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SI Discussion

Approaches for Estimating the Impact of Weather and of Climate Change on the
Distribution and Abundance of Species. The recent literature speaks clearly to the urgent
need for approaches to estimate the geographic distribution and relative abundance of species
that experience novel climates due to range expansion or as a consequence of climate change
(see refs. 1, 2-9). Specifically, Section 4.3 (“Assumptions about future trends”) by Working
Group 2 in the fourth assessment report (AR4) of IPCC outlines the shortcomings of widely
used standard methods based largely on the climate envelope approaches (i.e., ecological
niche models, ENMs) used to assess the impact of climate change on ecosystems (10).
Among the gaps identified in IPCC AR4 were the inability to account for species interactions,
the lack of physiological mechanisms, and the inability to account for population processes
(11). These shortcomings were evident in the earliest ENM applications on a geographic scale
by APG (12). Including multitrophic interactions in assessments of climate effects on
biological systems has been an ongoing major challenge (13-19). Species interactions
constrain the geographic range of species even on an evolutionary time scale (20) and play a
key role in host-parasite relationships in general (21). Recent advances have been based on
species interaction indices (22) and species co-occurrence matrices (23, 24). All of these
correlative ENMs make implicit ecological and mathematical assumptions that have no
mechanistic basis for the biology, making the results and their transferability conjectural with
the predictive power potentially lower than spatial interpolation (25).
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Other approaches in the literature have attempted to integrate physiological mechanisms
and population processes in climate impact assessments (26-31). These methods are
substantially closer to the correlative end of the process-correlation model continuum (32) and
are part of an ENM methodological base used in such analyses (9, 33, 34). Hybrid models
superimpose population dynamics layers on correlative approaches with an associated
substantial increase in model complexity and computational burden (35). Recent integration
of mechanistic models with economic analysis have used stochastic population dynamics
models lacking mechanistic underpinnings (36).

In contrast, the physiologically-based demographic system model (PBDM) used here
explicitly captures the mechanistic weather-driven biology and dynamics of olive and olive
fly. In general, PBDMs (see also ref. 37) predict the weather-driven phenology, dynamics and
distribution of species across wide geographic areas on a daily basis — a time step rarely used
in macroecological modeling (29). More generally, PBDMs can also include other interacting
species in this (e.g., olive/olive scale and its parasitoids) and other food chains or webs (38).
The model captures via sub-models the processes of resource acquisition and allocation (i.e.,
the metabolic pool model, see ref. 39), and the birth-death rates. PBDMs are sufficiently
detailed to be realistic, and yet complexity is kept to a minimum by applying the same
dynamics model and process sub models to all trophic levels (40, 41). The complexity enters
the model at the conceptual level and running the model requires minimal computational
capacity. These models have contributed to basic theory and helped solve many applied field
problems because they bridge the gap between purely theoretical analytic models and overly
complicated simulation models (42). PBDMs have been successfully applied across trophic
levels and taxa in various ecosystems and geographic regions, and through time. The
underlying conceptual model was the basis for developing novel economic theory (43). The
biological processes governing the dynamics of olive and olive fly are modeled explicitly, and
the model is used as the production function in the bioeconomic analysis to capture the effects
of weather on the biological system (see 44). Physiological analogy across trophic levels (see
also refs. 45, 46) is a powerful conceptual tool as used here, and is currently considered as a
way to tackle the huge challenges facing global ecosystem modeling (47).

We note however that despite shortcomings, in many cases ENMs are the only available
option for estimating the ecological niche (48) of invasive species, and may provide a useful
approximation if the results are interpreted with due consideration of the limitations of the
models (49).

