver. (C) Analysis of 

gene expression profiles for mitochondrial substructures using GO analysis. (D) Summary of 

the mitochondrial gene expression changes. p values were calculated using Kolmogorov-

Smirnov test. (E) Connectivity of genes correlating positively (adj.p.value <0.01) with cell 

size as identified using the STRING database. Groups of functionally interacting genes are 

indicated with green circles and named. Number of connections in positively and negatively 

correlating gene sets (Fig. 2C) as well as in similar sized random networks (mean and SD of 

five random networks) is show in the inset. Note that the number of connections in the gene 

set correlating negatively with cell size is more than three times higher than that of the 

positively correlating gene set. (F) Correlation of individual OxPhos complexes (I-V) and the 

minichromosome maintenance complex (MCM) with nuclear radius. Boxplot indicates 

median correlation. Outliers are shown with black dots. (G) Venn diagrams depicting the 

overlap between differentially expressed genes in pairwise sample and size correlating genes. 

Our data indicates a poor overlap between identified cell size genes and genes responding to 

Cdk1 deletion or partial hepatectomy. (H) Cell size histogram and relative cell change in 

dsRED control and Pop2 RNAi treated Kc167 cells. Cells were treated by RNAi for 4 days. 



(I) Percentage of cells in G1 and G2 in dsRED and Pop2 RNAi treated Kc167 cells used for 

Drosophila RNAseq analysis. G1 and G2 populations were analysed from DNA content 

histograms. Data shown in G and H is mean and standard deviation (n=3). All data except H 

and I are from mouse liver gene expression data set. 

	   	  



	  
	  
Figure S3, related to figure 3. Gene expression and metabolic changes related to 

glycolysis and TCA cycle. (A)	  Quantification	  of	  mitochondrial	  number	  per	  image	  (n=7-‐
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10),	   mitochondrial	   area	   (n=47-‐65	   mitochondria),	   number	   of	   mitochondrial	   cristae	  

(n=44-‐65)	   and	   mitochondrial	   electron	   density	   (n=47-‐65).	   Data	   is	   mean	   ±	   SD.	   (B) 

RNAseq expression values for genes involved in mitochondrial DNA replication in the liver 

expression data. (C) Mitochondrial DNA to genomic DNA ratio as measured by quantitative 

PCR from the liver samples (n=3). (D) Detailed map of glycolysis and TCA cycle with 

branching biosynthesis pathways. Enzymes involved in each step are indicated next to the 

metabolites in the pathway map. Positive and negative gene expression correlations with cell 

size are in blue and red, respectively. Metabolite levels in liver samples are shown with box 

plots. (E) Relative metabolite changes in CdkLiv-/- mice compared to Cdk1Flox/Flox control 

animals. Fold changes for postPH vs. prePH were calculated and these compared between 

Cdk1Liv-/- and control mice. Cdk1 knockout enhances metabolite changes in later stages of 

glycolysis with an increase in metabolite levels going to serine and glycerol synthesis. The 

sample order is the same in all plots (Flox/Flox prePH, Flox/Flox postPH, Liv-/- prePH and 

Liv-/- postPH). 

	   	  



	  
	  
Figure S4, related to figure 4. Effects of mitochondrial targeting on proliferation and 

histone acetylation. (A) HeLa cell numbers (red line) and cell size (blue line) was analysed 
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as a function of Mdivi-1 concentration (n=3, 48h). (B) U2OS cell numbers (red line) and cell 

size (blue line) was analysed as a function of sodium azide concentration (n=3, 48h). (C) 

Comparison of cell size measurement of control and azide treated chicken DT40 cells using 

Casy TT (electrical current exclusion) and flow cytometry forward scatter methods. 1mM 

azide was used for experiment (n=3, 48h). (D) Sodium azide (1mM) increases cell size by 

production of more protein. U2OS were trypsinised and analysed by flow cytometry and 

protein concentrations were measured by Coomassie method and normalised for cell size 

(n=4, t-test). (E) Cell size (blue bars) and oxygen consumption (red line) of wild type (WT) 

and Rho0 U2OS cells (n=4, t-test). (F) Validation of OxPhos inhibitor function using oxygen 

consumption measurement (Seahorse assay). Inhibitors were injected at 50 minutes time 

point. For concentrations used, see Table S5 (n=3-5). (G) Schematic of metabolite transport 

between mitochondria and cytoplasm for lipid synthesis and histone acetylation. Expression 

of the enzymes and transporters marked with red correlate negatively with cell size. (H) 

Citrate transporter SLC25A1 knockdown by RNAi using two independent siRNAs in HeLa 

and U2OS cell (n=3, 48h). p-value is <0.01 for all SLC25A1 treatments compared to control 

siRNA (t-test). (I) Decrease in histone acetylation in vivo. Mouse liver sample histones were 

purified using acid extraction, run on SDS-PAGE and stained with Coomassie (lowest panel). 

