Supporting Information

Supporting Information Corrected May 05, 2014

Chen et al. 10.1073/pnas.1404545111

A HUVEC VEGFA 121		В	HUVEC				V	EGI	FC						
Control FRS2α shRNA			Control			F			FRS2a shRNA						
0 1 5 15 30 60 0 1 5 15 30 60	(min) p-VEGFR2 (Tyr801)		0	1	5	15	30	60	0	1	5	15	30	60	(min) p-VEGFR2 (Tyr951)
	p-VEGFR2 (Tyr951)					-		1				~			p-VEGFR2 (Tyr1054)
	p-VEGFR2 (Tyr1054)			100	***	1.01	-	-							p-VEGFR2 (Tyr1175)
	p-VEGFR2 (Tyr1175)			5	-	(*1))		-							p-VEGFR2 (Tyr1212)
	p-VEGFR2 (Tyr1212)					-	-	-	-	-	-				VEGFR2
	VEGFR2					-	-	12							FRS2
Rea and the set and the	FRS2		-		-		-	-	-	-	-		-	-	β-tubulin
	β-tubulin														
C HUVEC EGF			D	HDL	.EC			EC	GF						
Control FRS2a shRNA			_	(Con	trol		_		FR	52α	shR	NA	<u> </u>	
0 1 5 15 30 60 0 1 5 15 30 60	(min) p-ERK		0	5	1	5 3	30	60	0	5	15	5 3	0	60	(min) p-ERK
	ERK		-	-				-	_	-				-	ERK
	EGFR		-					-	-	-		-	-	-	EGFR
1012 AND 100 AND 100 AND 100	FRS2		-	-	-	-		-		-	1		-		FRS2
	β-tubulin		-	-		-		-	-	-		-	-	-	β-tubulin

Fig. S1. FRS2 α knockdown in HUVEC inhibits vascular endothelial growth factor (VEGF) A₁₂₁ and VEGF-C-dependent signaling, but does not impair EGF signaling. (*A* and *B*) Control and FRS2 α knockdown HUVEC were serum starved overnight and treated with VEGF-A₁₂₁ (50 ng/mL) or VEGF-C (50 ng/mL) for the indicated times. Cell lysates were blotted with p-VEGFR2, VEGFR2, and FRS2 α antibodies. (*C* and *D*) Control and FRS2 α knockdown HUVEC and HDLEC were serum starved overnight and treated with p-KEGFR2, and FRS2 α antibodies. (*C* and *D*) Control and FRS2 α knockdown HUVEC and HDLEC were serum starved overnight and treated with p-KEGFR2, and FRS2 α antibodies. Cell lysates were blotted with p-KEGFR2, and FRS2 α antibodies.

Fig. S2. $Frs2\alpha^{4F/4F}$ mutant mice have normal baseline vascular density. (A) Total genotype distribution from all heterozygous crosses from $Frs2\alpha^{4F/4F}$ intercrosses: 20% wild-type, 60% $Frs2\alpha^{4F/4F}$, and 20% $Frs2\alpha^{4F/4F}$. (B) Body weight analysis of wild-type (n = 6, average weight = 30.7 g) and $Frs2\alpha^{4F/4F}$ (n = 8; average weight = 21.7 g) mice. ***P < 0.001. (C) Quantitative real-time PCR quantitation of endothelial cell marker gene expression in primary mouse heart, lung, and liver EC isolated from wild-type and $Frs2\alpha^{4F/4F}$ mice (NS, not significant compared with control). β -actin was used to normalize the variability in template loading.

Fig. S3. $Frs2a^{4F/4F}$ mutant mice have arteriogenesis and angiogenesis defects. (A) Laser-Doppler images showing blood flow before and after the induction of ischemia to the left hindlimb in wild-type (n = 5) and $Frs2a^{4F/4F}$ (n = 6) mice. (B) Laser-Doppler analysis of blood flow recovery in the left foot, expressed as a ratio of blood flow in left to right foot (L/R). *P < 0.05, wild-type vs. $Frs2a^{4F/4F}$. (C) In $Frs2a^{4F/4F}$ mice, clinical score indicated a severe phenotype, leading to necrosis of limb. (D) Representative reconstructed micro-CT images of ischemic legs (16 µm resolution; n = 3) from wild-type and $Frs2a^{4F/4F}$ mice. (E) Quantitative analysis of micro-CT images in the calf, presented as total number of vascular structures in 250 z-axis slices (n = 3 per group). Data are mean \pm SEM. (F) Matrigel mixed with either PBS or VEGF-A₁₆₅ (50 ng/mL) were placed s.c. in wild-type or $Frs2a^{4F/4F}$ mice. On day 7, matrigel plugs were sectioned, and the number of vascular structures in 250 z-axis slices (n = 3 per group). Data are mean \pm SEM. (F) Ad-LacZ or Ad-VEGF-A₁₆₄ virus. VEGF-A-induced angiogenesis was recorded at day 7 by using a stereomicroscope and fluorescent scope. On day 7, mouse ears were sectioned, and the number of vessels was counted (*P < 0.05 compared with control) (n = 3 mice per group).