The Mediterranean Basin and Climate Change. The Mediterranean Basin is a climate change
hotspot of global relevance (50, 51). This consensus was reached using different climate
models predicting climate change for the Mediterranean region (50, 52). However, relative to
the rest of the globe, the uncertainty associated with the predictions of the different models
implementing the A1B climate scenario is low (53). This means that climate change signals
for the Mediterranean region are robust across forcing scenarios, future time periods, and a
range of global and regional climate models, with the magnitude of the signal increasing with
the intensity of forcing (54). Our implementation of the A1B scenario entails a 1.8°C average
warming across the Basin in the period 2041-2050 using 1961-1970 as the reference period
(55). This scenario is part of an innovative multi-model system developed within the
European project CIRCE (Climate Change and Impact Research: the Mediterranean
Environment) to produce high-resolution, realistic simulations of regional climate via an
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improved representation of the Mediterranean Sea for use in impact assessments (53). For the
first time, realistic net surface air-sea fluxes are available that are key to simulating regional
climate and impacts in the Basin (56). CIRCE climate projections are overall consistent with
the findings obtained in previous scenario simulations (e.g., PRUDENCE, ENSEMBLES and
CMIP3), and this suggests that projections for the Mediterranean region are robust to
substantial changes in the configuration of the climate models (53). The use of intermediate
climate change as projected under A1B is a standard reference practice in IPCC AR4 and in
the climate impacts literature. The A1B scenario is towards the middle of the IPCC range of
GHG forcing scenarios, with A2 being close to the high end but showing small average
difference from A1B (smaller than the standard deviation of mean warming in our A1B
scenario, see ref. 55) for the Mediterranean Basin within the 2050 time horizon considered in
our analysis (57).

Validation of the Olive/Olive Fly PBDMs. Models that lie at the opposite ends of the process-
correlation continuum are tested in different ways (32) according to their intended purpose
(58). Because correlative ENMs are based on species presence-absence records, their
projections implicitly include an undefined number of biotic and abiotic factors that determine
observed species distribution (59), and hence it is possible to test them against an additional
set of species records and to quantify predictive performance. However, species records are
both input and output of correlative ENMs and while this makes validation appear easier, this
comes at the expense of accuracy. ENMs are essentially correlative devices with no
knowledge of the mechanisms underlying the patterns they predict (60), and using an
ensemble of ENMs may be the only option to reduce uncertainty (60, 61). At the opposite end
of the process-correlation continuum are PBDMs that do not begin with the assumed native
range of a species based on distribution records, but rather, model the biology (physiology)
and population dynamics of the target species and other species in the same food chain or web
(i.e., the system). This biology when driven by weather allows prediction of the phenology,
dynamics and distribution of the interacting species using extant and climate change weather
across wide geographic areas independent of distribution records (62, 63) with higher
accuracy and at a finer scale than ENMs. PBDMs may be viewed as time-varying life-tables
(sensu ref. 64) that include the important factors that determine observed species distribution
(see also ref. 65) — factors that can be modeled in a mathematically explicit form based on
laboratory and field data.

The goal of our analysis was not precise prediction of olive yield across the
Mediterranean Basin as this is unrealistic due to the combined effects of factors such as a
plethora of local varieties and agronomic practices (e.g., age structure, planting densities,
nutrients and water). Furthermore, no suitable yield records are available for validation.
Bloom date is the major factor determining season length and potential yield (66-69), and this
was well captured by the model. For example, the model was tested against field data from a
previous detailed study for the island of Sardinia (70) where it reliably predicted (e.g.,
through time) the bloom date of olive. The predictions were validated using a set of 94
Sardinian olive groves monitored by the local agricultural extension service ERSAT (Dr.
Q.A. Cossu). A sub set of 21 paired weather station/olive grove were selected to allow a one-
to-one comparison with no duplications, and to minimize the distance between the weather
station and the olive grove. The analysis showed that at the scale of Sardinia, the important
factors explaining most of the discrepancy between observed and simulated olive bloom dates
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were: elevation differences between the olive grove and its paired weather station, and
whether the station and the olive farm were on the same slope. All of these factors affect local
microclimate. Detection of these differences was a clear indication of how sensitive and
reliable the model is. Similarly, the model detected the production of olive in the
microclimates along the northern Italian lakes and explained the distribution of olive fly in
California and Arizona (71).

We side stepped the issue of yield prediction in this study by simulating the effects of
climate on olive meta-physiology, and used a normalized measure to scale the observed yield
at each grid point. The effects of the above factors and others on yield across the Basin are
subsumed in the historical yield records obtained from a state of the art, widely used seven-
year average dataset for the global geographic distribution of yields for 175 crops centered on
the year 2000 (72). The relative physiological effects on changes in olive yield due to climate
change were estimated using the weather-driven PBDMs that summarize the extensive data in
the literature (71). The relative changes in olive yield (simulated physiological effect)
predicted by the model using weather data from climate model scenarios between the two
periods 1961-1970 and 2041-2050 were scaled to the overall range of yield change across all
locations (Eq. 1 in the manuscript), and used to estimate the local changes in yield due to
climate change. The use of relative yield change (simulated physiological effect) and multi-
year average data (observed data) enabled a robust estimate of the relative magnitude and
direction of yield change for olive under projected climate warming across the Basin. To
estimate this in a tri-trophic context is considered the greatest single challenge for reliably
assessing ecosystems under climate change (18). Hence, while data to ground truth the
analysis is desirable, olive yield data were not available. This is a short coming that all
modeling approaches face (see e.g., ref. 73).