Levels of histone acetylation were analysed by Western blotting using total acetylated lysine 

(Ac-Lys) or individual acetylation sites. Quantification of the total Ac-Lys signal is shown in 

the bottom panel. (J) U2OS cells were treated with 6 µM rotenone for 48 h. Histone 

acetylation was analysed by Western blot from total cellular lysates using total acetylated 

lysine (Ac-Lys) or individual acetylation sites. Total Ac-Lys levels were quantified and 

plotted (blue bars). CoxIV was used as loading control. (K) U2OS cell size (blue line) and 

numbers (red line) after histone acetylation inhibitor treatments. Data shown is mean with 

standard deviation (n=3, 28h). MB-3 is a Gcn5 inhibitor, CPTH2 inhibitor modulates the 



Gcn5 network, and C646 is a competitive inhibitor of p300/CBP. (L) Rescue of Mdivi-1 

induced cell size increase by 50 µl/ml LipidMix in U2OS (upper panel, 72h) and HeLa cells 

(lower panel, 44h) (n=3, t-test). Data shown in all panels is mean and standard deviation. 
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Figure S5, related to figure 5. Cell size is associated with changes in lipid biosynthesis. 

(A) Analysis of transcription factor family expression correlation with cell size in mouse 

liver. Mean correlations for each family with three or more genes were calculated. (B) A 

network of lipogenic transcription factors correlates negatively with cell size. All 

transcription factors with cell size correlation <-0.3 were analysed for connectivity using 

STRING database. The resulting network of 17 out of these 55 transcription factors which are 

connected to each other is shown. (C) Expression of SREBPs and SREBP processing proteins 

is strongly downregulated as measured by liver RNAseq. Mean and standard deviations for 

the smallest and largest cells are shown. (D) Quantification of hTERT-RPE cell size changes 

by targeting SREBP1 and 2 in normal culture medium with 10% FBS or two days in normal 

medium followed by 24h in 1% delipidated FBS (n=3, 72h) to emulate the conditions used by 

[27]. Cell size was quantified by flow cytometry. Both full length (fl-SREBP2) and mature 

(m-SREBP2) forms of SREBP2 are detected by Western blotting. β-actin was used as 

loading control. The cell size difference between control siRNA groups under both conditions 

is statistically significant (p-value <0.001, t-test) as are the differences between SREBP 

siRNA treatments to the control siRNA (p<0.001 in all, t-test). (E) siRNA inhibition of 

SREBFs increases cell size in a dose dependent manner. U2OS cells were transfected with 

SREBF1 and SREBF2 siRNAs that were used at 6.3, 12.5, and 25 nM concentration and 

adjusting total siRNA concentration to 25 nM using the control siRNA (n=3, 48h). Compared 

to control siRNA p-value is <0.001 with all siRNA concentrations (t-test). (F) Redundant 

action of SREBP1 and 2 on cell size. U2OS cells were transfected with 12.5 nM of SREBP1, 

SREBP2 or both in combination adjusting total siRNA concentration to 25 nM using the 

control siRNA (n=4, 48h, t-test). (G) Cdk1Liv-/- mice display increase in oleate, a marker for 

fatty liver disease. Statistical significance was measured by ANOVA followed by Tukey's 

test. (H) PPARγ [Pparg], another biomarker for fatty liver, expression is not induced as 



shown by RNAseq and (I) PPARγ does not increase in response to cell size changes in liver 

gene expression data. We conclude based on lack of PPARγ induction that the mice do not 

have fatty liver disease. Data shown in all panels is mean and standard deviation. (J) 

Comparison of lipid profiles in haploid (smaller) and diploid (larger) yeast cells. Lipidomic 

data is from Klose et al. [28]. Profiles for most abundant lipid species in haploid and diploid 

cells are plotted and names of the lipid species which appear to be differentially regulated in 

haploid and diploid cells are indicated with red. Two of the three most abundant 

phospholipids phosphatidylethanolamine (PE 34:2) and phosphatidylcholine (PC 34:2)) are 

increased in diploid cells versus haploid cells.  Inositolphosphorylceramide (IPC44:0:4) and 

phosphatidic acid (PA 34:1) are less abundant in diploid cells. This data suggests that 

individual lipid species respond differentially to cell size changes. For naming conventions 

see original article [28]. 

	   	  



	  

Figure S6, related to figure 6. Cell size, lipid synthesis and mitochondrial functionality 

are coupled. (A) Inhibition of SREBP maturation by fatostatin in HepG2 (left, 72h) and 

hTERT-RPE cells (right, 96h) increases cell size (n=3). (B) Rescue of simvastatin (7.5 µM) 

effect on cell size and cell proliferation by mevalonolactone (5 mM) in HepG2 cells (n=3, 

72h, t-test). (C) Reciprocal effects of the lipid mix on U2OS cell size and cell number in 
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normal FBS containing medium (n=3). In normal medium, lipotoxicity is observed with high 

doses. (D) U2OS cells were treated with or without 20 µM fatostatin. Mitochondrial 

membrane potential was measured with MitoTracker Red and normalised to cell size (n=3, 

54h, t-test). (E) U2OS cells were treated with control, SREBP1 or SREBP2 RNAi. 

Mitochondrial membrane potential was measured with MitoTracker Red and normalised to 

cell size (n=3, 50h, t-test). Data shown in all panels is mean ± SD. 

 
 
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
 
Mouse model 

The generation of the Cdk1 conditional mice has been described previously [S1]. For the 

RNAseq and metabolomics analyses, Cdk1Flox/Flox and Cdk1Liv-/- mice were used before and 

96 hours after partial (70%) hepatectomy. All mice used were 14 weeks old females at the 

time of the partial hepatectomy (PH) surgery. The liver was collected before and 96 hours 

after PH, snap frozen, and stored at -80°C until RNA or metabolite extraction. Nuclear size 

was calculated from Feulgen stained histological sections using Fiji image analysis software 

(version 1.46a). 

 

RNA sequencing 

Total RNA from liver samples was purified using QIAzol Lysis Reagent (Qiagen) and 

homogenization using Precellys homogenizer (Bertin Technologies). 15 µg total RNA was 

fragmented for 3 min at 70°C in RNA fragmentation buffer (Ambion). Fragmentation was 

terminated by cooling of the sample on ice and addition of EDTA to 17 mM final 

concentration. RNA sequencing was performed by tag profiling essentially as described [S2]. 

The resulting RNAseq library was purified using SPRI beads and sequenced at Genotypic 

Technology Pvt. Ltd, Bangalore, India, using 54 bp single end sequencing on Illumina GAIIx. 



For Drosophila samples, total RNA from Kc167 cells treated with dsRED control and Pop2 

RNAi in triplicates for four days was purified using Qiazol and processed as above. The 

resulting library was sequenced at the Genepool, University of Edinburgh, using 50 bp single 

end sequencing on Illumina HiSeq. 

The sequencing reads were mapped to transcriptome using Bowtie version 0.12.5 

[S3]. For mapping, we used the longest transcript in Ensembl database. Sequencing reads 

matching to identical positions and having identical molecular identifier sequences were 

merged and the numbers of unique template molecules were counted to get expression levels 

[S2]. Differential gene expression was analysed using EdgeR package (mouse samples) or 

DEseq (Drosophila samples) in R. 

 

Metabolomics analysis 

For each liver, three 50 mg samples were extracted with 1.5 ml cold 50:50% methanol/H2O 

using TissueLyser homogenizer (Qiagen) at 2000 rpm for 5 min. 650 µl supernatant were 

dried and resuspended in 1.5 ml H2O + 0.5 ml methanol and analysed in a 1:10 dilution. For 

organic extraction, cell pellets from aqueous extraction were further homogenized in 1.5 ml 

dichloromethane/methanol and 650 µl of the resulting supernatant were dried and 

resuspended in 1 ml acetonitrile + 0.5 ml methanol. Samples were analysed on a 6550 

Agilent QTOF mass spectrometer by untargeted flow injection analysis as described 

previously [S4]. Profile spectra with high mass accuracy were recorded from 50 to 1000 m/z 

in negative ionization mode. 