In general, our PBDM for olive and olive fly is more heuristic than predictive, due to
constraints of available data for testing the model, and for improving its biological detail. But
this is also the case for ENMs (74-76) that ideally require meta-analysis of multiple models to
derive reasonable projections under climate change (60). Despite this, PBDMs have proven
sufficiently accurate to allow a wide range of successful applications in agroecosystem
management (e.g., ref. 41). This is possible because PBDMs model the species’ biology
explicitly, and hence provide (at least qualitatively) accurate predictions of potential spatio-
temporal patterns of say olive yields across large geographic areas (70, 71) without the
transferability issues typical of ENMs (77, 78). The olive PBDM explicitly captures the
growth and fruiting biology of olive included implicitly in regression models commonly used
to forecast olive yields locally (79) based on records of flowering events and weather (80-87).
This capacity increases confidence that our approach to scale observed yield using simulated
net yield change is at least qualitatively accurate across the Basin. Yield forecast models are
based on pre-peak airborne pollen concentration that functions as a synthetic index describing
weather patterns prior to flowering (88, 89), as pollen emission records include information
about the relationships between fertilization and successive fruit setting (84, 85, 90, 91).
However, the causal relationships are not included in yield forecast models, and hence yield
prediction models have only local validity (79). In contrast, the olive PBDM includes these
causal relationships explicitly, and is able to account for post-flowering factors that influence
fruit growth not included in most yield forecast models (81). For this reason, PBDMs give
regionally accurate projections of the favorability for relative olive growth and yield across
the Basin.
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Olive is the basis of the Mediterranean rain-fed agroforestry system (92), one the oldest
(93-96), most ecologically-sustainable rain-fed agroecosystems worldwide (97), and as such
provides a model to design sustainable rain-fed systems for the semiarid Africa (92),
including regions such as the Sahel (98). Olive is a well-documented cosmopolitan (agro)
ecosystem, and its economic viability and persistence have important implications for
preventing and ameliorating desertification that is a major environmental threat to the whole
Mediterranean region (99-103). Its economic and social viability and its persistence are
important for preventing soil loss, especially on sloping land (104-107), combating
desertification (92, 97), reducing fire risk (106, 108, 109), and conserving biodiversity (106,
107, 110, 111) under global climate change. The olive/olive fly system is also a suitable case
study exemplifying the importance of including trophic interactions when assessing biological
and economic impacts of climate change over large geographic areas such as the
Mediterranean Basin, and it could be a template for formulating models for assessing extant
and climate change impact in other agroecosystems (e.g., grape, citrus, etc.) and their extant
pests and potential invasive species (112, 113). Furthermore, the focus on regional impacts
and the socio-economic dimensions of climate change is central to the forthcoming IPCC fifth
assessment report (see http://www.ipcc.ch/report/ar5/).

Overview on Agricultural Policy Relevant to Olive Production. This section provides an
overview on the regulatory, support and subsidy framework for olive oil in the European
Union (EU) that puts the results of our study in a wider policy context. It is important to note
that agricultural policy is negotiated among and common to all EU member countries (the
Common Agricultural Policy, CAP). Olive oil production is highly regulated by CAP (114),
and this impacts olive production substantially as most of the crop is used to produce olive oil
in Europe (International Olive Council, http://www. internationaloliveoil.org/) where about
80% of olive oil is produced, and where roughly one third of farmers grow olive (115). Since
the 1960s, the main CAP tool to support olive farmers has been via subsidy directly linked to
olive oil production; policy that favors intensive, less ecologically-sustainable olive
production systems (103, 116). Intensification mostly occurs on large farms that can more
easily afford the new investments in technology (e.g., irrigation), whereas small growers in
marginal areas with old, less productive trees and no access to irrigation are penalized and
many abandon these traditional olive systems (116-119). A change in policy support is needed
that would favor extensive, traditional systems mostly associated with cultural landscapes of
high biodiversity (120). The 2003 CAP reform started decoupling the link between the
amount of olive oil produced and the size of subsidy received by farmers (109), and beginning
in 2005 increasing emphasis has been given to environmental compliance as olive growers
will only be entitled to subsidies if they comply (i.e., the so-called cross-compliance, see ref.
102) with a set of sustainable agricultural practices defined by each EU country (e.g., cover
crops to control soil erosion, see ref. 121). However, many existing intensive olive plantations
maintain high-input farming practices likely due to path dependency that results from
structural changes (e.g., high planting density) induced during the past decades by a massive
increase in EU subsidies peaking to about 1.3 Euros per liter of oil in 2003 (115). By contrast,
small olive farmers with the greatest environmental stewardship potential, are also those most
likely to abandon their groves under the current subsidy regime that fully decouples subsidy
and production with mandatory implementation of environmental cross-compliance (103).
Ongoing CAP reform for the period 2014-2020 is considering a specific support scheme for
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small farmers aimed to address prior distortion (122). Finally we note that country-specific
agricultural policies supportive of olive farming have also been in place in North Africa and
the Middle East but never in the form of direct subsidies to olive oil production as occurred in
the EU (123).

In the span of two decades, olive oil turned from a niche product into an important
component in the diets of developed countries (123), and yet the rapid industrialization of
olive production with the associated conversion of vast Mediterranean landscapes to olive
monocultures (124, 125) resulted in a range of environmental pressures (126) mostly driven
by high CAP subsidies with the feedback loops within production and consumption systems
playing a minor role (115). However, aggregate supply effects with subsequent market
changes may occur in the future as a result of spatial and temporal shifts in olive production
as driven by climate change. Different countries may accrue typical supply/demand ratios that
influence olive oil prices, with the quality of oil currently being particularly important in
determining price across countries (127). Market-induced price changes were not included in
our analysis.

S| Materials and Methods

Geographic Distribution of Olive. Despite olive’s prime importance in the Basin (107),
published GIS maps of its distribution were unavailable. Hence to produce a nearly
continuous map of the potential olive growing area at the Mediterranean scale, data and maps
from various sources were smoothed using the v.kernel module of GRASS (128). The
resultant map amalgamates data from the following sources: Corine satellite-derived land
cover database (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-
clc2000-seamless-vector-database); M3-Crops Data for olive (http:/www.sage.wisc.edu/)
(72); FAO (Food and Agriculture Organization of the United Nations) Agro-MAPS
(http:/kids.fao.org/agromaps/) and GAEZ data (Global Agro-Ecological Zones; see
http://gaez.fao.org/); published data and printed maps of olive distribution (e.g., 95, 96, 129).
The M3-Crops data for yield are representative of the year 2000, and proved crucial for
estimating the distribution in the southern Mediterranean Basin where Corine data for olive
were not available. The M3-Crops Data refer to political units at variable levels of detail:
county (e.g., Tunisia and Egypt), state (Algeria, Jordan, and Lebanon), or whole country
(Morocco, Libya, Israel, Palestine, and Syria). The general approach to reconciling
discrepancies between the data sets was to first use the satellite-derived land cover class for
olive groves (Corine) where available, and then resort to datasets that derive olive distribution
indirectly from agricultural statistics and the global satellite-derived distribution of cultivated
land (M3-Crops). Published reports, maps and other available records were used as checks on
the accuracy of our map. The percentage distribution of olive in the various FAO ecological
zones of the Basin (130) was estimated using the GRASS/R interface module spgrass6 (131).

The System Model. Conceptually, our mechanistic weather-driven physiologically-based
demographic models (PBDMs) build on the idea that all organisms are consumers and all
have similar resource acquisition functions and allocation priorities; a notion that allows use
of the same resource acquisition model and birth-death dynamics models to describe
explicitly the biology of heterotherm species across trophic levels (42, 132, 133), including
the economic one (43) (see Fig. S2). The inflow and outflow processes are analogous across
species and have similar shapes described by the same functions. Resource acquisition (i.e.
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the supply, S) is a search process driven by organism demand (D), with allocation occurring
in priority order to egestion, conversion costs, respiration, and reproduction, growth, and
reserves (40, 132, 134).