 For analysis, data from technical replicates (successive sample injections) was 

averaged. For each sample, raw intensity data was median normalised using "robust quantile 

normalization" function of preprocessCore package in R. This normalisation results in the 

relative levels of individual metabolite to the total metabolite levels of the tissue and not the 



metabolite levels per cell. Ions were annotated based on accurate mass comparison against 

8492 human metabolites present in the Human Metabolome Database [S5] using 1 mDa mass 

tolerance. The annotated metabolites were mapped on the human metabolic network derived 

from the KEGG database using pathway projector [S6]. 

 

Correlation of gene and metabolite expression with nuclear size 

The nuclear sizes were normalized relative to those of the Cdk1Flox/Flox mice before 

hepatectomy. Pearson correlation co-efficients (r) were calculated using all samples for each 

gene and metabolite. Gene ontology (GO) classifications for the genes were downloaded 

from Ensembl database (version 62, April 2011) and used to calculate correlation histograms 

for each cellular subcomponent. For Drosophila data, GO classifications were obtained from 

Ensembl (version 73, September 2013). 

 

Quantitative RT-PCR 

Liver DNA was isolated and amplified in triplicates using primers 

TAGAGGGACAAGTGGCGTTC and CGCTGAGCCAGTCAGTGT targeting 18S rDNA 

sequences and mitochondrial DNA using primers 

ACTTCTGCCAGCCTGACCCATAGCCA and ACGCGAATGGGCCGGCTGCGTAT 

using Maxima SYBR Green qPCR Master Mix (ThermoFisher) with 0.1 µM ROX, 0.3 µM 

primers. Melting curve analyses and gel electrophoresis indicated a single PCR product. The 

ratio of the mitochondrial to genomic DNA values was calculated from the obtained 

quantification cycle (Ct) values. For RNAseq validation, total RNA used for RNAseq was 

reverse transcribed and amplified in triplicates with the gene-specific primer pairs (Table S6) 

obtained from GETPrime qPCR primer database [S7]. qPCR was performed using Maxima 



SYBR Green qPCR Master Mix. Results were analysed with R (version 2.14.0) package 

HTqPCR (version 1.8.0) using the DCt method. 

 

Cell culture and reagents 

U2OS, HeLa, and HepG2 cells were cultured in DMEM containing 4.5g/l glucose, 10% FBS, 

L-glutamine and penicillin and streptomycin. hTERT-RPE cells were grown in Advanced 

DMEM/F-12 containing 4.5g/l glucose, 10% FBS, L-glutamine and penicillin and 

streptomycin and the cells were supplemented with hygromycin B (50µg/ml). DT40 cells 

were grown in RPMI with 10% FBS, 3% chicken serum, 1 mM β-mercaptoethanol, L-

glutamine and penicillin and streptomycin. 

 Delipidated FBS was prepared by extracting FBS once with 2:1 vol/vol mixture of 

diisopropylether and n-butanol and a second extraction with diisopropylether followed by 

extensive dialysis against PBS using 10 000 MWCO membrane. U2OSrho0 cells were 

generated by incubating the cells with 0.1 µg/ml ethidium bromide for 3 weeks in the 

presence of 50 µg/ml uridine in DMEM/10% FBS. Cell size and cell number measurements 

were conducted using flow cytometry using Accuri C6 cytometer (Becton-Dickinson) or by 

electrical current exclusion method (CASY TT, Roche). 

 Small molecules were obtained from Sigma-Aldrich, Tocris, Santa-Cruz and 

Calbiochem. For small molecule data shown in Fig. 4A concentrations and solvents are 

shown in Table S5. For rescue experiments using LipidMixture 1 (Sigma) cells were treated 

with LipidMix simultaneously with chemical treatments or 24h after siRNA transfections. 

RNAi was performed by transfecting with 25 nM siRNA with HiPerfect (Qiagen). The 

siRNA sequences are shown in Table S6. Antibodies were used at their recommended 

concentrations and detected using infrared-dye conjugated secondary antibodies and LICOR 

Odyssey detection system. 