The development of PBDMs for plants is well established in the literature (135) with an
excellent detailed example for coffee reported by Rodriguez et al. (136). These plant model
provide a realistic base for linkages to herbivore and higher trophic levels (e.g., ref. 134). This
is the structure used to model olive and olive fly dynamics (for details, see ref. 70 and SI
Mathematical structure of the olive/olive fly model). The olive PBDM is a plant canopy
model with subunit populations of leaves, stem, root and healthy and attacked fruit that allow
capture of the bottom-up plant effects on olive fly dynamics (Fig. 1). The model simulates the
age-mass structured population dynamics of nine functional populations (n = 1...9): olive leaf
mass and numbers {sub models n=1, 2}, stem plus shoots {n=3}, root {4} and fruit mass and
number {5, 6} that are linked via photosynthate supply and demand consideration, The
models for immature olive fly in fruit {7}, and reproductive and dormant fly adults {8, 9} are
similar, except that for convenience we follow only the number dynamics.

The developmental rates of olive and the fly depend on temperature and are captured by
the non-linear model proposed by Briére ef al. (137). The time step in the model is a day of
variable length in physiological time units. Temperature influences nearly all aspects of
olive’s growth and the effects are captured by a function of temperature that is the normalized
net of the photosynthetic and respiration rates. This function also defines the optimum
temperature, and the upper and lower thermal thresholds for development. While the model
predicts the growth and yield responses of olive to weather in substantial detail, local
varieties, plant age structure, and agronomic practices across the Basin affect yield. The olive
model predicts flowering phenology that is controlled by vernalization, age-structured mass
growth and yield, and fruit mortality due to temperature, photosynthate shortfalls and the
timing and rate of fly attack.

The biology of olive fly is closely linked to olive fruit age and availability. And though
the fly lacks an obligate diapause, adult females may enter reproductive quiescence when host
fruit are low and/or temperatures are high (see ref. 71). The model predicts the daily age
structured dynamics of all life stages including the pattern of reproductive quiescence. As in
olive, the effects of temperature on olive fly vital rates are captured by analogous functions
for development, reproduction and mortality.

Critical to interpreting the results is that olive has wider thermal limits than olive fly,
and this biology has pronounced effects on the crop-pest dynamics, and the economics of
olive culture across the region.

Weather and Weather Scenarios. The olive/fly system dynamics are driven by daily weather
[i.e., max-min temperature and solar radiation (W m™ d™)], and two weather scenarios are
used: daily weather for the base period 1961-1970 (weather vector w,) and an A1B scenario
with +1.8°C % 0.3°C average warming for the period 2041-2050 (weather vector w,, ) (see
ref. 55). A weak negative trend is predicted for precipitation (55), and because olive is
drought tolerant (66, 138), soil moisture is assumed non-limiting for olive culture in the
current region of cultivation (see also refs. 139, 140). We note that irrigation is used in some
areas of low rainfall (e.g., areas of Egypt and the province of Andalucia, Spain).

The weather data used in the study were estimated via regional downscaling of a global
climate simulation (ECHAMS/MPI-OM) for the period 1951-2050 (55). The global weather
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simulation was run at ~200 km grid resolution using observed [GHG] for years 1951-2000
and the IPCC A1B GHG emissions scenario for 2001-2050. Using this coarser global
simulation as the boundary condition, a regional climate model (PROTHEUS) was used to
refine and rescale the weather data to a 30 km grid resolution. PROTHEUS is a coupled
atmosphere-ocean regional model that allows simulation of local extremes of weather via the
inclusion of a fine scale representation of topography and the influence of the Mediterranean
Sea (141). A subset of the PROTHEUS data for the periods 1961-1970 and 2041-2050 were
used in our study performed on a 30 km grid.

Simulation and GIS Analysis. The same initial conditions were used for all 995 grid points in
the analysis, but grid-point specific weather data were used to drive the model. For
convenience, we ignore grid point coordinate in the equations. The model was run
continuously across all locations for the periods 1 January 1960 to 31 December 1970
(weather data w;,) and 1 January 2040 to 31 December 2050 (w,, ;). The model was assumed
equilibrating to local weather during the first year at each grid point simulation, and hence the
data for this year were not used to compute the summary means, standard deviations and
coefficients of variations across years for each output variable. Welch's two-sample t-test
(statistical software R, http://www.r-project.org/) was used to compare the simulation data for
scenarios in five sub-regions of the Mediterranean Basin (see also Fig. S9). Changes in the
variability of olive yield, fruit infestation by olive fly, and profit between scenarios w, and
w, ¢ were computed for yield as the difference in the coefficient of variation
(ACV =CV,,,—CV,), and for olive fly infestation and profit as the difference in the
interquartile range (AIQR = IQR,, . — IOR,). Yield and profit variability was computed using
normalized simulated yields (¥ and Y3, g) to scale observed yields (Yobs) SO as to generate two
sets of yearly values for the w, and w,, , scenarios. Values used to compute CV are assumed
to be always positive or null as is the case for yield (142), whereas CV has limitations when
there are negative values and for proportions (143, 144), and hence we used IQR (i.e., the
range for the middle 50% of the data) as an alternative measure of variability for fruit
infestation and profit.

GRASS GIS (http://grass.osgeo.org/) was used to map the model output at all locations
below 900m (145) using inverse distance weighting interpolation at 3-km resolution based on
an Albers Equal Area conic projection. Base GIS layers used in the analysis are in the public
domain: a digital elevation model from NOAA Global Land One-km Base Elevation
(http://www.ngdc.noaa.gov/mgg/topo/globe.html); state boundaries and land cover coloring
from Natural Earth (http://www.naturalearthdata.com/); Global Ecological Zones (130) from
the GeoNetwork server (http://www.fao.org/geonetwork/). Histograms of the frequency
distribution of output data for the different sub-regions of the Basin were produced using the
R package ggplot2 (http://ggplot2.org/) (146). Statistical outliers were were identified using
the R boxplot function (147, 148) and mapped as such to improve the visual presentation of
data (149).

S| Mathematical Structure of the Olive/Olive Fly Model

The PBDM approach can model the individual or the average population. A canopy average
plant model for olive (150) and a per capita model for olive fly (42, 132, 133, 151-154) were
developed and used in our study.
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To analyze the effects of weather on olive and olive fly, the per capita age-structured
dynamics of growth, development, reproduction, and behavior as driven by weather and their
interactions were modeled incorporating the underpinning biology and dynamics (see ref. 71).
Common processes across trophic levels allow the same population dynamics and functional
response models to be used to model the number and mass dynamics and interactions of olive
and olive fly (155, see ref. 156, pp. 523-524). All biological processes are driven by weather
making the model independent of time and place (157) cast in a demographic form (cf. refs.
42, 132). The details of our physiologically-based demographic model are outlined in this SI
text and in greater detail in Gutierrez (42).

Population Dynamics. Our model simulates the age-mass structured population dynamics of
nine functional populations (n = 1...9): the dynamics of olive leaf mass and numbers {models
n=1, 2}, stem plus shoots {n=3}, root {4} and fruit mass and number {5, 6}, olive fly in fruit
{7}, and reproductive and dormant adults {8, 9}.

The biology of resource acquisition and allocation is embedded in a distributed
maturation time demographic model used to simulate the dynamics of age-mass structured
populations (158) where time (¢) and age (@) in the model are in physiological time units (see
refs. 42, 71 for model values).

The general model for the ith age class of a population (e.g., for populations {1-6} and
{8-9}) is

ﬂ _kAa
dt del

[]Vi—l(t)_Ni(t)]_lui(t)Ni(t)' [Sl]

N; is the density of the ith cohort of consumer, £ is the number of different age cohorts
(stages), del is the expected mean developmental time, Aa is an increment in age
physiological age, and —oo < 1. (f) < oo is the proportional net loss rate that includes all age-
species specific growth, birth, death and net immigration. The flow across all k£ age classes is
depicted in Fig. S11A, and the pattern of emergence times for different values of Erlang
parameter k are depicted in Fig. S11C. The parameter £ in our model was assumed 40.
Understanding [S1] and the role i(t) plays is critical to comprehending the model’s
construction and functioning. Computing birth and growth rates requires the use of a
functional response model.

A two dimensional distributed delay model is used for olive fly larvae because the eggs
are deposited in fruit of different ages that continue to develop on the plant time scale (i),
while the egg-larval stage continue to develop on the fly’s time scale (j) (Fig. S11B). Note
that net mortality of the i/ age class (o0 < 4; ;(t) <oo ) is also a component of this model but
is not illustrated in Fig. S11B. Note that a cohort of eggs deposited on ith age fruit travels in
the two dimensions.
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Fig. S11. (See text and ref. 71).