 For DNA content measurement, mammalian cells were stained with propidium iodide 

as previously described [S8]. For Drosophila cells, DNA staining was performed using 

Vybrant DyeCycle Orange live cell stain (Life Technologies) as per manufacture's 

instructions. For measuring mitochondrial membrane potential, MitotrackerRed (Life 

Technologies) was added to 150 nM final concentration for 40 min before the FACS assay 

and cells were washed twice with PBS before flow cytometry analysis. Oxygen consumption 

was measured using Seahorse XF24 instrument according to manufacturer's instructions. 

 

Antibodies and Western Blotting 

Histones were isolated using acid extraction and separated on 4-12% SDS-PAGE gels in 

MES buffer (LifeTechnologies). For Western blots, the following antibodies were used: 

Acetylated-Lysine #9441, Acetyl-Histone H3 (Lys9) (C5B11) #9649, Acetyl-Histone H2B 

(Lys5) #2574, Acetyl-Histone H4 (Lys8) #2594, pAMPK #2535, CoxIV #4850, GAPDH 

#5174, b-Actin (#4970) (all from Cell Signaling Technology). PGC-1a antibody (clone 

4C1.3) was from Millipore. For analysis of OxPhos protein expression MitoProfile Total 

OXPHOS Rodent WB Antibody Cocktail (ab110413, Abcam) was used. Antibodies were 

used at their recommended concentrations and detected using infrared-dye conjugated 

secondary antibodies and LICOR Odyssey detection system. 

 

Electron microscopy 

Liver pieces of 1 mm3 obtained before partial hepatectomy were immersed in 4% 

paraformaldehyde, 2.5% glutaraldehyde in 0.1M phosphate buffer, pH 7.4 for 5 days at 4ºC 

while the samples obtained after partial hepatectomy were fixed for 24 hours at 4ºC. Tissue 

samples were rinsed in 0.1M phosphate buffer, pH 7.4 and then 0.1M Sodium Cacodylate 

Trihydrate, pH 7.6 on ice. After fixation samples were exposed to Osmium fixative solution 



[1% OsO4 + 1.5% K3Fe(CN)6 in 0.1M Sodium Cacodylate Trihydrate  pH 7.6] for 1 hour at 

RT. Samples were washed in dH20 and dehydrated through an ascending ethanol series (from 

25% to 100% ethanol) and 100 % acetone. The infiltration was continued with resin in 100% 

ethanol and then fresh resin overnight. Finally samples were embedded in Spurr’s fresh resin 

and polymerized at 60ºC for 24 hours [S9]. Ultrathin sections were counterstained with 5% 

uranyl acetate and Reynold's lead citrate and examined with a under JEM-1010 electron 

microscope operated at 80 kV or JEM-2200FS at 100 kV. Images were analysed using 

ImageJ. 

 

Analysis of total phospholipids 

Phospholipids were measured using a colorimetric method based on the formation of a 

complex between phospholipids and ammonium ferrothiocyanate [S10]. Briefly, liver 

samples (~20mg) were homogenised in 300µl PBS and 750µl of methanol and homogenates 

were extracted with chloroform. Organic phase was allowed to react with FeCl3-thiocyanate 

reagent followed by absorbance measurement at 488 nm from the organic phase. Liver 

samples were analysed in triplicates. 

 

Analysis of yeast lipidomics data 

Haploid and diploid lipid profiles were obtained from supplementary file from Klose et al 

[S11]. Individual lipid species were ranked by abundance in diploid cells and lipid levels in a 

and a mating pairs were compared to these. Only most abundant lipid species are shown 

(>1.4 mol%/total lipids). Statistical difference between yeast strains for individual lipids can 

not be calculated as only means and standard deviations are available in the original 

publication. 

 



Statistics 

The p-values for the obtained Pearson correlations were calculated from Student’s t-

distribution and were adjusted using Benjamini and Hochberg False Discovery Rate 

correction. Statistical significances for the differential gene expression were directly obtained 

using the EdgeR package (for mouse data) or DEseq package (for Drosophila data) in R. Cell 

based assay data is presented as mean ± standard deviation using two-tailed t-test. All error 

bars depict standard deviation. The whiskers in boxplots depict maximum and minimum 

values excluding outliers which are indicated with circles. The significance of differential 

correlation of gene expression levels with subcellular structures versus whole cell data was 

done using Kolmogorov-Smirnov test. Significance of the individual metabolite level 

changes between treatments was analysed by two-tailed t-test or ANOVA followed by 

Tukey's HSD test as indicated in the figure legends. The 90% confidence intervals for linear 

regression were calculated using predict function in R. 
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