The Functional Response Model. A basic assumption of PBDMs is that all organisms (and
sub-stages) are consumers (i.e., predators in a general sense, N), and all search (a) for
resources (X). The same functional response model (Eq. S2) may be used to estimate search
success for all consumers for multiple resources they may seek. For example, olive leaves
search for light and the roots search the soil for water and nutrients, and adult olive flies seek
olive fruit to deposit their eggs.

The per capita concave functional response model used for olive (Eq. S2) is similar to
Watt’s model (see ref. 42, p. 81). For olive fly we use the parasitoid form that allows multiple
oviposition in the same fruit (i.e., the metabolic pool model; see refs. 39, 157).

S(u) = Dh(u) = D{l —exp (%ﬂ [S2]

S(u) is the per capita resource acquired by consumers of population N in the face of
intra-specific competition (i.e., the exponent) from resource R, D is the per capita demand
rate, and o is the search rate. In olive, a(N)=1—-exp(—sN) is Beer’s Law of plant physiology,
N is the density of leaf area (or roots) each with per capita (unit) search rate s. This makes Eq.
S2 a type III functional response. For olive fly, a was assumed constant because the aggregate
search behavior is not known. However, to examine discrepancies at low densities of fruit
(0), a(0)=1-exp(—sO) was used for a (see ref. 71).

In olive, with a known set of biological state variables (mass and age structure of plant
subunits) and known temperature, light, water and nutrients, the quantity of photosynthate
produced S=S(u) can be predicted using Eq. S2. This production is allocated first to egestion
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(1-P), then respiration (i.e., Qjo), and after correction for conversion efficiency (L) to
reproduction and/or growth plus reserves (GR) (132).

GR=(Sp—-0)A [S3]

We note that S depends on D in Eq. S2 that can be estimated under conditions of non-
limiting resource by solving Eq. S3 and assuming D = S

max *

GRmax(t)
1 + 0
D=S,  =—F—— [S4]
B

D is the sum of all plant subunit demands that may vary with age, stage, sex, size,
temperature and other factors, and these and consumer preferences may be included in Eq. S2.
Dividing both sides of Eq. S2 by D yields the consumers supply-demand ratio

0<d,,=S/D=hu)<l. [S5]

@¢,p 1s used to scale per capita growth and fecundity from the maximum rate under
optimal conditions (e.g., GR= ¢ GR__ ). The allocation is made to the subunits as the fraction
they contribute to the total demand (see ref. 42). In addition, if O(¢) is the number of fruit
susceptible to shedding, then at any time ¢ the number surviving fruit equals
Ot +1) = Oy, (1~ 1 (T))..

We can model reproduction in olive fly in a similar manner. Observed per capita
reproduction at optimal temperature 7* and age x may be modeled using an appropriate
function (F"(x,T" )=ax/b") where a and b are fitted constants and 0<g,,.(T)<1 corrects
for the effects of observed temperature (F(x,T)=F (x,T )¢, (T ); see Fig. S12A; cf. ref.
154, see also ref. 159).
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Fig. S12. (See text ref. 71).

The total population demand for oviposition sites by all adults Nor(T) is
DOF(T):ZF(X’T)NOF(X’T)'
x=0

The number of eggs (S) deposited in infested (O;) and healthy fruit (Oy) not only
depends on demand but also needs to be corrected for adult oviposition preference (@ ef(Xfiuir),
Fig. S12B) and search success. Substituting Do{(T) and O=¢,.,,,0,+ 9, Oy in Eq. S2
yields total oviposition success S(u,T)=¢,.(T)D,,. h(u,T)where a is the search rate. The
relationship between olive fly oviposition preference and fruit growth and age are depicted in
Fig. S12B where SH is the beginning of seed hardening.

The data on cold weather effects on olive fly mortality is scant, but the studies by
Koveos (160) showed that some cold hardening occurs by exposure of adult flies to cool non
lethal temperature for two hours and non exposure followed by exposure to various
temperatures below zero. Fig. S12C summarizes Koveos’s data with conditioning values
indicated by the symbol (0) and non conditioning indicated by (m).
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Fig. S1. Climatic favorability for olive in the Mediterranean Basin. Mean degree days < —8.3
°C (freeze damage threshold for olive) (161) (A), and mean yearly rainfall (mm y) (B) for the
period 1958-2000 based on daily weather from the ERA40 reanalysis of meteorological
observations downscaled to a 30 km grid (141). The reference precipitation value of 500 mm
y1in (B) is the lower limit for commercial yields under rain fed conditions (162) while rain
<350 mm y™* defines the lower limit of olive distribution in arid areas (163).
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Fig. S2. Multitrophic mass (i.e., energy) flow in the consumer-resource population dynamics
model as applied to the olive eco-social system (see refs. 40, 42, 43); the symbol $ indicates
the conversion of the mass/energy flow into monetary units.
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Fig. S3. Olive crop area in countries of the Mediterranean Basin. Data from FAOSTAT refers

to the year 2000, the same reference year used to derive the olive distribution map in Fig.
2A.
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Fig. S4. Mean of olive bloom date (days from 1 January) under the A1B +1.8°C climate
warming scenario. Map (A) and frequency histogram (B) for the period 1961-1970; and map
(C) and frequency histogram (D) for the period 2041-2050.
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A  Olive bloom date (from 1 January) SD 1961-1970
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Fig. S5. Standard deviation (SD) of olive bloom date (days from 1 January) under the A1B
+1.8°C climate warming scenario. Map (A) and frequency histogram (B) for the period 1961-
1970; and map (C) and frequency histogram (D) for the period 2041-2050.
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A Olive fly pupae per season (103), mean 1961-1970
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Fig. $6. Mean of olive fly abundance (cumulative pupae x 10° season™ tree™) under the A1B
+1.8°C climate warming scenario. Map (A) and frequency histogram (B) for the period 1961-
1970; and map (C) and frequency histogram (D) for the period 2041-2050.
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A Olive fly pupae per season (103), SD 1961-1970
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Fig. S7. Standard deviation (SD) of olive fly abundance (cumulative pupae x 10° season™
tree™) under the A1B +1.8°C climate warming scenario. Map (A) and frequency histogram (B)
for the period 1961-1970; and map (C) and frequency histogram (D) for the period 2041-
2050. Outliers identified using R boxplot function. Full data intervals are [0, 4.2] (A, B) and
[0.3,5.7] (C, D).
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A Change in the variability of olive yield (ACV, %)
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Fig. S8. Risk change in olive production induced by bio-economic multitrophic effects of
climate warming in the Mediterranean Basin. Change (A) in the variability of (A) the
coefficient of variation (CV, %) of olive yield, (B) the interquartile range (IQR, see SI Methods)
of fruit infestation by olive fly (%), and (C) the IQR of profit (€ ha™) as driven by the A1B
+1.8°C climate warming scenario. Outliers were identified using R boxplot function. Full data
intervals are [-134, 275.4] (A), [-42.8, 23.7] (B), and [-1,832.0, 991.6] (C).
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[] Portugal and Spain
[ ] France and ltaly

[] Croatia, Albania, Greece, Turkey and Cyprus
O Egypt, Israel, Palestine, Jordan, Lebanon and Syria
O] Morocco, Algeria, Tunisia and Libya

Fig. S9. Sub-regions of the Mediterranean Basin used in Fig. 6 and Table 1 (color palette from
http://colorbrewer2.org/).
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A Simulated yield (kg dry matter tree!) with v_{/o
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Fig. S10. Simulated and observed olive yield in the Mediterranean Basin. (A) Map of
simulated yield with baseline weather w, (kg dry matter tree™’; mean for years 1961-1970).

(B) Map of observed yield (t ha™; mean for years 1997-2003) where values >3.8 are shown as
outliers for presentation purposes (outliers identified using R boxplot function). (C)
Frequency histogram of yields shown in (B) with indication of bars for Western Greece and
Egypt (i.e., the data shown as outliers in subpanel B). (D) Fraction of harvested olive area
subject to irrigation on a 10 x 10 km pixel base (164). Note that simulated patterns capture
higher-than-average yields in areas such as Spain (Andalucia district), Egypt, Greece and
southern Italy, while in other areas such as North Africa, the rest of the Middle East and
Turkey simulated yield appear high relative to observed records as a results of a mix of
factors including the lack of irrigation and a combination of other agronomic practices. In
addition, simulated yield is expressed as fruit dry matter per plant whereas observed yield is
fresh fruit per unit area, and hence factors such as planting density and the presence of table
olives (with higher water content at harvest than olives used for oil production) may both
contribute to widen the difference between simulated and observed vyields. This suggests
that using the physiological response of olive to weather for scaling observed yield is a
robust approach to mechanistic analysis of the olive system at the scale of the
Mediterranean Basin.
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